
An Automated Employee Timetabling System for Small Businesses

Richard Hoshino, Aaron Slobodin, and William Bernoudy

Quest University Canada, Squamish, British Columbia, Canada

Abstract

Employee scheduling is one of the most difficult challenges
facing any small business owner. The problem becomes more
complex when employees with different levels of seniority
indicate preferences for specific roles in certain shifts and
request flexible work hours outside of the standard eight-
hour block. Many business owners and managers, who can-
not afford (or choose not to use) commercially-available
timetabling apps, spend numerous hours creating sub-optimal
schedules by hand, leading to low staff morale.
In this paper, we explain how two undergraduate students
generalized the Nurse Scheduling Problem to take into ac-
count multiple roles and flexible work hours, and imple-
mented a user-friendly automated timetabler based on a four-
dimensional integer linear program. This system has been
successfully deployed at two businesses in our community,
each with 20+ employees: a coffee shop and a health clinic.

Introduction
The Nurse Scheduling Problem (NSP) seeks to assign shifts
to nurses at a hospital. Each nurse has hard constraints on
days they must have off, as well as soft constraints on desired
and undesired shifts during each 24-hour day. The challenge
is to ensure that all of the nurses have a feasible schedule
while simultaneously satisfying the hospital’s requirement
that a certain number of nurses be working at all times. This
well-known operations research problem is NP-hard.

Given the applications of the NSP to fields other than
health care, numerous researchers have tackled this problem
over many years (Ernst et al. 2004), developing sophisticated
algorithms that involve methods in constraint programming,
including simulated annealing and Tabu search. Many of
these methods have found their way into commercially-
available scheduling applications that are used by organiza-
tions, especially large businesses with 100+ employees.

The lead author is a former employee of the Government
of Canada, who helped implement an Integer Linear Pro-
gram (ILP) solver to optimize the allocation of shifts to cus-
toms officers at airports. The rotating 56-day schedules were
created by applying the NSP to this specific context, where
each 30-minute block had a required number of officers to
reduce waiting times for passengers clearing customs.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Solving the problem for Canadian customs officers was a
relatively simple problem given that every individual had the
exact same job description with only two possible shift pat-
terns: either 8-hour shifts with five days on and two days
off, or 11.5-hour shifts with four days on and four days
off. The final posted schedule was an N × 56 matrix, with
N being the number of staff. The Customs Union adopted
the approach known as the Serial Dictatorship (Hoshino and
Raible-Clark 2014), where the officers picked their row (i.e.
their shifts for the next eight weeks) based on their seniority.

This process is sub-optimal since employees do not have
the opportunity to indicate their preferences for working cer-
tain hours on specific days, causing an enormous gap be-
tween satisfied veteran employees who received the shifts
they wanted and unsatisfied rookies who did not.

A much better solution would have been to create an ILP
to maximize preference points, where the objective function
is ΣeΣdΣsSe · Pe,d,s ·Xe,d,s, with Se being the seniority of
employee e, Pe,d,s indicating e’s preference to work on day
d in shift s, and Xe,d,s being the binary variable indicating
whether e is assigned to work on that specified day and shift.

However, this improved solution would not have been suf-
ficient for small businesses: it is unreasonable to ask staff
to commit to a rotating 56-day schedule; employees want
schedules that are more flexible than the two shift patterns
described above; and unlike customs officers, employees
have different roles and responsibilities.

For example, at the most popular cafe in our commu-
nity, the 30 staff fill multiple roles (barista, line worker, and
back-of-kitchen baker), with numerous employees qualified
for more than one role. Employees want morning shifts on
some days and evening shifts on others. They have many
hard constraints on which shifts and days they are unavail-
able while expressing strong preferences for certain roles,
such as being a barista on a busy shift and a line worker on a
slow shift. Moreover, they have different levels of seniority.
The cafe manager spent up to six hours a week constructing
weekly schedules for her staff by hand, a process that was
time-consuming and frustrating to both her and her team.

The other two authors of this paper are undergraduates.
As frequent customers at this cafe, we were familiar with the
manager’s weekly scheduling conundrum and were eager to
tackle a real-world problem. Last year, we successfully de-
ployed our AI-based automated timetabler for this business.

