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Abstract

Let L and R be two graphs. For any positive integer n, the Ehrenfeucht-
Fraissé game Gr (L, R) is played as follows: on the i*" move, with 1 <4 <
n, the first player chooses a vertex on either L or R, and the second
player responds by choosing a vertex on the other graph. Let [; be the
vertex of L chosen on the i*" move, and let r; be the vertex of R cho-
sen on the i*" move. The second player wins the game iff the induced
subgraphs L[{l1,l2,...,ln}] and R[{r1,r2,...,7n}] are isomorphic under
the mapping sending I; to r;. It is known that the second player has a
winning strategy if and only if the two graphs, viewed as first-order log-
ical structures (with a binary predicate E), are indistinguishable (in the
corresponding first-order theory) by sentences of quantifier depth at most
n. In this paper we will give the first complete description of when the
second player has a winning strategy for L and R being both paths or
both cycles. The results significantly improve previous partial results.
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1 Introduction

Let L = (X, {Ly,...,L;}) and R = (Xg, {R1,..., Ri}) be two discrete struc-
tures of the same type (that is, for each i, the relations £; and R;, on sets X,
and X respectively, have the same arity). For any integer n, the Ehrenfeucht-
Fraissé game G, (L, R) is played as follows: on the i*" move, with 1 < i < n,
the first player (The Spoiler) chooses an element from either L or R, and the
second player (The Duplicator) responds by choosing an element from the other
structure. Let [; be the element of L chosen on the " move, and let r; be the
element of R chosen on the it" move. The Duplicator wins the game iff the
induced substructures L[{l1,l2,...,ln}] and R[{r1,r2,...,rn}] are isomorphic
under the mapping sending [; to ;. The Ehrenfeucht-Fraissé game was intro-
duced by Ehrenfeucht in the context of linear orderings [4] in order to study the



logical properties of ordinal numbers. A similar notion was formulated indepen-
dently by Fraissé in [7], which did not use the game-theoretic terminology. The
main theorem [4, 7] states that the Duplicator has a winning strategy in the
game G, (L, R) if and only if the two discrete structures are indistinguishable by
sentences of quantifier depth at most n. The study of Ehrenfeucht-Fraissé games
has significant applications to finite model theory and computational complexity
theory [3, 12].

In this paper, we shall investigate Ehrenfeucht-Fraissé games on (simple)
graphs. We will provide a full analysis of the Ehrenfeucht-Fraissé game when
L and R are both paths, and when L and R are both cycles. These problems
have been examined in past papers [2, 8], and partial results have been found.
The first complete solutions appear here.

2 The Ehrenfeucht-Fraissé Game for Graphs

For two graphs L and R, the Duplicator wins the Ehrenfeucht-Fraissé game
Gn(L, R) precisely when we have the following situation at the end of the
game: [jl; € E(L) iff r;r; € E(R), for all 1 < i < j < n. Now, we will
allow for preassigned initial sequences, where each player has already made
h moves in the game, for some integer h. Let [1,...,l; be the vertices cho-
sen on L, and let ry,...,r, be the vertices chosen on R. Then the game
Gn((L;ly, ... ylp), (R;7r1,...,7rp)) consists of n moves: lpy1,...,lh4n are the
moves made on L, and 7p41,...,7htn are the moves made on R. The Du-
plicator wins precisely when we have the following situation at the end of the
game: [;l; € E(L) iff r;rj € E(R), for 1<i<j<h+n.

Note that if for some 7,7 with 1 < ¢ < j < h, we have [;l; € E(L) and
rir; ¢ E(R) (or l;l; ¢ E(L) and r;r; € E(R)), then for all n, the Spoiler
automatically has a winning strategy in G, ((L;l1,...,0n), (R;71, ..., 7h))-

We write L ~, R if the Spoiler has a winning strategy in G, (L, R) and
L ~, R if the Duplicator has a winning strategy in G, (L, R). Note that one
player must have a winning strategy in G, (L, R), because this is a finite game
with perfect information, and ties are not possible.

If L ~, R for all integers n, we write L ~ R. Otherwise, we write L »~ R.

Let us look at a specific example. Let L and R be the two graphs below,
and consider the game G3(L, R). We prove that L =3 R.




The Spoiler’s first move is I3 = 6. Then the Duplicator must choose some
vertex r1 in R. Now, for each vertex r1 € R, there exists at least one vertex v
such that r; is not adjacent to v. The Spoiler then chooses r; = v. Since any
vertex the Duplicator picks as I will be adjacent to l; = 6, we have 1]y € E(L)
and 119 ¢ E(R). Thus, the Duplicator has lost. Clearly, this argument can be
generalized: if L has a universal vertex and R does not, then L ~3 R.

Graphs can be viewed as a first-order theory (with equality) with a single
binary predicate, E. We write E(z,y) when vertices z and y are adjacent.

For any first-order sentence ¢, its quantifer depth is denoted by ¢d(¢), and
is defined recursively by the following rules:

(i) If ¢ is atomic (i.e., ¢ has no quantifiers), then qd(p) = 0.

(i) If ¢ is =), then qd(p) = qd (V).

(i) If ¢ is V', ¥ An, 1 — n, or P < 0, then qd(p) = max(qd(), gd(n))-
(iv) If ¢ is (Vv)¥ or ()1, then qd(p) = qd(v) + 1.

In our graph-theoretic context, there are only two types of atomic first-order
sentences: © =y and E(x,y).

Let S be the set of first-order sentences, and define
S, ={peS: qdle) <n}.

For graphs L and R, we write L =,, R if L and R satisfy the same sentences
in S,,. We say that L and R are elementarily equivalent (denoted by L = R) if
for every sentence @ in S, ¢ is true in L iff ¢ is true in R.

Theorem 2.1 Let L and R be graphs. Then, L ~, R iff L =, R.

This theorem is a specific case of a more general result [4] which relates the
theory of first-order logic to the Ehrenfeucht-Fraissé game in the much more
general context of finitary structures.

Theorem 2.1 can be applied in the following way: if we know that L ~, R,
then every sentence ¢ with ¢d(¢) < n must be true for both graphs, or for
neither graph. Also, if we have a sentence ¢ with gd(¢) = n that is true for
only one of the two graphs, then we can immediately conclude that L ~,, R.

