
Object-Oriented Design Lecture 4
CS 3500 Spring 2011 (Pucella) Friday, Jan 21, 2011

4 Object-Oriented ADT Implementations

Last time, we talked about implementing ADTs, and we have looked at sample implemen-
tations in Scheme (as well as in ACL2).

Those implementations, while they do provide all the operations in the signature and sat-
isfy the specification, are not perfect, however. The main problem is that they expose the
representation of the elements of the ADT. This makes it too easy for clients to rely on
representation details, such as the “bad client” we saw last time. A client relying on im-
plementation details means that we, as implementers of the ADT, cannot just change the
implementation without breaking client code.

Many languages have facilities to prevent the exposure of data representation, thereby en-
suring that clients cannot take advantage of it.

One approach, called signature ascription, is to “wall off” the data representation and the
operations that operate on it, and by only exposing the operations themselves.

Another approach, which is similar in its results but philosophically different, is to push
the operations inside the data representation (and hide that data representatino). Because
the operations live inside the data representation, they know the data representation (which
they need in order to actually implement their required functionality), but clients cannot
access that representation. This approach is the basis for object orientation.

We will be using Scala as an implementation language for this course. Scala is similar to
Java, and you can think of it as the next step in the evolution of Java. Some remarks on
the language: Scala is a class-based object-oriented language. “Object-oriented” here means
that every value in the language is an object. “Class-based” means that objects are created
from classes. A class is essentially a template, a description of how objects of the class are
created.

It helps to think of a program has having two parts. One part, the part that correspond to the
source code, is static. (Static means non-moving, which we take to mean non-executing). It
represents what information about the program we have before anything executes. In Scala,
the only thing we know before a program executes are what classes are defined. Thus, the
classes are static. Classes exist, in some sense, even before programs start executing. The
other part is the dynamic part, which corresponds to program execution. During execution,
instances of the classes, that is, objects, get created, updated, destroyed. Thus, objects are
dynamic.

You should probably be aware that not every object-oriented language is class-based. Self,

28



for example, has no concept of class, but still has objects. Scala is also statically typed —
types are associated with variables, and before a program is run those types are checked,
to make sure that values of the right kind are stored in variables, or passed to methods.
Not every object-oriented language is statically typed. Smalltalk, for example, checks types
dynamically, like Scheme does. We’ll talk more about types next lecture.

4.1 Object-Oriented Signatures and Specifications

To help us devise implementation for ADTs in object-oriented languages, we consider a
slightly different way of writing signatures and specifications. Recall the Point ADT sig-
nature from last time (except I’ve replaced all Float with Double for convenience):

CREATORS
cartesian : (Double, Double) -> Point
polar : (Double, Double) -> Point

OPERATIONS
xCoord : (Point) -> Double
yCoord : (Point) -> Double
angleWithXAxis : (Point) -> Double
distanceFromOrigin : (Point) -> Double
distance : (Point, Point) -> Double
move : (Point, Double, Double) -> Point
add : (Point, Point) -> Point
rotate : (Point, Double) -> Point

isEqual : (Point, Point) -> Boolean
isOrigin : (Point) -> Boolean

An object-oriented signature, to a first approximation, consider that operations (but not the
creators), which must take at least one argument of the type of the ADT1 take that value on
which they act as an implicit argument, as opposed to an explicit argument that appears in
the argument list. Implicit arguments are meant to capture the idea that the operations live
inside an object (an element of the ADT) and therefore have access to that element as an
implicit argument. For instance, if p and q are Points, while we would write add(p,q) to
add p and q in a conventional language, in an object-oriented setting we would call the add
operation inside p, usually written p.add(q), and p here is considered the implicit argument
to add, while q is an explicit argument.

Thus, here is the object-oriented signature for the Point ADT:

1if not, such an operation probably has no business being part of the ADT.

29



CREATORS
cartesian : (Double, Double) -> Point
polar : (Double, Double) -> Point

OPERATIONS
xCoord : () -> Double
yCoord : () -> Double
angleWithXAxis : () -> Double
distanceFromOrigin : () -> Double
distance : (Point) -> Double
move : (Double, Double) -> Point
add : (Point) -> Point
rotate : (Double) -> Point

isEqual : (Point) -> Boolean
isOrigin : () -> Boolean

Let’s change how those operations are used, to understand exactly where the implicit argu-
ment to operations is coming from. Creators are invoked as before, e.g., cartesian(10,20).
Operations, on the other hand, are invoked on an expression yielding a Point value, e.g.,
p.xCoord(), where p is a Point value, or p.rotate(2.0).move(3,4), again where p is a
Point value.