After implementing the employee scheduling system for
the cafe, we were contacted by the owner of a local health
clinic, a thriving small business in our community that offers
treatments including acupuncture, massage therapy, and chi-
ropractic care. Despite the different contexts, we developed
and deployed a single scalable solution for both organiza-
tions. Realizing the potential impact of our product, an au-
tomated preference-maximizing employee timetabling sys-
tem, the two soon-to-be-graduating student authors recently
founded a scheduling consulting company.

In the next section, we present a brief literature review,
after which we define the specific optimization problem that
falls under the broad AI field of constraint satisfaction. We
present our generalization of the NSP, a four-dimensional in-
teger linear program (ILP) that successfully solves the opti-
mization problem for both businesses and can be extended to
numerous other contexts beyond cafes and health clinics. We
then illustrate how this automated timetabler was success-
fully deployed, present screenshots, and conclude the paper
with some open problems and ideas for future research.

Background and Related Work
In the literature, there are two broad categories of Nurse
Scheduling Problems: cyclical and non-cyclical. The lat-
ter NSP is much harder as the business must create a new
schedule for each period, usually every 7 or 14 days. There
are many AI-based methods of solving non-cyclical staff
scheduling problems (Cheang et al. 2003), including game-
theoretic models of strategic behaviour, where we view the
process of allocating shifts to employees as a finite repeated
game with perfect information (Kalinowski et al. 2013).

Some businesses construct their employee schedule us-
ing a preferential bidding system (Gamache et al. 1998) and
others have employed genetic algorithms to modify exist-
ing schedules to incorporate small changes while maintain-
ing most of the original schedule (Moz and Pato 2007). An
evolutionary algorithm, combining scatter search with hill-
climbing, successfully solved a real-world NSP by creating
solutions from multiple parents and using new methods for
measuring similarity between solutions (Burke et al. 2010).

The same authors created a hybrid multi-objective model
that used a two-step process to solve highly-constrained
nurse rostering problems. They began with an ILP to solve a
sub-problem, consisting of all hard constraints and a subset
of the soft constraints, and then a variable neighbourhood
search to improve the ILP results (Burke, Li, and Qu 2010).

A different team of researchers applied an integer solver
to solve a three-dimensional nurse scheduling problem in a
French public hospital. Their solution was to create variables
to express equally-qualified anesthesiology nurses working
during five different shifts throughout the schedule period
(Trilling, Guinet, and Magny 2006).

Another paper increases the complexity of the NSP by
considering two types of nurses and adding constraints to
model staffing requirements around these types. They used
a two-step approach, applying an ILP solver to optimize a
different objective function at each step. This allowed them
to improve employee satisfaction and reduce cost and over-
time at two hospitals (Wright and Mahar 2013).

Though there is much previous work on the NSP, none of
the solutions applied to our two problems due to the unique
staffing constraints imposed by our clients’ businesses.

Problem Definition
The standard NSP is an example of a constraint satisfaction
problem, which asks whether there exists a feasible assign-
ment of employees to days and shifts satisfying the hard con-
straints of the nurses and the hard constraints of the hospital.

The more general version of the NSP is a combinatorial
optimization problem, which asks for the best assignment
of employees to days and shifts satisfying all of the hard
constraints while maximizing the preferences of the nurses.

Both versions of the NSP can be set up as a 0-1 ILP,
an NP-complete problem in which each unknown variable
Xe,d,s represents whether employee e works on day d in
shift s. The goal is to maximize cTx, subject to Ax ≤ b
and x ∈ {0, 1}n, where c and b are n × 1 vectors and A is
an n× n matrix.

In the NSP, we have n = |E||D||S|, where |E| is the num-
ber of employees, |D| is the number of days, and |S| is the
number of shift types. Thus, each element in vector c repre-
sents some coefficient Ce,d,s that is a function of employee
e’s seniority and his/her preference for working on day d in
shift s.

