
Cohort-Based Timetabling with Integer Linear
Programming

Richard Hoshino and Jameson Albers

Northeastern University, Vancouver BC, Canada
Khoury College of Computer Sciences

{r.hoshino, albers.j}@northeastern.edu

Abstract. At some educational institutions, students are divided into cohorts,
where they complete the same set of courses with everybody else in that cohort.
In this paper, we describe an Integer Linear Programming (ILP) solution to the
School Timetabling Problem (STP), for schools that are cohort-based. Our Master
Timetable is generated from the input data, a user-friendly Excel document that
lists all of the course/cohort/teacher/classroom constraints.

Our model, which is coded in Python and solved using the MPSolver from Google
OR-Tools, generated the 2023-2024 Master Timetable for three schools in Canada:
an elementary school, a middle school, and a post-secondary institute. All three
timetables satisfied 100% of the school’s hard constraints, and were computed in
less than 60 seconds.

Keywords: Integer Programming, Linear Programming, Timetabling

1 Introduction

Timetabling is defined as “the act of scheduling something to happen or do something
at a particular time” [2]. This simple definition conceals the challenge and complexity
of timetabling.

For educational institutions, the Master Timetable dictates to every single teacher
and student where they need to be at each hour of the school day. Given its importance,
some school administrators spend weeks or months constructing the annual Master
Timetable, often using post-it notes or wall magnets to assign a teacher, classroom, and
timeslot to each section of a course.

When timetables are constructed by hand, the process is inefficient and the product is
sub-optimal. This is why researchers have investigated the School Timetabling Problem
(STP) for sixty years [6], creating timetables for schools all over the world [11].

In the most basic version of the STP, the objective is to assign courses to teachers,
timeslots, and classrooms, subject to the following constraints: a teacher cannot teach two
courses in the same timeslot, no classroom can be used by two courses simultaneously,
and each teacher has a set of unavailable teaching timeslots. This basic version of the
STP is NP-complete [4].

Although scholars have conducted research on educational timetabling since the
1960s [1], it took until the mid-1990s to standardize educational timetabling problems,
along with their corresponding benchmark data sets [3].

276 R. Hoshino and J. Albers

To advance the field of educational timetabling, a group of researchers have run the
International Timetabling Competition, with the 2011 edition focused on high school
timetabling [12] and the 2019 edition focused on university timetabling [10]. Both
competitions were modeled on real-world data sets.

The Post-Enrollment Course Timetabling Problem (PECTP) was introduced to incor-
porate student course preferences into the STP [9]. The PECTP involves student-related
hard constraints, such as ensuring that no student is enrolled in multiple sections of
the same course, and the objective function is to maximize the number of occurrences
where students are enrolled in their desired courses.

The lead author has created 40 Master Timetables for various Canadian high schools
over the past five years, using his published algorithms to solve large real-life PECTP
instances for schools: using graph coloring [7] and large neighborhood search [8]. While
each Master Timetable was custom-built to meet the school’s specific requirements,
several of these timetabling projects were extremely similar in that the schools were
cohort-based, where students were divided into fixed groups and took the same set of
courses.

For cohort-based timetables, the PECTP reverts back to the STP, since student
preferences do not exist. Thus, the optimal timetable can be generated by solving an
Integer Linear Program (ILP) where the objective function considers teacher preferences
for the timeslots they would like to teach their courses.

We now present our solution to solving virtually any cohort-based STP. Our au-
tomated timetabling algorithm requires a single input file: an Excel document that
contains the teacher preferences as well as all of the constraints involving courses,
cohorts, teachers, and rooms. We will explain how we worked with school adminis-
trators at a Kindergarten to Grade 5 elementary school, a Grade 6 to Grade 8 middle
school, and a design academy for post-secondary students, to generate each institution’s
provably-optimal 2023-2024 Master Timetable.