We can easily adapt the specification of points to this new way of invoking operations —
here is the specification from Lecture 2, adapted to the signature above, and presented in
such a way that we have exactly two equations per operation, once for each creator.

cartesian(x,y).xCoord() = x

polar(r,θ).xCoord() = r cos θ

cartesian(x,y).yCoord() = y

polar(r,θ).yCoord() = r sin θ

cartesian(x,y).distanceFromOrigin() =
√

x2 + y2

polar(r,θ).distanceFromOrigin() = r

cartesian(x,y).angleWithXAxis() =






tan−1(y/x) if x != 0

π/2 if y ≥ 0 and x = 0

−π/2 if y < 0 and x = 0

polar(r,θ).angleWithXAxis() = θ

cartesian(x,y).distance(q) =
√

(x− q.xCoord())2 + (y − q.yCoord())2

30



polar(r,θ).distance(q) =
√

(p.xCoord()− q.xCoord())2 + (p.yCoord()− q.yCoord())2

cartesian(x,y).move(dx,dy) = cartesian(x + dx,y + dy)

polar(r,θ).move(dx,dy) = cartesian(r cos θ + dx,r sin θ + dy)

cartesian(x,y).add(q) = cartesian(x + q.xCoord(),y + q.yCoord())

polar(r,θ).add(q) = cartesian(r cos θ + q.xCoord(),r sin θ + q.yCoord())

cartesian(x,y).rotate(ρ) = cartesian(x cos ρ− y sin ρ,x sin ρ + y cos ρ)

polar(r,θ).rotate(ρ) = polar(r,θ + ρ)

cartesian(x,y).isEqual(q) =

{
true if x = q.xCoord() and y = q.yCoord()

false otherwise

polar(r,θ).isEqual(q) =






true if r = q.distanceFromOrigin() and

θ ≡ q.angleWithXAxis()

false otherwise

cartesian(x,y).isOrigin() =

{
true if x = 0 and y = 0

false otherwise

polar(r,θ).isOrigin() =

{
true if r = 0

false otherwise

(Where ≡ for angles is defined in Lecture 2.)

4.2 Implementation in Scala

Let’s implement the above signature, then. The one decision we have to make, at this point,
is how to represent points. The same decision was had to make when we were thinking
of implementing points in Scheme last time. Just like in that case, we have two natural
representation for points — as a pair of cartesian coordinates, or as a triple where the first
element of the triple is a flag indicating whether the next two elements are the coordinates
of the point in cartesian coordinates or in polar coordinates. Let’s do the first representation
first. We define a class Point to hold the representation of points. The definition of the class
specifies the values that must be supplied to the class to construct an instance of the class:! "
class Point (xpos : Double, ypos : Double) {

// OPERATIONS

31



...

// CANONICAL METHODS

...

}# $
To construct an instance of a point, we will use an expression new Point(10.2,20.4) or
somesuch, where xpos will be bound to 10.2 in the newly created instance, and ypos will
be bound to 20.4 in the newly created instance. Both xpos and ypos are available as fields
in the instance created. (They are not accessible from outside the instance, though — they
are private.)

Let’s fill in the body of this class.

There are several rules that we will follow when writing classes in this course. Four, to be
precise, to be introduced throughout this example. Here is the first one:

(1) The only methods in the class that we should be able to invoke are those corresponding
to the operations in the signature, as well as the canonical methods.

Canonical methods will be defined next lecture. Now, the class can define other methods,
we just have to make sure they are not accessible from outside the class.

Scala lets us restrict accessibility to methods (and to fields) using the private keyword.
(Much more can and will be said about private.) By default, methods and fields without
a qualifier are public.

We will not use fields much in this course. (Most of the time, they will be hidden as arguments
to the class, as we did above for xpos and ypos.) When we do use fields, though, they will
always be private.

(2) All fields are private.

Fields are not part of the signature, so the spirit of rule (1) says that they should indeed
be private. This is not a big restrictions, as we can always use methods (if the signature
tells us to) to read and update fields. Mostly, this is to make sure that the rest of the code
does not depend on there being a particular field in the object, so that we can, for instance,
change the representation of an ADT without worrying about breaking code elsewhere in
our program.

Let’s implement the operations:! "
class Point (xpos : Double, ypos : Double) {

32



// OPERATIONS

def xCoord ():Double = xpos

def yCoord ():Double = ypos

def distanceFromOrigin ():Double = math.sqrt(xpos*xpos+ypos*ypos)

def angleWithXAxis ():Double = math.atan2(ypos,xpos)

def distance (q:Point):Double = math.sqrt(math.pow(xpos-q.xCoord(),2)+
math.pow(ypos-q.yCoord(),2))

def move (dx:Double, dy:Double):Point = new Point(xpos+dx,ypos+dy)

def add (q:Point):Point = this.move(q.xCoord(),q.yCoord())

def rotate (t:Double):Point =
new Point(xpos*math.cos(t)-ypos*math.sin(t),

xpos*math.sin(t)+ypos*math.cos(t))

def isEqual (q:Point):Boolean = (xpos == q.xCoord()) &&
(ypos == q.yCoord())

def isOrigin ():Boolean = (xpos == 0) && (ypos == 0)

// CANONICAL METHODS

...
}# $

This is all completely straightforward. A method is defined using

def name (argname:argtype,...):resulttype = body

Here, body is an expression that returns a value of type resulttype. We can use the keyword
this to stand for the implicit argument in any method body, as in Java. I will often use
this explicitly to emphasize when I’m invoking a method on the same object.