The NSP does not solve the scheduling problem for either
of our two clients due to each business assigning employees
to specific non-interchangeable “roles”. Furthermore, each
of our clients had a unique staffing constraint that was not
addressed in the NSP, explained as follows:

(a) The cafe employs individuals who prefer certain roles on
different days. For example, one employee wants to be a
barista on Saturdays and a line worker on other days. If
Pe,d,r is the “preference score” of employee e working
on day d in role r, then Pe,d1,r might not equal Pe,d2,r if
d1 6= d2. Furthermore, employees have a different level
of seniority for each role in the business. Thus, if Se,r is
the “seniority score” of employee e in role r, then Se,r1
might not equal Se,r2 if r1 6= r2.

(b) The health clinic employs individuals who want flexible
work hours outside of the standard eight-hour shift. For
example, one therapist wants to work 2 hours some days
and 8 hours on other days. Thus, instead of partition-
ing each day into fixed-length shifts, we must consider
variable-length “blocks” that begin and end at any hour.

At both businesses, the owners did their best to assign
work to maximize “employee satisfaction” while ensuring
they had the correct number of staff members in their roles
for each hour of operation. These owners, however, naturally
found it challenging to solve these combinatorial optimiza-
tion problems each week using pencil and paper, leading to
poor employee retention and disgruntled staff members who
felt that their bosses favoured certain individuals over others.

In the next section, we present how both scheduling prob-
lems can be reduced to a single scalable four-dimensional
model, where the four dimensions are the sets of employees,
days, roles, and shift blocks (e.g. 8AM to 12PM).

Mathematical Model
Let E be the set of employees, D be the set of days, R be
the set of roles, H be the set of hours, and B be the set of
shift blocks. For example, the cafe has E = {1, 2, . . . , 30},
D = {1, 2, . . . , 7}, R = {Barista,Line,Kitchen}, H =

{1, 2, . . . , 19}, and B =
{⋃

1≤i≤j≤19[i, j]
}

.
The cafe staff work in shifts that span a 19-hour time pe-

riod each day, with the first employees arriving at 5AM to
set up and the last employees leaving at midnight, after fin-
ishing all of the baking for the following day’s service. We
let 5AM-6AM refer to hour 1, 6AM-7AM refer to hour 2,
and so on.

Each block is an ordered pair [i, j] marking the start and
end of the shift. For example, [1, 19] corresponds to the en-
tire 19-hour shift and [8, 8] is the shift that begins at noon
and ends at 1PM. If there are |H| = n values in set H , then
there are

(
n+1
2

)
possible pairs in set B.

For each e ∈ E and r ∈ R, let Se,r be the seniority of
employee e in role r, i.e. more experienced employees are
assigned higher points.

For each e ∈ E, d ∈ D, r ∈ R, b ∈ B, define Pe,d,r,b to
be the preference of employee e working on day d in role
r in block b. This coefficient is positive if e is available in
this capacity, with higher scores for more desired shifts. This
coefficient is 0 if the employee does not wish to work this
day (a soft constraint) and negative if the employee cannot
work on this day (a hard constraint).

Let Xe,d,r,b be the binary variable that is equal to 1 if
employee e works on day d in role r in block b, and 0
otherwise. Finally, let f(Se,r, Pe,d,r,b) be a function of the
previous two coefficients, representing the overall suitability
of assigning this specific day/role/block to employee e.

Therefore, the objective function of our ILP is:

maximize
∑
e∈E

∑
d∈D

∑
r∈R

∑
b∈B

f(Se,r, Pe,d,r,b) ·Xe,d,r,b

Note that f(Se,r, Pe,d,r,b) = Se,r · Pe,d,r,b is the natural
way to combine our two coefficients; however, f does not
have to be this simple multiplicative function, especially if
the business wishes to assign different weights for prefer-
ence and seniority.

Each employee is assigned at most one block a day in a
single role. Thus, an employee is not allowed to be a barista
from 12PM to 3PM and then work in the kitchen from 3PM
to 6PM. Furthermore, an employee’s shift must be a contin-
uous block of hours, i.e. on the same day she cannot work
from 12PM to 3PM and then from 7PM to 10PM. Thus,

Xe,d,r,b ∈ {0, 1} ∀e ∈ E, d ∈ D, r ∈ R, b ∈ B (1)∑
r∈R

∑
b∈B

Xe,d,r,b ≤ 1 ∀e ∈ E, d ∈ D (2)

For each b ∈ B, define len(b) to be the length, in hours,
of block b. Thus, if b = [h1, h2], then len(b) = h2−h1 + 1.