For example, the sentence ¢ = (Fw) (Vz) (w # z) — E(w,z)) models
the property that a graph has a universal vertex. The quantifier depth of ¢
is 2. And this is consistent with the observation that we made earlier that if
L has a universal vertex and R does not, then L ~ R. Using Ehrenfeucht-
Fraissé games, we can construct proofs that certain properties of finite graphs
cannot be modelled by a first-order sentence. For example, the property of



being bipartite is not expressible as a sentence in first-order logic as Con—14
is bipartite, Cyn-1,3 is not, and we shall see (Theorem 4.9) that Con-1,4 ~,,
Con-143. So there is no first-order sentence that describes the property that a
graph is bipartite.

The following corollaries are immediate.

Corollary 2.2 Let L and R be two (finite) graphs. Then L ~ R iff L = R.

Corollary 2.3 Both ~,, and ~ are equivalence relations on the class of all
graphs.

One can quickly show that for each n, ~, has only finitely many equivalence
classes. Proofs of this result can be found in [3] and [10].

In [10], Rosenstein analyzes the Ehrenfeucht-Fraissé game for linear order-
ings. In this game, the Duplicator wins iff the elements l1,1s,...,[, are in the
same order in L as the elements ry,72,...,r, are in R. In other words, the
Duplicator wins precisely when we have the following situation at the end of
the game: [; <z l; iff r; <g r;.

Since a path is analogous to a linear ordering (the Hasse diagram of the latter
being the former), it would appear that the Ehrenfeucht-Fraissé game on linear
orderings is equivalent to the Ehrenfeucht-Fraissé game on paths. However, the
latter is much more difficult to analyze due to the following “splitting lemma”
which is true for linear orderings, but not true for paths:

Lemma 2.4 Let L and R be linear orderings, and n be a positive integer. For
each a € L, define Log = {v € L|v <p a} and Ls, = {v € L|v > a}, and for
each b € R, define R, = {v € R|v <g b}, and R>, = {v € Rlv >y b}.

Then the Duplicator has a winning strategy in the game Gp1(L, R) iff the
following conditions are true:

1. For every a € L, there is an element b € R for which the Duplicator has
a winning strategy in both the games Gy (L<q, R<p) and Gp(Lsa, Rp)-

2. For every b € R, there is an element a € L for which the Duplicator has
a winning strategy in both the games Gpn(L<q, R<p) and Gn(Lsq, Rsp).

Using Lemma 2.4, it is a straightforward induction exercise to prove that:

Theorem 2.5 Let L and R be linear orderings. Then the Duplicator has a
winning strategy in the Ehrenfeucht-Fraissé game G,(L,R) iff |L| = |R|, or
|L|,|R| > 2™ —1.

With this theorem [10], we have a complete analysis of the Ehrenfeucht-
Fraissé game on linear orderings. In the following section, we give a complete
analysis of the Ehrenfeucht-Fraissé game on paths. Since this splitting lemma
fails for paths (we shall explain why in the next section), we will need to develop

more sophisticated techniques to solve this problem.



3 The Ehrenfeucht-Fraissé Game on Paths

Let P, denote the path on n vertices, where the vertices are labelled 1,...,n.

Given two positive integers m and n, we shall determine all the values of k
for which P, ~ P,. Also, for any given k, we shall find all ordered pairs (m,n)
for which P, ~i P,. This will give us a complete solution to the Ehrenfeucht-
Fraissé game on paths.

Note that if m = n, then P,, ~; P, for all k. So let us assume that m # n.
In [2], Brown and Woodrow define f(k) to be the smallest integer ¢ such that
P~ P,ifm=norm,n>t.

If we can find ¢ such that P, ~j P, for all n > ¢, then by transitivity, we

have P,, ~ B, for all m,n > t. Hence, it follows that f(k) < ¢. Brown and
Woodrow show that f(k) is well-defined and prove that

3

-2k+1§f(k)§§-2’“+1.

DN =

We will prove the following explicit formula for f(k):
Theorem 3.1 f(1)=1, f(2) =4, f(3) =17, and f(k) =2* for k > 4.

Clearly, f(1) = 1. It is straightforward to verify that Py ~q P,, for all n > 4.
Thus, f(2) < 4. To conclude that f(2) = 4, it suffices to show that P3 ~y Pj.
And this is immediate because P53 has a universal vertex, but P, does not.

We now prove that f(3) = 7. First, let us show that Ps ~3 Pr. Consider
the following first-order sentence of quantifier depth 3:

¢ = (Fv)Fw)(Va)(((v # ) A (w # 7)) = (E(v,2) V E(w, 7).

In other words, the sentence ¢ models the property that there is a dominating
set of size two. Since Pg satisfies ¢ and P; does not, we have Pg 23 P;. By
Theorem 2.1, we have Ps =3 Pr. Therefore, we conclude that f(3) > 6.

Now we prove that f(3) < 7 by showing that P; ~3 P,, for any n > 7. We
first describe the Duplicator’s response to the Spoiler’s first move:

If the Spoiler plays I1 = 1,2, 3,4, then the Duplicator plays r1 = 1.

If the Spoiler plays I3 = 5,6, 7, then the Duplicator plays r1 =n — (7 — [3).
If the Spoiler plays 1 = 1,2, 3, then the Duplicator plays l; = r1.

If the Spoiler plays 71 = 4,5,...,n — 3, then the Duplicator plays [; = 4.

If the Spoiler plays r1 = n — 2,n — 1,n, then the Duplicator plays [; =
n—(7—r1).

Now, if the Spoiler selects 75 so that its distance from r; is 1 or 2, then the
Duplicator selects Iy so that I — Iy = ro — 1. Similarly, if the Spoiler selects



l> so that its distance from [y is 1 or 2, then the Duplicator selects ro so that
ro —7T1 :lg—ll.

If the Spoiler selects ro so that its distance from r; exceeds 2, then the
Duplicator selects any lo such that |l — 1] > 2. Similarly, if the Spoiler selects
l2 so that its distance from [ exceeds 2, then the Duplicator selects any 72 such
that |rg — 71| > 2.

The Spoiler makes one final move. If she plays r3 so that it is adjacent to
r1 and/or 7y, then the Duplicator can play [3 appropriately and win the game.
If the Spoiler chooses r3 so that it is not adjacent to either r; or 72, then the
Duplicator can choose any [3 so that is is not adjacent to either l; or [5, and
the Duplicator wins in this case as well. This is possible because P, has no
dominating set of size 2, for any n > 7. So in all cases, the Duplicator wins
the game. The Duplicator’s play is analogous if the Spoiler plays I3, as the
Duplicator will select r3 appropriately. Hence, we have shown that P; ~3 P,,
for all n > 7. We conclude that f(3) = 7.

