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Over the past 30 years, several hundred eukaryotic proteins spanning from yeast to man have been shown to be S-palmi-
toylated. This post-translational modification involves the reversible addition of a 16-carbon saturated fatty acyl chain
onto the cysteine residue of a protein where it regulates protein membrane association and distribution, conformation,
and stability. However, the large-scale proteome-wide discovery of new palmitoylated proteins has been hindered by the
difficulty of identifying a palmitoylation consensus sequence. Using a bioinformatics approach, we show that the enrich-
ment of hydrophobic and basic residues, the cellular context of the protein, and the structural features of the residues
surrounding the palmitoylated cysteine all influence the likelihood of palmitoylation. We developed a new palmitoylation
predictor that incorporates these identified features, and this predictor achieves a Matthews Correlation Coefficient of .74
using 10-fold cross validation, and significantly outperforms existing predictors on unbiased testing sets. This demon-
strates that palmitoylation sites can be predicted with accuracy by taking into account not only physiochemical properties
of the modified cysteine and its surrounding residues, but also structural parameters and the subcellular localization of
the modified cysteine. This will allow for improved predictions of palmitoylated residues in uncharacterized proteins. A
web-based version of this predictor is currently under development.
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Introduction

S-palmitoylation is the enzyme-catalyzed, reversible addi-
tion of a 16-carbon palmitoyl moiety to a cysteine residue
via a thioester linkage (the term ‘palmitoylation’ will refer
to S-palmitoylation hereafter, unless otherwise indicated).
Palmitoylation can affect protein function in several ways:
it can promote membrane association and/or distribution
within membrane subdomains, alter protein conformation
through tilting of transmembrane domains (TMDs), or
affect protein–protein interactions (Linder & Deschenes,
2007). While other types of lipidation, such as myristoyla-
tion and prenylation, are irreversible, palmitoylation is a
reversible post-translational modification through an active
balance of action of protein S-acyltransferases (PATs) and
putative protein thioesterases, and is therefore considered
important in dynamic subcellular trafficking of proteins
between membranes (Mitchell, Vasudevan, Linder, &
Deschenes, 2006). In the past 10 years, several new pro-
teomic methods to detect palmitoylated proteins have been
deployed, primarily acyl-biotin exchange (ABE)-based
methods and ‘Click’-based methods. ABE is a more
indirect method based on replacement palmitates on

palmitoylated cysteines with a group that enables separa-
tion, such as biotin or polyethylene glycol (Forrester et al.,
2011; Percher et al., 2016; Roth, Wan, Bailey, et al., 2006;
Wan, Roth, Bailey, & Davis, 2007). More direct labeling
methods such as ‘click’ chemistry involves incorporation of
palmitate analogs such as either ω–alkynyl-palmitate or an
azido-palmitate into cells, and these analogs can be subse-
quently labeled with tagged azides or triarylphosphines,
respectively (Hannoush, 2012; Kostiuk et al., 2008; Martin
& Cravatt, 2009; Peng & Hang, 2015; Yap et al., 2010).
Several thousands of new palmitoylated substrates have
been experimentally identified by deploying these methods
on specific organisms, subcellular compartments, cell types,
and other classifications. This increase in known substrates
has led to comprehensive compendiums of palmitoylated
proteins, which will surely be essential for future develop-
ment of the field (Blanc et al., 2015; Sanders et al., 2015).
Despite these innovations, a clearly recognizable palmitoy-
lation ‘motif’ has not been identified, as is the case for other
types of lipidation.