Let MAXHRe,d and MINHRe,d be the maximum and
minimum number of hours employee e wishes to work if
s/he is assigned a shift on day d. Then, for all e ∈ E, d ∈
D, r ∈ R, we have

Xe,d,r,b = 0 ∀b ∈ B with len(b) > MAXHRe,d (3)
Xe,d,r,b = 0 ∀b ∈ B with 0 < len(b) < MINHRe,d (4)

Let HOURSe and DAY Se be the maximum number of
hours and days that employee e is able to work over the |D|
days. Then,

∑
d∈D

∑
r∈R

∑
b∈B

len(b)Xe,d,r,b ≤ HOURSe ∀e ∈ E (5)∑
d∈D

∑
r∈R

∑
b∈B

Xe,d,r,b ≤ DAY Se ∀e ∈ E (6)

An employee who closes a shift cannot open the next day.
And so, for all e ∈ E, d ∈ D, we have

∑
r∈R

∑
b3|H|

Xe,d,r,b +
∑
r∈R

∑
b31

Xe,d+1,r,b ≤ 1 (7)

This covers all of the constraints from the perspective
of the employees. From the perspective of the business, let
MAXNUMd,r,h and MINNUMd,r,h be the maximum
and minimum number of employees that need to be work-
ing on day d in role r in hour h. Then, for all d ∈ D, r ∈
R, h ∈ H , we have

∑
e∈E

∑
b3h

Xe,d,r,b ≤MAXNUMd,r,h (8)∑
e∈E

∑
b3h

Xe,d,r,b ≥MINNUMd,r,h (9)

Thus, our ILP maximizes our objective function, subject
to the nine constraints described above.

This is the general solution to our scheduling prob-
lem. Both businesses can optimally staff their employees by
solving a specific version of the above ILP:

(a) The cafe has |E| = 30, |D| = 7, and |H| = 19. Each
shift is exactly 8 hours in length, and so we only consider
blocks b ∈ B with len(B) = 8. Thus, |B| = 12. Fi-
nally, |R| = 3, as each employee has one of three roles: a
barista, a line worker, or a back-of-kitchen baker.

(b) The health clinic has |E| = 15, |D| = 14, and |H| = 15.
The 15 massage therapists want to work in blocks that are
between 2 and 8 hours. Thus, |B| = 14 + 13 + 12 + 11 +
10+9+8 = 77. Each therapist has a preferred room based
on various factors, including lighting, size, and proximity
to the main entrance. Therapists stay in the same room
within each block. In this context, the roles are the rooms;
as there are five massage rooms, we have |R| = 5 and
MAXNUMd,r,h = 1 for all d ∈ D, r ∈ R, h ∈ H .

Proof of Concept
Many business owners view employee scheduling as an “art”
rather than as a “science” – or perhaps, more appropriately,
as an AI-optimization problem. To convince the cafe man-
ager of the merits of our ILP model, we asked her to provide
us with an Excel sheet listing the seniority scores Se,r of
each employee as well as their preference scores Pe,d,r,b for
shifts in the upcoming week. Conveniently, much of this was
already documented by this manager on an Excel sheet that
she used to construct her weekly schedules. In our objective
function, we set f(Se,r, Pe,d,r,b) = Se,r · Pe,d,r,b.

In order to compare our two approaches, we asked for
the rest of the constraints, from both the perspective of the
employees (e.g. DAY Se) as well as the management (e.g.
MINNUMd,r,h). The following table compares the re-
sults of the manager’s pencil-and-paper solution and our ILP
solver that is guaranteed to return a solution that maximizes
the objective function.

System Objective Function Time Spent
By Hand 932 points 5.5 hours
Our ILP 1068 points 8.5 seconds

With |E| = 30 and |D| = 7, our ILP runs in under 9 sec-
onds on an old laptop purchased in 2012, specifically a 4GB
MacBook Pro with a 2.30 Ghz Intel i7 processor. To demon-
strate the robustness of our program, we increased these two
variables in case the cafe wanted to hire additional staff (es-
pecially during the peak summer months) and change to a
14-day schedule. The results were as follows:

|E| |D| Time Spent
30 7 8.5 seconds
40 7 17 seconds
30 14 131 seconds
40 14 358 seconds

After demonstrating that we could rapidly generate a
provably-optimal schedule, the manager and owner realized
the benefit of our product: not only would this program save
them time, it would also relieve their stress and produce
weekly schedules that would boost employee morale.