Despite the different contexts of all three of these educational institutions, we used
the exact same Python program to create all three timetables; the only difference was
that each school had its own input Excel file. At the end of our Python program, we call
MPSolver, the Mathematical Programming solver from Google OR-Tools [5] that solves
Mixed Integer Programs (MIPs).

2 Mathematical Model

Each course 2 has one or more lessons (or meetings) in a week. Thus, we define our
main binary decision variable as -<,2,3,? , which equals 1 if and only if meeting < of
course 2 is scheduled on day 3 in period ?. Otherwise, -<,2,3,? = 0.

We can view each (3, ?) pair as a timeslot, and each (<, 2) pair as a single event
that is attended by one or more student cohorts, is taught by one or more teachers, and is
offered in one or more rooms. Our ILP will generate the Master Timetable by assigning
exactly one timeslot to each event.

Let ⇡ be the set of days, % be the set of periods, and ⇠ be the set of courses. For
each course 2, if there are ! (2) lessons (i.e., events) that must be scheduled during the
|⇡ |-day timetable, then we have the following constraint.

Cohort-Based Timetabling with Integer Linear Programming 277

’
32⇡

’
?2%

-<,2,3,? = 1 8 2 2 ⇠,< 2 [1, !(2)] (1)

Each course 2 2 ⇠ is unique, where the teacher(s) and room(s) for course 2 are
pre-assigned by the school.

For example, one of our school clients has 6A-Science, 6B-Science, 6C-Science in
its set of courses ⇠ since each of the three Grade 6 cohorts has its own Science course
that meets three times each week. Additionally, this school has all of its Grade 6 students
taking Physical Education at the same time. This single course, 6-PhysEd, is offered to
all three cohorts (6A, 6B, 6C), is co-taught by three teachers, and takes place in two
rooms (Gym1, Gym2).

By specifying the cohorts/teachers/rooms for each event, once our ILP solver deter-
mines all four-tuples (<, 2, 3, ?) for which -<,2,3,? = 1, we can rapidly generate the
various “cross-sections” of our Master Timetable to determine the timetable from the
perspective of each course, each cohort, each room, and each teacher.

For each cohort, each teacher, and each room, we can determine ⇢ , the set of events
(<, 2) involving that entity, and ensure that there are no scheduling conflicts. Thus, we
have our next set of hard constraints.

’
(<,2)2⇢ (⌘)

-<,2,3,? 1 8 3 2 ⇡, ? 2 %, ⌘ 2 Cohorts (2)

’
(<,2)2⇢ (C)

-<,2,3,? 1 8 3 2 ⇡, ? 2 %, C 2 Teachers (3)

’
(<,2)2⇢ (A)

-<,2,3,? 1 8 3 2 ⇡, ? 2 %, A 2 Rooms (4)

Finally, we define %'<,2,3,? to be the preference of having meeting < of course 2
scheduled on day 3 and period ?. This preference coefficient may be influenced by a
teacher’s desire to teach on certain days and periods, or pedagogical reasons of having
certain courses assigned to particular timeslots. Thus, the objective function of our ILP
is

’
<2"

’
22⇠

’
32⇡

’
?2%

%'<,2,3,?-<,2,3,? .

There are two major families of constraints in our model, and we now explain each
one in detail.

2.1 Family I: Restrictions on Sets of Events

Let ⇢ be a set of events and let) be a set of timeslots. Then we can connect ⇢ and)
via the following linear constraint.

278 R. Hoshino and J. Albers

’
(<,2)2⇢

’
(3,?)2)

-<,2,3,? {=, , �} = (5)

For each constraint, we choose the appropriate sign from {=, , �}, and set = to be
a specific non-negative integer. Let us provide several examples on the versatility of this
family of constraints.

(i) “Teacher X is unavailable to teach on Tuesdays”: ⇢ is the set of events taught by
Teacher X,) is the set of timeslots with 3 = 2, our sign is =, and = = 0.