Let us briefly explain why the Ehrenfeucht-Fraissé game on paths is so dif-
ficult to analyze. Suppose that in the game G3(Pr, Ps), we have l; = 1, = 4
and Iy = ro = 6. Suppose the Spoiler selects r3 = 8 on her final move. Then
the Duplicator can only win by “jumping” to the other side of Pz, i.e., playing
l3 = 1 or I3 = 2. These jump moves are perfectly legitimate; in fact, it is the
only way that the Duplicator can win. Thus, the splitting lemma (Lemma 2.4)
that worked for linear orderings fails for paths, due to the jump moves that
are possible. Since we must consider these jump moves in our analysis of the
Ehrenfeucht-Fraissé game on paths, our analysis becomes much more complex.

To prove that f(k) = 2F for all k > 4, we must prove that f(k) > 2* and
f(k) < 2*. We prove the lower bound first.

3.1 Lower Bound

Let P be a path of finite length, and let a and b denote two vertices of P. Define
po(a,b) = (a =b) and p1(a,b) = E(a,b). For i > 2, recursively define

pi(a,b) = (3c) (par(a,c) A pi_ar(b,c)) A (mpar+i_i(a, b)),

where k is the unique integer for which 2k 41 < ¢ <okt

Lemma 3.2 Let a and b be two distinct vertices of P, and let n be an integer,
with n > 0. If1 < i < 2", then qd(pi(a,b)) < n. Furthermore, p;(a,b) is
a sentence that holds if and only if dist(a,b) = i, where dist(a,b) denotes the
distance between vertices a and b.

Proof = We proceed by induction on n. The claim is trivial for n = 0.

Now suppose that we have proven the claim for n = k, i.e., for 1 < i < 2k,
We now prove that the result holds for n = k + 1. Let 2% +1 < i < 2k+1,



We recursively defined the sentence
Pi (a7 b) = (E'C) (p2’“ (CL, C) N pi_2k (b C)) A (_‘p2k+17i(aa b))

First we show that this sentence is true iff dist(a,b) = i.

Note that i —2% < 2¥ and 2¥+1— < 2%, By the induction hypothesis, p;(a, b)
holds iff dist(a, b) # 2¥*1 —i, and there exists a vertex c such that dist(a, c) = 2*
and dist(b, c) = i — 2.

If a is between b and ¢, then 2% = dist(a,c) < dist(b,c) =i — 28 < 2% a
contradiction. If b is between a and ¢, then dist(a, b) = dist(a, ¢) — dist(b,¢) =
2k+1 4 a contradiction. Thus, these conditions force ¢ to be the middle vertex.
In this case, we have dist(a, b) = dist(a, ¢)+dist(b, ¢) = i. The converse is clearly
true: if dist(a,b) = i, then there must exist a vertex ¢ between a and b such
that dist(a,c) = 2% and dist(b, ¢) = i — 2¥. Furthermore, dist(a,b) # 281 — i,
since i > 2*. Thus, the sentence p;(a,b) holds iff dist(a,b) = .

By the induction hypothesis, gd(psx(a,¢)), qd(p;_ar (b, €)), qd(par+1_;(a, b))
are each at most k. Therefore, we have proven that

qd(p;i(a,b)) < max(1 + max(k, k), k) =k + 1.

We now define ¢, (b), for each j > 0. First, we define:

do(b) = (~20) (<3d) (c # d) A (E(c,b) A E(d,b)).
01(b) = (30) (Vd) (d#b— ~E(d,0)),
02(0) = (o) (V) (E(d,c) — E(d,b).

For j > 3, recursively define

j—2F 41

0 (b) = (Fc) (Par—2(c)Apj—2k12(b, €))A=(3d) | Par—a(d) A \/ pi(bd) | ]

i=1

where k is the unique integer for which 2 — 1 < j < 2k+1 — 2,
This defines ¢;(b) for each j > 0.

Lemma 3.3 Let b be a vertex of P, and let n be an integer, with n > 2. If
0 <j <2"—2, then qd(¢;(b)) < n. Furthermore, ¢;(b) is a sentence that holds
if and only if j is the shortest distance from b to an endpoint of P.

Proof We proceed by induction on n. The claim holds for n = 2, as qd(¢;(b)) <
2 for each of the sentences ¢o(b), ¢1(b), and ¢2(b), and for each j =0, 1,2, ¢;(b)
is true iff j is the shortest distance from b to an endpoint of P. (Note that we
cannot start the induction at n =1 as ¢d(¢g (b)) = 2.)



Now suppose that we have proven the claim for n = k, i.e., for 0 < j < 22,
We now prove that the result holds for n = k + 1. Let 2k 1< 7 < ok+t1l _ 9

We recursively defined

j—2F4+1
¢ (b) = (3c) (dar —2(c)Apj_ary2(b,))A=(3d) | dar—a(d) A \/ pi(b,d)

=1

For convenience, define enddist(b) to be the shortest distance from b to an
endpoint of P. We show that ¢;(b) holds iff enddist(b) = j.

Suppose that enddist(b) = j. Then there exists a vertex ¢ with enddist(c) =
2% — 2 and dist(b, ¢) = j — 2¥ + 2. By the induction hypothesis and Lemma 3.2,
c satisfies ¢or_5(c) and p;_oxo(b, ¢). Furthermore, there cannot exist d with

(gbzk,z(d) A (\/f;ka pi(b, d))), as otherwise, enddist(b) < (28 —2)+ (j — 2~k +
1) =j —1 < j, which is a contradiction. Hence, ¢;(b) holds.

Now suppose that ¢;(b) holds. Then by Lemma 3.2 and the induction hy-
pothesis, there exists a vertex ¢ such that enddist(c) = 2¥ — 2 and dist(b, c) =
j — 2% 4+ 2. Also, there does not exist any vertex d with enddist(d) = 2% — 2

and dist(b,d) < j — 2* + 1. This latter condition proves that enddist(b) >
(2F —2)+ (j —2F + 1) = j — 1. We wish to prove that enddist(b) = j.