We had our first client.

System Design and Deployment (Part 1)
Our ILP solver was coded in Maple (www.maplesoft.com),
a computer algebra system that was well-known to the au-
thors. The cafe manager purchased a copy of Maplesoft and
the Maplesoft worksheet containing our ILP was installed
on her laptop.

Since the manager was already using Excel to keep track
of her employees’ preferences, it was only a small change to
run the Maplesoft program, which used Excel for both the
inputted ILP variables and the outputted final schedule.

Our goal was to create an easy-to-use Excel-based GUI
that would allow the cafe to generate an automated sched-
ule each week, without the manager having to modify the
Maplesoft worksheet in any way.

In the Excel tab below, we see that each shift must be cov-
ered by a fixed number of employees in a specific role. Thus,
for the cafe, MAXNUMd,r,h = MINNUMd,r,h for all
d, r, h. The other tabs indicate the values of the other vari-
ables, including the coefficient variables Se,r and Pe,d,r,b.

As each shift is 8 hours long, we have MAXHRe,d =
MINHRe,d = 8 for all e ∈ E, d ∈ D. Thus, for each
employee e, we must have HOURSe = 8×DAY Se.

The manager would then open our Maplesoft worksheet.
At the click of the “Execute the Entire Worksheet” button,
the program would import the Excel sheet, read the data,
solve the ILP, and output the optimal solution in Excel. Be-
low is one week’s output of the first 15 employees:

If employee e could not work day d in role r in block
b, then our Maple program automatically set Pe,d,r,b =
−10000. This large negative coefficient was used for all hard
constraints. As the Excel output listed the value of the objec-
tive function, the manager could check whether a hard con-
straint had been violated just by verifying that the objective
value was positive.

The cafe purchased our automated timetabler in July 2016
and has been using it ever since to produce weekly schedules
for its employees. Depending on the season, |E| is at least 30
and at most 40, with many of the employees being part-time
staff who work two or three shifts each week.

Given that there are n = |E||D||R||B| variables in our
ILP, we have 7560 ≤ n = |E| × 7 × 3 × 12 ≤ 10080. As
demonstrated in our proof of concept, the runtimes for each
week are at most twenty seconds, from start to finish.

Alas, our Excel/Maplesoft solution was inadequate for the
integrated health clinic as the clinic owner asked us to cre-
ate two-week schedules, where therapists could vary their
shifts between 2 and 8 hours. With (|D|, |B|) = (14, 77)
compared to (|D|, |B|) = (7, 12), our runtime was too slow.
As a result, we required a new solution, whose successful
deployment is explained in the next section.

System Design and Deployment (Part 2)
Our improved solution is a local desktop application written
in Python using Kivy, the open-source GUI library. For the
health clinic, we designed a GUI that allows the owner to
input each therapist’s desired length of shift, maximum days
and hours they can work over the next 14 days, and their
seniority (i.e. number of years at the clinic).

Therapist e indicates a desired shift length for each week,
which equals MAXHRe,d for 1 ≤ d ≤ 7 and 8 ≤ d ≤ 14.
At the request of the owner, we set MINHRe,d = 0, for all
e and d, to ensure that senior therapists would get (close to)
their desired number of hours. In the above table, marked in
orange, are the times of availability for each therapist.

These times of availability can be modified via a modal
popup window for each day in the 14-day period.

This information determines the value of the preference
coefficient Pe,d,r,b, which is maximized whenever the length
of a feasible block matches the employee’s desired shift
length. In the above table, Employee 3 desires seven-hour
shifts, and is available between 7AM and 3PM on Monday.
Thus, the Monday block from 7AM to 2PM, as well as the
Monday block from 8AM to 3PM, are most ideal, and are
given the maximum coefficient of 10.

We use the formula Pe,d,r,b = 10
(

len(b)
MAXHRe,d

)
when-

ever block b is a subset of the hours in which employee e is
available on day d. If block b is not a subset of these hours
or len(b) > MAXHRe,d then Pe,d,r,b is set to−10000 and
treated as a hard constraint. For example, the Monday block
from 7AM to 12PM is given a coefficient of 10

(
5
7

)
≈ 7.14.