Classes can define not only methods but fields as well. In the above class, xpos and ypos
are fields, albeit implicit fields, appearing only in the signature of the class. Explicit fields
can be defined using

val name : type = initvalue

33



or
var name : type = initvalue

A val field is a field that cannot be updated, while a var field can be updated. For us, for
the time being, fields are never updated. This is important enough that I will make it a rule
that we will only break towards the end of the course:

(3) Fields, once initialized, are never updated.

In combination with rule (2) that makes every field private, this makes every instance of the
class immutable—once created, it cannot be changed. Immutable instances have a host of
advantages: the code is easier to reason about, it is easier to replace the code or debug it,
etc. As we will see when we look at mutation, understanding what actually happens when a
field is updated can get very tricky when a program uses all the features of Scala. Because
of this, and other reasons that we will return to in the course of the semester, we will restrict
our attention to immutable instances.

Okay, so we have class Point, that lets us create a representation of a point in cartesian
coordinates. The only thing missing are the creators. Now, we cannot put the creators
within the representation of points, because, intuitively, when we invoke the creators, we
may not have any point around. So what do we do with them?

Really, we would like to define two functions cartesian and polar that live outside the the
Point class, and that look like:

def cartesian (x:Double,y:Double):Point =
new Point(x,y)

def polar (r:Double,theta:Double):Point =
if (r<0)
throw new Error("r negative")

else
new Point(r*math.cos(theta),r*math.sin(theta))

But Scala doesn’t let us define “free-floating” functions like that. They need to live inside
something. It seems silly to define a class just to have those two functions live inside it, so
we’ll use a special kind of class called a singleton class — also known as a module — that is,
a class that has only one instance, and that instance is created automatically for you when
the program starts. Here is a possible definition:

Object Creators {

def cartesian (x:Double,y:Double):Point =
new Point(x,y)

34



def polar (r:Double,theta:Double):Point =
if (r<0)
throw new Error("r negative")

else
new Point(r*math.cos(theta),r*math.sin(theta))

}

This creates an instance (called Creators) of the class Creators, and doesn’t let you define
new instances of that class. To invoke methods in the Creators module, you would call
them like you would any other methods, that is, as Creators.cartesian(10.2,20.4), or
Creators.polar(10.0,math.Pi/2).

Calling the module Creators is not very mnemonic, especially if we have other ADTs around
with their own creators. So we shall define a module called Point in which the creators for the
Point ADT live — that the module has the same name as the class used for representation
of a point is something that Scala allows.2

This gives us our fourth rule:

(4) Creators live in a module (singleton class) of the same name as the ADT.

Here is the code for the Point module and the Point class, which we can put in a file
Point.scala:! "
object Point {

def cartesian (x:Double,y:Double):Point =
new Point(x,y)

def polar (r:Double,theta:Double):Point =
if (r<0)
throw new Error("r negative")

else
new Point(r*math.cos(theta),r*math.sin(theta))

}

class Point (xpos : Double, ypos : Double) {

// OPERATIONS

def xCoord ():Double = xpos

2In that situation, the resulting module is sometimes called a companion object to the class. The details
are actually not that important.

35



def yCoord ():Double = ypos

def distanceFromOrigin ():Double = math.sqrt(xpos*xpos+ypos*ypos)

def angleWithXAxis ():Double = math.atan2(ypos,xpos)

def distance (q:Point):Double = math.sqrt(math.pow(xpos-q.xCoord(),2)+
math.pow(ypos-q.yCoord(),2))

def move (dx:Double, dy:Double):Point = new Point(xpos+dx,ypos+dy)

def add (q:Point):Point = this.move(q.xCoord(),q.yCoord())

def rotate (t:Double):Point =
new Point(xpos*math.cos(t)-ypos*math.sin(t),

xpos*math.sin(t)+ypos*math.cos(t))

def isEqual (q:Point):Boolean = (xpos == q.xCoord()) &&
(ypos == q.yCoord())

def isOrigin ():Boolean = (xpos == 0) && (ypos == 0)

// CANONICAL METHODS

...

}# $
We are almost done. There’s just one bit left to do, namely taking care of the last ... at
the bottom there, and how to run code.

36