In the case of myristoylation (C14 acylation), there
are two highly conserved N-myristoyl transferases
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(NMT1 and NMT2) with well-characterized enzymatic
mechanisms based on high-resolution crystal structures,
as well as clearly defined preference for the α-amino
group of an N-terminal glycine (Farazi, Waksman, &
Gordon, 2001; Martin, Beauchamp, & Berthiaume,
2011). Similarly, farnesylation is carried out by a single
farnesyltransferase (FTase) and geranylgeranylation by
two enzymes (GGTase I and II), which share a common
subunit with the FTase (Casey & Seabra, 1996; Zverina,
Lamphear, Wright, & Fierke, 2012). The presence of
protein prenyl modifications can be easily recognized by
specific features of primary sequence at the modification
site, which consist of highly conserved CaaX, CC, and
CXC motifs. In contrast, palmitoylation is catalyzed by
two distinct families of transferases. Secreted proteins,
such as the morphogens Sonic Hedgehog and Wnt, are
N-palmitoylated and O-acylated, respectively. Both of
these modifications are performed by MBOATs (mem-
brane bound O-acyl transfersases) of which there are 11
known members, such as Hhat and Porcupine (Buglino
& Resh, 2008; Gao & Hannoush, 2014). Soluble and
membrane proteins are S-palmitoylated by zDHHC
enzymes, of which there are 23 expressed in mammals
(Mitchell et al., 2006).

The large number of proteins that undergo palmitoy-
lation, along with the large family of palmitoyltransferase
enzymes, may contribute to the difficulty of identifying a
simple consensus sequence. It also suggests that a more
sophisticated search algorithm must be developed that
takes into account more than primary sequence, also
including factors such as subcellular localization, mem-
brane topology, secondary structure, and other physio-
chemical properties of a polypeptide chain. For example,
cysteines both within and adjacent to transmembrane
domains appear to be prone to palmitoylation (Roth,
Wan, Bailey, et al., 2006). In addition, prior farnesylation
and myristoylation promote sequential palmitoylation of
proximal cysteines, such as with Ras and Gα, respec-
tively (Aicart-Ramos, Valero, & Rodriguez-Crespo,
2011; Linder & Deschenes, 2007). Overall, it appears
that while PATs may have some inherent specificity
toward substrates, there may be overlap between related
zDHHC PATs (Greaves & Chamberlain, 2011; Ohno
et al., 2012; Rocks et al., 2010). However, attempts to
determine whether individual zDHHC enzyme or sub-
families of zDHHC enzymes recognize common targets
have had limited success. The development of better
computational tools, along with larger data-sets of exper-
imentally determined palmitoylated proteins should clar-
ify whether zDHHC-dependent consensus sequences
and/or recognition features exist.

In this study, we use a carefully selected and manu-
ally curated data-set of palmitoylated cysteines to charac-
terize the physicochemical properties that define the
surrounding environment of palmitoylatable residues. We

find that the likelihood of a cysteine to be palmitoylated
is dependent not only on its membrane association state
and structural context, but also on its surrounding
sequence composition. Inclusion of context-based infor-
mation led to the development of a palmitoylation pre-
dictor that outperforms existing predictors on unbiased
data-sets. Overall, we hypothesize that these observations
will not only lead to improvements in palmitoylation
prediction, but also a better understanding of the com-
plex dynamics between PATs and their substrates.

Methods

Data-set assembly

Our data-set was compiled by retrieving palmitoylated
proteins from UniProt and CSS-Palm 4.0 (Ren et al.,
2008). Palmitoylated proteins from the UniProt database
(release 2013_10) were composed by searching the key-
words ‘Sequence annotation [FT]’ under ‘Field,’ ‘Lipida-
tion’ under ‘Topic,’ ‘S-palmitoyl cysteine’ under ‘Term,’
and ‘Experimental’ under ‘Confidence.’ After duplicates
were removed, an 80% sequence identity cut-off was
implemented using the ElimDupes web server in order to
remove redundant proteins. Cysteines ± 10 amino acids
were extracted, and another 90% sequence identity cut-
off was implemented at the 21-mer level in order to
eliminate remaining redundancy. Sites were manually
divided into palmitoylated (P) and non-palmitoylated
(NP) sets, based on the following requirements:

• Palmitoylation must be directly labeled, through
either [3H] palmitate incorporation, ABE-based meth-
ods, ‘Click’ chemistry, or other experimental methods

Studies where cysteine mutation led to change in
localization, gel shift other than acyl-PEGyl
exchange, or other method not directly relevant to
palmitoylation were not considered. While the sensi-
tivity of direct detection of palmitoylation varies by
method, we believe that these differences are likely to
have minimal impact.