On the other hand, the blocks from 7AM to 3PM and 9AM
to 4PM each have a coefficient of −10000.

The 20-employee clinic has seven dedicated rooms: one
for chiropractic, one for nutrition and dietetics, and five for
acupuncture and massage therapy. While the first two are
simple to coordinate without any optimization software, the
last one is most challenging as there are fifteen therapists
who are competing for the use of five rooms.

The goal of the ILP is to maximize the objective func-
tion, and so the optimal solution will fill up the five rooms
as much as possible. When the “Optimize Schedule” button
is clicked, all of the input is aggregated and sent to a script
that builds and solves the corresponding ILP. Below is one
week’s schedule produced for the health clinic, showing the
first ten therapists.

The ILP is solved using the open-source COIN-OR-CBC
solver using PULP, a Python interface (COIN-OR 2017).
With |E| = 15, |D| = 14, |B| = 77, the ILP is solved for the
acupuncturists and massage therapists in just 9.0 seconds,
using the same stand-alone laptop previously mentioned.

This same solver reduces the time taken for the Proof of
Concept problem for the cafe from 8.5 seconds to just 0.38.
Therefore, this new system is significantly faster than our
initial Excel/Maplesoft solution.

To optimize the schedule for the acupuncturists and mas-
sage therapists, we intentionally chose to set |R| = 1
and MAXNUMd,r,h = 5, rather than |R| = 5 and
MAXNUMd,r,h = 1. This is equivalent to setting Pe,d,r,b

constant for all values of r. We did this because we realized
that the ILP could be manipulated by therapists who could
intentionally mark all five rooms as “most-desired”, to max-
imize the possibility of being assigned work. Not only does
our system run faster (since n is reduced by a factor of 5),
our final solution is fairer.

A greedy algorithm is then used to assign the therapists
to rooms, with the most senior employee being assigned
their most-preferred available room. In the schedule view
pictured above, the clinic owner can export the final product
to HTML for easy printing.

The application is compiled with Cython and cx Freeze
and runs on Mac, Linux, and Windows. The two undergrad-
uate authors maintain these applications. Each application
is specifically customized to the needs of the business and
updates are mostly simple bug fixes with the GUI.

Results
The Excel/Maplesoft system was deployed at the cafe in July
2016. The Python program was deployed at the health clinic
in June 2017 and at the cafe immediately thereafter due to
the new system’s increased functionality and speed.

Both businesses report tremendous satisfaction with the
final deliverable, noting increased convenience and effi-
ciency as well as better satisfaction among employees who
prefer the impartial “mathematical black box” over the man-
ual pencil and paper schedule that was perceived to be biased
in favour of certain individuals.

In particular, the therapists at the health clinic are appre-
ciative of the increased hours they are able to work, with the
owner delighted that nearly every room is being used each
hour of each day. In the past, the clinic had divided each
day into the A-block (7AM to 3PM) and the B-block (3PM
to 10PM), where each therapist could only have a subset of
hours within their given block.

As a result of our solution, this simplification is no longer
necessary. On any given day, each room could be used by
three or four therapists; furthermore, the therapists report
great satisfaction in being able to work shifts that straddle
the two blocks, especially one therapist with a young child
who specifically requests to work between 12PM and 4PM.

The cafe manager recently e-mailed us a testimonial, re-
porting: “The amount of personal time you have spent de-
veloping your program specifically to my schedule-making
needs is invaluable, and I am so grateful for the ongoing sup-
port that you have provided”.

Both businesses are able to use the product to test viable
future schedules based on predicted demand and better an-
ticipate needed changes to employee hiring. And most im-
portantly, the clinic owner and cafe manager no longer need
to endure the weekly stress of creating the schedules them-
selves; instead, they can rely on our program to instantly
generate provably-optimal timetables for their employees.

Maintenance
Our deployed solution can easily be maintained whenever
the business hires or fires employees, and has changes in
employee preferences, seniority, as well as operating hours.