(ii) “The majority of the three 6A-French lessons must occur before lunch”: ⇢ is the set
of 6A-French events,) is the set of timeslots that occur before lunch, our sign is �,
and = = 2.

(iii) “There is at most one Grade 8 Art class scheduled in Period 4”: ⇢ is the set of events
whose course is Grade 8 Art,) is the set of timeslots with ? = 4, our sign is , and
= = 1.

(iv) “Ensure that Grade 7s do not have Physical Education more than once on any day”:
⇢ is the set of events whose course is Grade 7 Physical Education,) is the set of
timeslots with 3 = : , our sign is , and = = 1. We repeat this constraint for each
: 2 [1, |⇡ |].

(v) “Ensure that Grade 7s do not have Physical Education on three consecutive days”:
⇢ is the set of events whose course is Grade 7 Physical Education,) is the set of
timeslots with 3 2 [: , :+1, :+2], our sign is , and = = 2. We repeat this constraint
for each : 2 [1, |⇡ | � 2].

This framework enables us to model constraints that relate almost any set of events
to any set of timeslots, including the five examples provided above. We can place
constraints on teacher and room availability, guarantee that certain events are scheduled
(or not scheduled) in certain timeslots, spread out the multi-lesson courses taken by
each cohort, and ensure that each teacher has a reasonable schedule each day without
too many consecutive lessons or large gaps of non-teaching periods.

2.2 Family II: Relationships between Sets of Events

Let ⇢8 = (<8 , 28) for each 8 � 1, and let ⇢1, ⇢2, . . . , ⇢E be a set of E events. Using a
linear equation or linear inequality, we can model five additional timetabling constraints
that relate these E events.

(i) All E events must occur in the same timeslot.

-<8 ,28 ,3,? = -<8+1 ,28+1 ,3,? (6)
83 2 ⇡, ? 2 %, 8 2 [1, E � 1]

(ii) All E events must occur on the same day.
’
?2%

-<8 ,28 ,3,? =
’
?2%

-<8+1 ,28+1 ,3,? (7)

Cohort-Based Timetabling with Integer Linear Programming 279

83 2 ⇡, 8 2 [1, E � 1]

(iii) The E events must occur on E different days.
’

82 [1,E]

’
?2%

-<8 ,28 ,3,? 1 83 2 ⇡ (8)

(iv) The E events must occur on E (different) consecutive days, with ⇢8 occurring
before ⇢ 9 for all 8 < 9 .

’
?2%

-<8 ,28 ,31 ,? +
’
?2%

-<8+1 ,28+1 ,32 ,? 1 (9)

88 2 [1, E � 1] and 31, 32 2 ⇡ with 32 � 31 < 1.

A similar set of inequalities also allows us to ensure that the E events must occur in
E consecutive periods of the same day, with ⇢8 occurring before ⇢ 9 for all 8 < 9 .

(v) There is a minimum gap of 6 days between events ⇢8 and ⇢8+1, for all 1 8 E�1.

’
?2%

-<8 ,28 ,31 ,? +
’
?2%

-<8+1 ,28+1 ,32 ,? 1 (10)

88 2 [1, E � 1], and 31, 32 2 ⇡ with |32 � 31 | < 6.
(11)

To get a maximum gap of 6 days, we simply replace < with > in the above inequality.

This versatile and flexible framework enables us to model constraints that relate al-
most any set of events to each other. For example, we can ensure that certain courses
are not scheduled on the same day, that two cohorts have their French courses at the
exact same time each week, and that a part-time teacher’s work times are limited to two
consecutive days in the timetable.

Real-life School Timetabling Problems (STPs) can be modeled effectively using the
two families of constraints provided in this section. In fact, for all three of our cohort-
based schools, we were able to model 100% of their constraints using these two families
of constraints, and generate each school’s Master Timetable in less than 60 seconds. We
now explain how we accomplished these results.