Let v; and vy be the endpoints of P, with ¢ between b and vq. If dist(c, v;) =
2F — 2 then dist(b, v3) > dist(b,v1) = dist(c, v;) —dist(b,c) = (28 —2) — (j — 2% +
2) =2k —j 4, But 28! —j -4 =2(2F — j —2) + j < j, which contradicts
enddist(b) > j. So we must have dist(c, v2) = 2¥ — 2, from which it follows that
dist(b, v2) = (j — 2F +2) + (2¥ — 2) = j. Thus, enddist(b) = j and this proves
our claim.

By the induction hypothesis and Lemma 3.2, qd(dar_2(c)), qd(p;_2r12(b, ¢)),
and qd(par+1_j_4 (b)) are at most k. And so we have proven that

qd(¢; (b)) = max(1 + max(k, k), k) = k + 1.

Lemma 3.4 For each k > 4, define

2);:,2 2k—272

o =) (W) |b#£a)— |\ pi(ad) | V| \ ¢

i=1 =0

Then, for k > 4, Py_q satisfies @i, and Por does not satisfy .

Proof  First we show that ¢y is true for Pyx_;. Let a be the vertex in the
centre of the path. Now select any b, with b # a. We will show that either
pi(a,b) or ¢;(b) is true, for some 1 <i <282 or 0 < j <282 -2,



Suppose on the contrary that neither condition holds. Then, we must have
dist(a,b) > 2872+ 1. Also, if v; and vy are the two endpoints of Pyr_q, then we
must have dist(v1, b) > 28721 and dist(ve, b) > 272 1. If b < a, then we have
2F=1 1 = dist(v1, a) = dist(vy, b) +dist(b,a) > (2872 + 1)+ (2F72 — 1) = 2+ 1,
a contradiction. We get the same contradiction if b > a. So for each b with
b # a, either p;(a,b) is true for some 1 < i < 2872 or ¢;(b) is true for some
0<j <282 _2 Thus, ¢ is true for Pyr_;.

Now we show that ¢y is not true for Pyx. On the contrary, suppose such a
vertex a exists. Then for each of the other 2¥ — 1 vertices, either p;(a, b) is true
for some 1 < i < 282 or ¢;(b) is true for some 0 < j < 2k=2 _ 9 Since we
are dealing with a path, p;(a,b) can be true for at most two vertices, for any i.
Similarly, ¢;(b) can be true for at most two vertices, for any j. Since we have
2k=2 (ifferent possibilities for ¢ and 2¥=2 — 1 different possibilities for j, there
are only 2(2F72) 4 2(2k72 — 1) = 2% — 2 possible choices for b. Hence, our path
Psr contains at most 1 + (2’“ —-2) = 2k 1 vertices, a contradiction. Hence, we
conclude that ¢y is not true for Pyx. a

Theorem 3.5 For k > 4, we have f(k) > 2F.

Proof By Lemma 3.2 and Lemma 3.3, ¢d(p;(a,b)) < k — 2 for each 1 <
i < 2872 and qd(¢;(b)) < k — 2 for each 0 < j < 2F=2 — 2. Therefore,
qd(or) < 2+max(k—2,k—2) = k. By Lemma 3.4, @y, is true for Py._; but not
true for Pyx. This proves that Por_ 2k Pox. By Theorem 2.1, Por_ g »p Pok.
Hence, we have proven that for all & > 4, we have f(k) > 2F. ad

Note that this proof fails for k = 3, due to Lemma 3.3 (since k£ = 3, we have
n =1, and Lemma 3.3 requires n > 2). That is why we have f(3) =7, and not

f(3) =8

3.2 Upper Bound

To complete the proof, we must prove the upper bound, that f(k) < 2% for all
k > 4. To do this, we describe a winning strategy for the Duplicator in the
game G (P,, Py), where a,b > 2F.

If L and R are paths, we define I; and [; to be chosen neighbours in the game
Gn((L;ly,lay .o lp)y (Ryr1y1a, ..oy rp)) if 1 < 4,5 < h, i # j, and there does not
exist an index p with min(l;,l;) < I, < max(l;,l;). We have an analogous
definition for r; and r; being chosen neighbours.

Let L = P, and R = P, for some positive integers a and b. If h > 1,
define L;gqp to be the shortest distance between the left endpoint of L and a
chosen vertex of L (i.e., the number of vertices to the left of the first ;). Hence,
Ligap = min(ly,lz,..., 1) — 1. Also, define L, 44, to be the shortest distance
between the right endpoint of L and a chosen vertex of L. Hence, Ljjq, =
a —max(ly,la,...,l). Similarly, we define Rjgqp = min(ry,79,...,75) — 1, and
Rrgap = b —max(ri,ro, ..., 7).



Lemma 3.6 Letn > 1 be a positive integer. Let L = P,, R = P,.

Consider the game Gy ((L; 11,12, ..., ln), (R;r1,72,...,Th)), where we assume
without loss that all of the [;’s are distinct and all of the r;’s are distinct. Then,
for all h > 1, the Duplicator has a winning strategy in this game if all the
following conditions are satisfied:

1. If l; and l; are chosen neighbours with |l; — l;| < 2™, then r; and r; are

chosen neighbours with |r; — r;| = |l; — l;]. Also, if r; and r; are chosen
neighbours with |r; — r;| < 2", then l; and l; are chosen neighbours with
i = 1] = [ri = 7j1.

2. Ligap, Rigap > 2" —1, or there exists an index m with l,,, = min(ly,...,ls),
Tm = min(ry,...,r,), and Ligap = Rigap-

3. Lygap: Rrgap > 2"—1, or there exists an index m with l,,, = max(ly,...,1),
Tm =max(ry,...,7s), and Lygap = Rygap.

4. FEither there exist chosen neighbours l; and l; with |l; — 1;| > 2", or we
have max(Ligap, Lrgap) > 2" — 1.

5. Either there exist chosen neighbours r; and r; with |r; —r;| > 27t or we
have max(Rgap, Rrgap) > 2" — 1.

Proof First, note that condition 1 implies that

(L; ll,lg,...,lh) ~0 (R;Tl,’l"g,...,rh).

We proceed by induction on n. Consider the case n = 1. Without loss,
assume the Spoiler chooses I, 1 in L, and [, is different from all the previous
l;’s. There are three possible moves by the Spoiler: she can select [,+1 so that
it is adjacent to two, one, or none of the vertices in {ly,...,l;}. We shall prove
that the Duplicator can always respond so that the two resulting subgraphs are
isomorphic after h + 1 vertices are chosen on each graph.