The Python program has an “Add employee” button in the
bottom-left corner of the screen. When the ILP is solved,
the program first determines |E|, the number of employees,
based on the number of rows that contain information. Sim-
ilarly, our application’s simple GUI allows the user to make
rapid changes to the data. For example, the health clinic re-
cently had two therapists resign their positions, and hired
three therapists to replace them. These new therapists were
given the lowest seniority rating, and the remaining employ-
ees had their ratings bumped up accordingly.

Modifying existing features is easily done. To illustrate,
each of the following fixes is simple, given the scalability
of our four-dimensional ILP: the cafe creating a new role
beyond the existing three jobs (barista, line, kitchen), the
health clinic building an additional room, and either busi-
ness changing their operating hours.

Additional features do require additional work, but the
amount of effort is not substantial. For example, the clinic
owner requested that each therapist’s room preference be
taken into consideration when creating the schedules. This
required one of the student authors to modify the Python
code as well as the GUI, which took just one full day.

Finally, our application can be applied to numerous other
businesses beyond this specific cafe and health clinic, as
many businesses have the same general features (e.g. em-
ployee roles, seniority, operating hours, employee prefer-
ences, and hours of availability), with their objective func-
tion customized to suit each business.

To provide just one example, we implemented an auto-
mated scheduler for our local library shortly after we sub-
mitted the initial version of this paper. It took less than a
week from the initial contact (the head librarian contacting
the lead author) to the time we trained a library staff member
to use the implemented application.

The solution was particularly simple as there were only
two roles, shelving and circulation, with a dozen employ-
ees and no consideration of seniority. After the program was
implemented, our community newspaper ran a feature arti-
cle on our work, in which the head librarian noted how our
“willingness to jump in on this project and use [our] exper-
tise to work with the library staff to create a scheduling so-
lution has improved the scheduling process tremendously”.

Next Steps
Our deployed solution has a niche in that it maximizes the
total preferences of the employees, and allows for flexible
work hours. We have examined many commercial schedul-
ing programs and have found this combination to be the
unique selling point of our automated timetabler. We rec-
ognize the impact and value of this flexible preference-
optimizing scheduling program, especially for family-run
businesses that place such a premium on employee satisfac-
tion to ensure retention.

Realizing the potential of this four-dimensional ILP be-
yond cafes and health clinics, the two student authors re-
cently founded a scheduling consulting company and are in
the initial stages of establishing the business.

Before signing any new clients, we plan to improve the
functionality of our software in the following two ways:

(a) Instead of working from the paradigm where managers
gather preferences from all of their employees every
scheduling period and enter it into the program, a web-
based app could allow for employees to enter this data
themselves on their own devices. Managers would then
be presented with the same data view that our application
now provides and generate the schedules directly.

(b) Employees are sometimes unable to come to work due to
illness, family emergencies, transit problems, or other le-
gitimate reasons. In these last-minute circumstances, the
manager/owner has to scramble to find someone to cover
their shift or fill the shift themselves. Our plan is to im-
prove the software by outputting the employees that could
be “on call” for a specific shift on a given day, without vi-
olating any hard constraints.

Open Problems and Future Ideas
Here are some open problems and ideas for future research.

(i) By adding a randomization component to the ILP, we can
reduce the possibility that senior employees always get
their desired shifts. This would occur by decreasing the
preference coefficient Pe,d,r,b by suitably small random
numbers. Another approach is that employees who were
assigned less desirable shifts one week get a slight bump
in their preference coefficients the following week. These
two approaches would create even greater buy-in among
the employees, who would realize that the system is not
biased in favour of a particular individual.

(ii) Some business prefer to have schedules with variety, i.e.
employees should not work the same shift and role multi-
ple times within a single schedule period. A simple solu-
tion would be to add hard constraints limiting the number
of identical shifts and roles, but perhaps there are other
methods that naturally take advantage of our general ILP
model. For example, perhaps the key is to change the mul-
tiplicative coefficient function from f(Se,r, Pe,d,r,b) =
Se,r · Pe,d,r,b to something else.

(iii) Another improvement would be for businesses to enter
both a seniority level as well as a skill level for each em-
ployee and role. Constraints could then take this variable
into account by ensuring a minimum total skill level for all
the employees working in a certain role and shift, or per-
haps ensuring that two junior employees are never work-
ing at the same time.