3 Solving Three Different STPs

Victoria is the capital city of the Canadian province of British Columbia, and is the
home of two leading independent co-educational K-12 preparatory schools named St.
Michaels University School (SMUS) and Glenlyon Norfolk School (GNS). Victoria
is also the location of Pacific Design Academy (PDA), an innovative post-secondary
institute that offers eight full-time diploma programs including Fashion Design, Interior
Design, and Graphic Media Design.

280 R. Hoshino and J. Albers

We were hired to create the Master Timetable for the SMUS Junior School (Kinder-
garten to Grade 5), the GNS Middle School (Grade 6 to Grade 8), and the entire PDA
academic timetable with its eight different diploma programs.

We worked closely with the administrators at the three institutions to create an
Excel document that encoded all of the school’s constraints and requirements, as well
as teacher preferences, and would serve as the input file to our Python program. As
mentioned earlier, we used the same Python program for all three timetables, which
called Google’s MPsolver to solve our Integer Linear Program. Each school’s input
Excel file consists of the following five worksheets.

1. Timetable Structure
2. Timetable Content
3. Event Set Constraints
4. Event Relationship Constraints
5. Teacher Preferences

The Timetable Structure worksheet contains |% | rows and |⇡ | columns, indicating
the names of each day (1-Monday, 2-Tuesday, . . .) and each period (Period 1, Period 2,
. . .). Each of the |⇡ | |% | timeslots is labeled 3-?, for each day and period. For example,
2-4 is Tuesday Period 4.

Each of our three schools had a different number of timeslots, with SMUS having 5
days and 7 periods, GNS having 10 days and 5 periods, and PDA having 5 days and 3
periods.

The Timetable Content worksheet provides the complete set of events, containing
the ID of each unique course and the number of total meetings for that course. For each
course 2 2 ⇠, this worksheet also lists the name of the course, and all of the affected
cohorts, teachers, and classrooms. Figure 1 provides an excerpt of this worksheet for
PDA.

Fig. 1: Excel Worksheet Listing the Set of Events.

While most rows in this Excel worksheet have “Class” as their Course Type, we can
also include “Day Off” and “Prep Time” to denote events such as teachers needing a
day off, or one or more teachers requiring a common period to plan together. Since no
teacher can be scheduled for two events in the same timeslot, our automated timetabling
program guarantees off-days for certain teachers as well as ensuring that a set of teachers
can have overlapping non-teaching timeslots in which to prepare for future lessons.

Cohort-Based Timetabling with Integer Linear Programming 281

As a concrete illustration, SMUS required one part-time teacher (Teacher M) to have
exactly one non-teaching day (i.e., no teaching for all seven periods on any one of the
five days) in addition to at most three periods of teaching on each of the remaining four
days. The administrator at SMUS informed us that Teacher M’s non-teaching day could
be any day between Monday and Friday, but that a non-teaching day was required for
this teacher.

Fig. 2: Excel Worksheet of the Set of Event Constraints.

For each row of the worksheet provided in Figure 2, our Python program generates
⇢ , the set of events that are consistent with the leftmost six columns. In Figure 2, the
set ⇢ refers to the set of events taught by Teacher M that have Course Type = “Class”.
In other words, by labeling her off-day with a different Course Type, we do not violate
the constraint that she can be assigned at most three events (i.e., classes) on each day
between Monday and Friday.

We then created a 7-meeting course named NoTeacherM, with Course Type set to
“Day Off”. In the Event Relationships worksheet, we added a row to indicate that these
7 events (i.e., meeting 8 for Teacher M, for each 1 8 7) must occur in 7 consecutive
periods of the same day. This worksheet contains all the constraint options provided in
the Family II subsection of our model.

Finally, the Teacher Preferences worksheet indicates information on when teachers
would prefer to teach their classes during all the timeslots they are available. At PDA,
each preference coefficient %'<,2,3,? was marked as 2 points whenever the teacher of
course 2 wanted to teach on day 3 period ?, and was marked as 1 point whenever that
teacher could teach in that timeslot. (For GNS and SMUS, each %' coefficient was 1 as
teachers could not indicate preferences.)