Suppose the Spoiler selects 1;,11 so that it is adjacent to two chosen vertices
l; and I; (I; and l; must be chosen neighbours). Then, |l; — ;| = 2. From
condition 1, |r; — r;| = 2. Hence, the Duplicator can select r,41 so that it is
adjacent to both r; and r;.

Suppose the Spoiler selects ;11 so that it is only adjacent to some [;. Then
the Duplicator must select r,11 so that is is only adjacent to r;. Assume this
is not possible. There are three possible cases to consider, depending on the
location of r;:

Case 1: There exist distinct indices 7, k with r; —r; <2 and rp —7; < 2.
Case 2: There exists j with r; —r; <2, r; = min(rq,rs,...,7,) and Rjgep = 0.
Case 3: There exists j with r; —r; < 2, r; = max(rq,72,...,73) and Rygqp = 0.

In the first case, condition 1 implies that [; —[; < 2 and {;, — I; < 2, so
the Spoiler could not have chosen [j, 1 so that it is only adjacent to ;. In the
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second case, the first two conditions imply that I; — {; < 2 and L4, = 0, and
so we obtain our contradiction here as well. The third case is identical to the
second. Thus, if the Spoiler selects l;41 so that it is adjacent to only I;, then
the Duplicator can select r,41 so that it is adjacent to only r;.

Finally, we consider the case when [j41 is adjacent to none of the chosen
vertices. Then by condition 5, either there exist chosen neighbours r; and r;
with |r;—7;| > 4, or max(Rigap, Rrgap) > 3. And in both situations, we see that
the Duplicator can play 7,41 so that it is adjacent to none of {ry,ra,... 7}

Therefore, we have verified the lemma for the base case n = 1. Let us
suppose the lemma is true for n = k. If all five conditions of the lemma
hold for the game Gy1((L;l1,...,1lx), (R;r1,...,74)), we shall prove that the
Duplicator can respond to the Spoiler’s next move to create a game G’ =
Gr((Lilay ..oy lhy1), (R;71, . .., The1)) which also satisfies the five conditions of
the lemma. Then by the induction hypothesis, the Duplicator has a winning
strategy in the original game.

Without loss, assume the Spoiler selects a vertex [, 41 in L. There are two
cases to consider. Either the Spoiler plays l;,+1 between some two chosen vertices
lp and I, or she plays [, 11 so that it is between a chosen vertex and an endpoint
of P,.

Consider the first case. From the given conditions, |l, — l,| = |rp — 74
or |l, = lyl,|rp — rq| > 28Tt 4+ 1. Hence, the Duplicator can respond to the
Spoiler so that if |l; — lpy1] < 28 or |ry — rpga| < 28 (for t = p,q), then
|l: = lh+1| = |r+ — rag1]. The interesting case occurs when the Spoiler selects
ln+1 between two chosen vertices I, and [, such that |lp11—0p], [lny1—1g| > 2F+1.
Then we employ condition 5. If there exist chosen neighbours 7; and r; with
|ri — rj| > 2k+2 then the Duplicator selects rp+1 between r; and 7; so that
The1 = min(rg, r;) + (28 + 1), If Rygqp > 2872 — 1, then the Duplicator selects
The1 = min(ry,ro,...,rp) — (28 + 1). Finally, if Rygqp > 282 — 1, then the
Duplicator selects 7,1 = max(ry,7a,...,75) + (25 +1). In all scenarios, we see
that the first three conditions hold in G’.

Let us now consider the case when the Spoiler selects [, 1 so that it is
between a chosen vertex and an endpoint of P,. Let us just examine the case
where lp41 < min(ly,...,ln) = Ln, as the other case follows by symmetry.
If l,, = 7, then the Duplicator selects 7441 = lp41. So suppose Ligap =
lyy—1>2k1_1 and Rigap > 2k+1 1, If 1,11 < 2F — 1, the Duplicator makes
Th41 = lp41, verifying condition 2. If [, — [p41 < 2% then the Duplicator
makes 7, — Th4+1 = Ly — lp41, verifying condition 1. Otherwise, the Duplicator
uses condition 5 and follows the strategy described at the end of the previous
paragraph. In all scenarios, we see that the first three conditions hold in G’.

To conclude the proof, we prove that conditions 4 and 5 must hold for G’.
By our assumption, condition 4 holds in the original game. The first case to
consider is that there exist chosen neigbours l; and [; with |l;—{;| > ok+2 Il
is chosen between /; and [;, then we have |I; — 41| > 281 or |l; — l41] > 28FL.
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Otherwise, I; and [; are chosen neighbours on G’ with |l; — {;| > 2F+2 > 2k+1,
The other case to consider is max(Ligap, Lrgap) > 2k+2 _ 1. Without loss,
suppose Ligqp > 2872 — 1, and let l,, = min(ly,la,...,ls). Then for any I, 1,
we must have I, ;1 — 1 > 281 — 1 or |11 — Ln| > 281, Hence, condition 4
must hold in G’, regardless of the choice for I, 1. Similarly, condition 5 must
hold in G, regardless of the choice for rjy 1.

Therefore, we have proven that for any move ;11 that the Spoiler makes,
the Duplicator can respond so that the five conditions of the lemma are verified
for G’. And so, by the induction hypothesis, we conclude that the Duplicator
has a winning strategy in the game Gy1((L;l1,...,1s), (R;r1,...,74)). This
completes the induction. O

Theorem 3.7 f(k) < 2* for all k > 4.

Proof Fix k > 4. Let a = 2% and b = 2% + h for some arbitrary h > 1. We
shall prove that P, ~; P,. By transitivity, this will imply that P,, ~; P, for
m,n > 2% and hence, it follows by definition that f(k) < 2.

By symmetry, assume that on the Spoiler’s first move, she will play either
Iy <28 1opp <2k14 L%J There are two cases to consider.

Case_1: The Spoiler selects I; <281 —1 or r <2F1 1.