(iv) A clever employee can lie about their preferences in order
to land their desired shifts. For example, suppose 3PM to
9PM is a popular block for the health clinic. A massage
therapist who actually prefers 8-hour shifts can dishon-
estly set MAXHRe,d = 6 to ensure that Pe,d,r,b = 10
for this popular six-hour block, rather than the true coef-
ficient of Pe,d,r,b = 10 × 6/8 = 7.5. We wonder how
this ILP can be made less-manipulable, so that employees
have the incentive to report their preferences truthfully.

Conclusion
We are delighted to report that our work has inspired a cul-
ture of “mathematical activism” at our small 700-person lib-
eral arts university. Though we have no defined math or
computer science majors, students are seeking to apply what
they learn in these courses to solve real-life problems.

This journey started when the faculty author teamed up
with an undergraduate student to automate the process of
assigning students to courses via a selection “draft” similar
to the process used in professional sports leagues (Hoshino
and Raible-Clark 2014). The success of this project led the
faculty author to pursue other opportunities for his students,
most notably the research presented in this paper.

We were able to teach several undergraduates how to
modify our automated employee timetabling system to op-
timally schedule the campus Emergency Medical Services
team as well as the on-call shifts of the student-leaders serv-
ing as Floor Representatives in our residences.

Most ambitiously, a fourth-year student was inspired
to create his own ILP to build a university-wide course
timetable. This project became his Honours Thesis, and his
optimal assignment of 40 professors to 240 courses across 8
months was accepted by our senior administration, as well as
the entire faculty, and has been implemented for the 2018-19
academic year.

Acknowledgments
We gratefully acknowledge Amanda Desjardins and Adrian
Blachut, the manager and owner of the Zephyr Cafe, as
well as Susan Chapelle, the owner of Squamish Integrated
Health. We would also like to thank Kyla Slobodin for pro-
viding the initial motivation for this work.

References
Burke, E. K.; Curtois, T.; Qu, R.; and Berghe, G. V. 2010. A
scatter search methodology for the nurse rostering problem.
Journal of the Operational Research Society 61(11):1667–
1679.
Burke, E. K.; Li, J.; and Qu, R. 2010. A hybrid model
of integer programming and variable neighbourhood search
for highly-constrained nurse rostering problems. European
Journal of Operational Research 203(2):484–493.
Cheang, B.; Li, H.; Lim, A.; and Rodrigues, B. 2003. Nurse
rostering problems – a bibliographic survey. European Jour-
nal of Operational Research 151(3):447–460.
COIN-OR. 2017. CBC: A COIN-OR integer program-
ming solver. https://projects.coin-or.org/
Cbc. [Online; accessed 10-November-2017].
Ernst, A.; Jiang, H.; Krishnamoorthy, M.; and Sier, D. 2004.
Staff scheduling and rostering: A review of applications,
methods and models. European Journal of Operational Re-
search 153:3–27.
Gamache, M.; Soumis, F.; Villeneuve, D.; Desrosiers, J.; and
Gelina, E. 1998. The preferential bidding system at Air
Canada. Transportation Science 32(3):246–255.
Hoshino, R., and Raible-Clark, C. 2014. The Quest draft:
an automated course allocation algorithm. Proceedings of
the 26th IAAI Conference on Artificial Intelligence (IAAI-
14) 2906–2913.
Kalinowski, T.; Narodytska, N.; Walsh, T.; and Xia, L. 2013.
Strategic behavior when allocating indivisible goods se-
quentially. Proceedings of the 27th AAAI Conference on
Artificial Intelligence (AAAI-13) 452–458.
Moz, M., and Pato, M. V. 2007. A genetic algorithm ap-
proach to a nurse rerostering problem. Computers & Oper-
ations Research 34(3):667–691.
Trilling, L.; Guinet, A.; and Magny, D. L. 2006. Nurse
scheduling using integer linear programming and constraint
programming. 12th IFAC Symposium on Information Con-
trol Problems in Manufacturing 39(3):671–676.
Wright, P. D., and Mahar, S. 2013. Centralized nurse
scheduling to simultaneously improve schedule cost and
nurse satisfaction. Omega 41(6):1042–1052.