This five-worksheet Excel file serves as the input to our Python program. We now
provide the key statistics for each of our schools, listing the number of cohorts, the total
number of events (<, 2) in the timetable, the number of rows in our Event Constraints
worksheet, the number of rows in our Event Relationships worksheet, and the average
total running time of our Python program on this input file over ten iterations. This
information is provided in Table 1.

All calculations were made on a stand-alone laptop, specifically a 8GB Lenovo
running Windows 10 with a 2.1 Ghz processor.

From the table above, we see that it took less than one minute to generate the
2023-2024 Master Timetables for these three educational institutions. All three institu-
tions accepted and implemented our timetable, and have hired us to build their Master
Timetable again in 2024-2025.

282 R. Hoshino and J. Albers

School Name PDA GNS SMUS
Days in Timetable 5 10 5

Periods in Day 3 5 7
Total Timeslots 15 50 35

Cohorts at the School 8 9 12
Total Events Scheduled 91 348 402
Event Constraint Rows 22 74 134

Event Relationship Rows 16 20 38
Running Time (in seconds) 0.54 13.48 45.51

Table 1: Statistics for our Automated Timetabling Program.

Acknowledgments The authors thank the administrators of the three educational institu-
tions cited in this paper. Specifically we thank Jamie Kemp and Isabel Yu (Pacific Design
Academy), Denise Lamarche, Becky Anderson, and Richard Brambley (St. Michaels
University School), and Samantha Goddard and Erin Dallin (Glenlyon Norfolk School).

References

1. Appleby, J., Blake, D., Newman, E.: Techniques for producing school timetables on a com-
puter and their application to other scheduling problems. The Computer Journal 3(4), 237–245
(1961)

2. Collins Dictionary: Definition of timetabling. https://www.collinsdictionary.com/dictionary
/english/timetabling (2024), accessed: 2024-03-07

3. Cooper, T.B., Kingston, J.H.: The complexity of timetable construction problems. In: Burke,
E., Ross, P. (eds.) Practice and Theory of Automated Timetabling. pp. 281–295. Springer
Berlin Heidelberg, Berlin, Heidelberg (1996)

4. Even, A.S.S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow
problems. SIAM Journal on Computing 5(4), 691–703 (1976)

5. Google OR-Tools: Fast and portable software for combinatorial optimization. https://develo
pers.google.com/optimization (2024), accessed: 2024-03-07

6. Gotlieb, C.: The construction of class-teacher timetables. IFIP congress, Amsterdam 62,
73–77 (1963)

7. Hoshino, R., Fabris, I.: Optimizing student course preferences in school timetabling. Pro-
ceedings of the 17th International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research (CPAIOR 2020) pp. 283–299 (2020)

8. Hoshino, R., Fabris, I.: Partitioning students into cohorts during COVID-19. Proceedings of
the 18th International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR 2021) pp. 89–105 (2021)

9. Lewis, R., Paechter, R., McCollum, B.: Post enrolment based course timetabling: a description
of the problem model used for track two of the second international timetabling competition.
Cardiff Working Papers in Accounting and Finance A2007-3 (2007)

10. Müller, T., Rudová, H., Müllerová, Z.: Real-world university course timetabling at the inter-
national timetabling competition 2019. Journal of Scheduling pp. 1–21 (2024)

11. Pillay, N.: A survey of school timetabling research. Annals of Operations Research 218(1),
261–293 (2014)

https://www.collinsdictionary.com/%20dictionary/english/timetabling
https://www.collinsdictionary.com/%20dictionary/english/timetabling
https://developers.google.com/optimization
https://developers.google.com/optimization

Cohort-Based Timetabling with Integer Linear Programming 283

12. Post, G., Di Gaspero, L., Kingston, J., Mccollum, B., Schaerf, A.: The third international
timetabling competition. Annals of Operations Research 239 (2013)