The Duplicator responds by making r; = [y. If the Spoiler plays I or 7o
with 5 < l1 or r2 < 71, then the Duplicator will make I = ry. If the Spoiler
makes Iy — I3 < 2572 or 7y —r; < 2872, then the Duplicator will play so that
ly — 1y = 79 — r1. If the Spoiler makes a —lo < 282 — 2 0r b —ry < 2622,
then the Duplicator will play so that a —ls = b — r5. In all other cases, the
Duplicator will select Iy = I3 + (2872 + 1) or ro = 71 + (2872 4+ 1).

We shall prove that regardless of what the Spoiler does on her third move,
the Duplicator can respond in such a way that all five conditions of Lemma 3.6
are satisfied in the game G’ = Gi_3((L; 11,12, 13), (R;r1,72,73)). This will prove
that the Duplicator has a winning strategy in Gy(L, R), since k > 4.

First, we show that the last two conditions of the lemma must hold in the
game G’. Suppose this is not true. Then, Lygqp < 2872 — 1, Lygqp < 2872 — 1,
and for all pairs of chosen neighbours (I;,1;), we have |l; — ;| < 2¥72. Then,
2F 1=a—-1<(2¥2-1)4+2k 242k 24 (2672 1) = 2k 2 a contradiction.
Therefore, condition 4 must be satisfied in G’, and similarly, so must condition
5. To complete the proof, we just need to verify that the Duplicator can play
his third move so that the first three conditions are satisfied in G’.

The cases when [y = 75 and s — [y = ro — r1 are easily dealt with, so let us
examine the last two cases. Consider the case when a —Ils = b—ro. If the Spoiler
selects I3 such that I3 < Iy or I3 > I3 (or r3 such that r3 < rqy or r3 > rg), then
the Duplicator copies the move on the other graph (i.e. he will make r3 = I3
or b —r3 = a — l3), and this will satisfy the given conditions. Thus, assume
the Spoiler will play I3 between [y and I3, or r3 between r; and ry. We have
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ro—11 > lo—1l1 = (a—1)—(a—1la)— (1 —1) > (2F - 1)— (2F2—2)— (2F1-2) =
2F=2 1 3. Thus, the Duplicator can respond in such a way that |l3 — ;]| < 2k3
iff |13 — ;| < 2873, for i = 1,2. We quickly see that the first three conditions of
the lemma are satisfied by this strategy.

Finally, we consider the case when the Duplicator selects [y = {1 + (2872 +1)
orro =11+ (Qk_Z +1) on his second move. Suppose that the Duplicator selects
ly, as the other case follows similarly. Let us assume that ry — 7y > 2872 41,
otherwise |l — I1] = |r2 — r1|, and this case is easily dealt with. We have
a—ly=a—(la—Il1) 13 > 2F—(2F241)—(2F1—1) = 2¥=2 and b—ry > 2F72 1.

If the Spoiler selects I3 or 75 with @ — I3 < 2573 — 2 or b — ry < 263 _ 2,
then the Duplicator will make a — I3 = b — r3. If the Spoiler makes |l3 — ;| <
2F=3 or |rz —r;| < 2873 for i = 1,2, then the Duplicator will respond so that
|ls — I;| = |rs — ri|]. Otherwise, the Duplicator will play I3 = Iy + (2873 + 1) if
the Spoiler plays 73, or he will play 73 = 72 — (2873 + 1) if the Spoiler plays
l3. In all situations, the first three conditions of Lemma 3.6 are satisfied in G’.
Therefore, we conclude that regardless of what the Spoiler does, the Duplicator
can play his first three moves so that he has a winning strategy in G’.

Case 2: The Spoiler selects I; = 28— or r; = 25— 4+ m, for some m with
0<m< |53,

The Duplicator responds by selecting I; = 2¢~1 if the Spoiler chose r;, and
r1 = 28~1 if the Spoiler chose I;.

If the Spoiler selects lo < 2872 — 1 or 9 < 25=2 — 1, then the Duplicator
makes lo = r2. If she plays a — [ < k=2 _ 9 orb—pry < 2k2_ 2, then the
Duplicator makes a— Iy = b—r. If she plays |la — 1| < 2F72 or [rg — 71| < 272,
then the Duplicator makes |lz — 1] = |r2 —r1]. In all other cases, the Duplicator
will play lo = I3 + (282 + 1) or o =71 + (2F72 4+ 1).

We quickly see that this strategy ensures that the first three conditions of
the lemma hold for Gj_2((L;l1,12), (R;r1,72)). Condition 4 is satisfied because
la < Iy implies that Lygep = a — 11 = k=1 5 9k=1 _ 1 and Iy > 4 implies
that Ligep = 11 — 1 = 2871 — 1. Similarly, condition 5 is satisfied. Therefore, by
Lemma 3.6, the Duplicator has a winning strategy in G_2((L; l1,12), (R;71,72)),
and so he has a winning strategy in G (L, R). o

3.3 Main Result

Earlier, we showed that f(1) = 1, f(2) = 4, f(3) = 7. By Theorem 3.5 and
Theorem 3.7, we have shown that f(k) = 2% for all £ > 4. In other words, we
have proven that ¢ = f(k) is the smallest positive integer for which P, ~j P,
if m = n or m,n > t. In this section, we shall complete our analysis of the
Ehrenfeucht-Fraissé game on paths by showing that if m # n and min(m,n) <
f(k), then P, » P,. Thus, for any given m,n, k, we can determine who has
the winning strategy in the game Gy (P, Py).
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For each positive integer ¢, we define a first-order sentence wy:

For t < 6, we define the following:

o = (Ya)(¥b)(a=1)
w2 = (Va)(Vb)(a #b— E(a,b))
wz = (Ja)(Vb)(b# a— E(a,b)
wy = (Ya)(3b)(Ve)((E(a,c) — c=0b)V (E(b,c) — ¢ = a)).
ws = (Ja)(Vb)(a#b— E(a,b) V ((3c)(E(a,c) AN E(b,c))))
wg = (Ja)3b)(Ve)(((c # a) A (e # b)) — E(a, ) V E(b, c))

i=1 7j=0
[ [
we = (Ja) (W) |b#a— pila,b) [ V| \/ ¢;(b) if ¢ is odd.
i=1 j=0

Note that wer_; = @k, which we defined in Lemma 3.4.

Lemma 3.8 Let t be a positive integer. Then P; satisfies wy, and P,, does not
satisfy wy, for all n > t.

Proof  The proof of this lemma follows the same spirit as Lemma 3.4. We
easily verify that the lemma is true for ¢ < 6, so consider the case ¢t > 7. First,
we examine the case when ¢ is odd.

Let a be the vertex in the centre of the path P;. Now select any b, with
b # a. We will show that either p;(a,b) or ¢;(b) is true, for some 1 < i < |41 |
or)0 <7< L%J

Suppose on the contrary that neither condition holds. Then, we must have
dist(a,b) > | =] + 1. Also, if v; and v are the two endpoints of P, then we
must have dist(v1,b) > |552] 4+ 1 and dist(v2,b) > [552| + 1. If b < a, then we

have 151 = dist(v1, a) = dist(vy, b)+dist(b,a) > (|22 |+ 1)+ (| L2 | +1) = L,
which is a contradiction. We get the same contradiction if b > a. This proves
that P; satisfies w;. Now we show that wy is not true for P,, for any n > ¢. On
the contrary, suppose that w; is true for P,. Since we are dealing with a path,
pia,b) can be true for at most two vertices, for any ¢. Similarly, ¢;(b) can be

true for at most two vertices, for any j. Therefore,

s (2] (152 9 -oos ()
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That gives us our desired contradiction.

Now we examine the case when t is even. Without loss, assume a < % If
1 <a< |t], then select b= 1. Then ¢;(b) is true for j =0 and p;(a,d) is true
fori=a—b< |t 1< |H2]. Otherwise, select b= [%]. Then ¢;(b) is true
for j = &2 | and p;(a,b) is true for i =a—b < L — | 1] = | 2], This proves
that P, satisfies wy.

Finally, we show that w; is not true for any P,, with n > t. Suppose w; is
true for P,, with n > t. Select a = % + 1, and let v be either endpoint of Py 1.
Then, dist(a,v) > a—1 = £. For any b # a, if dist(a, b) < |22 | and dist(b, v) <
| &2, then £ < dist(a,v) = dist(a,b) + dist(b,v) < 22|+ [L2| =L 1, a
contradiction.

So in both cases (t odd and t even), we have proven that P; satisfies wy, and
P,, does not satisfy wy, for all n > t. O

Theorem 3.9 Let k > 2. Then P, =y P, if m # n and min(m,n) < f(k).

Proof  From Theorem 2.1 and Lemma 3.8, we have P, ~, P, for all n > t,
where r = qd(w;). Note that P; -, P, implies that P, .. P,, for all 7’ > r. So
many of our proofs to show that P, »j P, will follow from previous cases. (For
example, P3 =9 P, for n > 3 implies that for any k > 2, we have P; =y, P,).

If 1 <t <3, then r = qd(wt) = 2, and so P; 3 P, for all n > t. This proves
the theorem for k = 2, since f(2) = 4. If 4 <t < 6, then r = gd(w¢) = 3, and
so Py w3 P, for all n > t. This proves the theorem for k = 3, since f(3) = 7. If
t =7, then r = qd(w7) = 2 4+ max{1,2} = 4. Thus, P; =4 P, for all n > 7.

Now consider ¢ > 8. By Lemma 3.2 and 3.3, we have qd(p;(a, b)) < [log, ]
and qd(¢;(b)) < [log,(j +2)].

If ¢ is odd, then we have

qd(wy) < 2+ max { [logz {%H , ’710g2 Q%J + 2)} }
el

And similarly, if ¢ is even, then we have

t+4

sty <2+ oy |54 |

Fix k > 4. Then for any 28=1 <t < 28 —1, we have qd(w;) < 2+ (k—2) = k,
and so it follows that P, = P, for all n > t. Hence, P, » P, if m # n and
min(m,n) < 2% = f(k). This proves the theorem for all k > 4. O

We have proven that P, ~j P, whenever m = n or m,n > f(k). And
Theorem 3.9 tells us that P, » P, if m # n and min(m, n) < f(k). Hence, we
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have now derived a complete solution to the Ehrenfeucht-Fraissé game, when L
and R are both paths.

Theorem 3.10 Let f : N — N be a function with f(1) =1, f(2) =4, f(3) =7,
and f(k) = 2% for all k > 4. Then for each positive integer k, the Duplicator
wins the game Gi(Pnm, Py) if and only if m = n or m,n > f(k).

4 The Ehrenfeucht-Fraissé Game on Cycles

We now give a complete analysis of the Ehrenfeucht-Fraissé game, when L and
R are both cycles. Let C,, be the cycle on n vertices, with vertices labelled
1,2,...,n. Let us define g(k) to be the smallest integer ¢ such that C,, ~j C,,
if m=mnorm,n>t.

In [2], Brown and Woodrow show that g(k) is well-defined and prove that
g(k) > 2k=1. In this paper, we will prove the following explicit result:

Theorem 4.1 g(1) =1, g(2) = 4, and g(k) = 28~ + 3, for all k > 3.

Clearly, g(1) = 1. It is straightforward to verify that Cy ~g C,,, for all n > 4.
Thus, g(2) < 4. To conclude that g(2) = 4, it suffices to show that Cj3 ~y Ci.
And this is immediate because C3 has a universal vertex, but Cy does not.

Let us prove that g(k) = 28=1 + 3, for all K > 3. First we prove the lower
bound.
4.1 Lower Bound

Lemma 4.2 For each k > 3, define

2k73 2k73

or = (Ya)30)(Ve) | (e #a) Ale# b)) = |\ pila,e) | v [\ pilb.e)

i=1 i=1
Then, for k > 3, Cor-1,9 satisfies ¢, and Cou—1,3 does not satisfy oy.

Proof  This proof is similar to the proof of Lemma 3.4, and so we omit the
details. O

Theorem 4.3 For k > 3, we have g(k) > 2F=1 4+ 3.

Proof Let k> 3. By Lemma 3.2, if 1 < i < 2873 then qd(pi(a,b)) < k — 3.
Therefore, we have qd(¢r) < 3+ (k —3) = k. By Lemma 4.2, ¢, is true for
Car—115 and not true for Cor—1,3. This proves that Cor—1,9 2 Coe—143. By
Theorem 2.1, we have Cyr—1, 5 % Cor—1,5. Hence, g(k) > 2F~1 4+ 3. O
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4.2 Upper Bound

Lemma 4.4 Let L = P, and R = P,.

Consider the game G, ((L;l1,l2),(R;71,72)), where l; = 1,ls = a,r =
1,79 = b. Then the Duplicator has a winning strategy if |la — 1] > 2" + 3
and |ro —ry| > 2" 4 3.

Proof First note that the result is trivial if n =1 or n = 2, so assume n > 3.

If the Spoiler plays so that [l3—1;| < 2" 1 or [rz3—r;| < 2" fori = 1,2, then
the Duplicator responds by making r3 —r; = 3 — [;. Otherwise, the Spoiler will
play so that |l3—1;| > 2" 1+1 or [r3—r;| > 2" 141 fori = 1,2. In this case, the
Duplicator plays I3 so that 3 = lo— (2" 1 +1) or r3 so that 73 = ro — (2" 1 +1).
Thus, all four of the distances |l3 — l1], |ls — l2],|r3 — r1], |rs — r2| are at least
271+ 1. Also, max(|l3 — 1], |l — l2|) > 2" 1 +2 and max(|r3 —r1|,|rs —ra|) >
271 + 2. Without loss, assume that |l3 — 1], |rs — 71| > 2771 + 2.

If the Spoiler plays her next move such that |ly—1;| < 2"72 or |ry—r;| < 2772
(for some i = 1,2, 3), then the Duplicator responds by making ly —l; = r4 — r;.
Otherwise, the Duplicator plays l4 = I3 — (2”72 + 1) or ry =73 — (2772 + 1).

Now, there are (n — 2) moves left in the game. We prove that the five con-
ditions of Lemma 3.6 hold in the game G,,_2((L;l1,l2,13,14), (R;71,72,73,74)).
The first condition is true, by Duplicator’s strategy described above. The second
and third conditions hold trivially since Ligqp = Lyrgap = Rigap = Rrgap = 0.
Finally, we see that there must exist chosen neighbours l;, 5, 7;, r; for which
|li = U], |ri — ;] > 271 +1> 271 Therefore, all five conditions are satisfied,
and so the Duplicator has a winning strategy in this reduced game. Hence, he
has a winning strategy in the game G,,((L;l1,12), (R;71,72)).

O

Consider two cycles, L = C, and R = C}. In a cycle, each first move on C,
is equivalent to every other first move. The same result holds for C}. Hence,
the game G (C,, Cp) is equivalent to the game Gj_1((Cq;ly), (Cp;r1)), for any
l1 € L and vy € R. Without loss, let us assume that [y =1 and r; = 1.

Now, we take our cycle Cy, “cut” it at /1, and turn it into the path P, ;.
We do the same for Cj,. This motivates the following lemma, which is easy to

verify:

Lemma 4.5 The Duplicator has a winning strategy in Gr—1((Pa+1;1,a + 1),
(Ppt1;1,b+1)) if and only if he has a winning strategy in Gi_1((Ca;l1), (Cp;r1)).

We now prove our upper bound on g(k).
Theorem 4.6 g(k) < 2K=1 +3, for all k > 3.

Proof Let k > 3. By Lemma 4.5, the Duplicator has a winning strategy
in the game G (Cq, Cy) = Gr—1((Ca;l1), (Cp; 1)) iff he has a winning strategy
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in the game Gi_1((Pay1;1,a + 1), (Poy1;1,b+ 1)). By Lemma 4.4, if a = b,
or a,b > 281 4 3, then we have (P,i1;1,a + 1) ~p 1 (Pyr1;1,b+1). In
other words, we have C, ~y, Cp, where a,b > 251 4 3. And so it follows that
g(k) <2F1 +3. o

Combining Theorems 4.3 and 4.6, we conclude that g(k) = 2¥=1 + 3 for all
k> 3.

Now, we complete our analysis of the Ehrenfeucht-Fraissé game on cycles
by showing that if m # n and min(m,n) < g(k), then C,, » C,. Thus, for
any given m, n, k, we can determine who has the winning strategy in the game
G (Ch, Cy).

For each t > 3, we define a first-order sentence wy:

ws = (Ya)(Vb)(a #b— E(a,b)).
we = (Ya)@)(Ve)(((c # a) A (¢ # b)) — Ela,¢) A E(b, ).

And for ¢t > 5, define

By By
we = (V)@ | (e a)nle£B) — |\ pitae) | v] V pilbo)

i=1 i=1

Lemma 4.7 Let t > 3 be a positive integer. Then Cy satisfies wy, and C,, does
not satisfy we, for all n > t.

Proof  This proof is similar to the proof of Lemma 3.8, and so we omit the
details. a

Theorem 4.8 Let k > 2. Then Cy, =i Cy if m # n and min(m,n) < g(k).

Proof  From Theorem 2.1 and Lemma 4.7, we have Cy ~, C, for all n > t,
where 7 = qd(w;). Note that Cy =, Cy, implies that Cy »,w Cy, for all ¥/ > r.

If t = 3, then r = gd(w;) = 2, and so C3 =y C,, for all n > ¢. This proves
the theorem for k = 2. If ¢t = 4, then r = ¢d(w;) = 3, and so Cy =3 C,, for all
n > 4.

Now consider ¢ > 5. By Lemma 3.2, we have qd(p;(a,b)) < [log,i]. We

have
t+1

st <.+ ey | 2]

Fix k > 3. Then for any 2¥-243 < ¢t < 28=142 we have qd(w;) < 3+(k—3) = k,
and so it follows that C; = C, for all n > t.
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Hence, C,,, = C, if m # n and min(m,n) < 2¥~! 4+ 3 = g(k). This proves
the theorem for all £ > 3, and we are done. O

We have proven that C,, ~y C, whenever m = n or m,n > g(k). And
Theorem 4.8 tells us that C,,, =y, C, if m # n and min(m,n) < g(k). Hence, we
have now derived a complete solution to the Ehrenfeucht-Fraissé game, when L
and R are both cycles.

Theorem 4.9 Let g : N — N be a function with g(1) = 1, ¢g(2) = 4, and
g(k) = 2k=1 1 3 for all k > 3. Then for each positive integer k, the Duplicator
wins the game Gi(Cy, Cy) if and only if m =n or m,n > g(k).

5 Conclusions

Our analysis suggests further questions. We have now given a complete solution
to the Ehrenfeucht-Fraissé game G, (L, R), when L and R are both paths, and
when L and R are both cycles. However, we have not yet examined other
families of graphs, such as trees, theta graphs, k-colourable graphs, or r-regular
graphs. Whether complete solutions can be provided in these cases remains
open.
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