• Proteins must be S-palmitoylated, shown by either
hydroxylamine cleavage or 2-bromopalmitate
inhibition

Several instances of palmitoylation occur via dif-
ferent mechanisms, involving enzymes other than
zDHHCs and linkages other than thioesters. In this
study, we were only interested in zDHHC catalyzed,
thioester-linked palmitoylation. For our purposes,
either hydroxylamine cleavage (demonstrates thioe-
ster linkage) and/or 2-BP inhibition (demonstrates
probable zDHHC catalysis) was considered
sufficient.

• Specific palmitoylated sites must be validated
experimentally
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Instances where multiple cysteines were mutated
simultaneously were not included, unless the sites
were within three residues of one another.

• Palmitoylation must not be detectable when all
known palmitoylated cysteines are mutated

If mutation of a subset of cysteines on a protein
of interest still had detectable palmitoylation levels,
it is possible that other cysteines on the protein may
also be palmitoylated, which would therefore bias
the NP set.

• Previously modified cysteines are not included
As S-palmitoylation does not occur in the

lumen, all disulfide-bonded cysteines that were both
annotated by UniProt and predicted by CYSPRED
(Fariselli, Riccobelli, & Casadio, 1999)were
removed in order to reduce bias in our negative
data-set. Prenylated cysteines were also excluded
from our data-set.

Although these rules may miss some palmitoylated
sites due to experimental variation, they likely represent
the highest possible stringency while retaining enough
proteins for the analysis.

Annotation

Membrane association state

Proteins that are lipidated are more likely to undergo
sequential S-palmitoylation. Therefore, known palmitoy-
lation-promoting modifications such as N-myristoylated
glycines (N-terminal, MGC motif) and prenylated cys-
teines (C-terminal, -CaaX box) were annotated. While
O-palmitoleoylation is known to promote subsequent
S-palmitoylation in proteins such as Wnt, these were not
annotated, as secreted proteins undergo a different mech-
anism of palmitoylation (Resh, 2013). Additionally,
palmitoylation occurs at integrally associated membrane
proteins, often directly adjacent to a TMD. We applied
the TMHMM 2.0 algorithm to our data-sets (Krogh,
Larsson, von Heijne, & Sonnhammer, 2001), cross-
checked this analysis with UniProt annotations of subcel-
lular localization, and classified each protein as either
not transmembrane (NONTMP) or transmembrane
(TMP). Within the TMP set, sites were classified accord-
ing to the output of TMHMM 2.0, which factors the
probability that the N-terminus is on the cytoplasmic side
of the membrane. Therefore, the correct number of
TMDs and the orientation of the termini are predicted
with reasonable accuracy, with some exceptions occur-
ring due to factors such as signal peptides being mis-
taken for TMDs or reversed direction of a protein with
only one TMD. Based on the TMHMM 2.0 output, the
TMP set was further subdivided into: within the helix
(TMHELIX), predicted to be cytosolic (TMP-IN), or

predicted to be organelle luminal or outward facing
(TMP-OUT).

Intrinsic disorder features

Structural characteristics such as intrinsic disorder have
been implemented into palmitoylation prediction algo-
rithms with varying success (Hu et al., 2011; Kumari,
Kumar, & Kumar, 2014). However, we hypothesized that
accurate intrinsic disorder predictors may help generalize
aspects of structural context. Therefore, we utilized
outputs from PONDR-FIT (Xue, Dunbrack, Williams,
Dunker, & Uversky, 2010), a highly accurate metapredic-
tor which incorporates the outputs of FoldIndex (Prilusky
et al., 2005), TopIDP (Campen et al., 2008), PONDR®

VLXT (Romero et al., 2001), PONDR® VSL2 (Peng,
Radivojac, Vucetic, Dunker, & Obradovic, 2006),
PONDR® VL3 (Peng et al., 2005), and IUPred (Dosz-
tanyi, Csizmok, Tompa, & Simon, 2005).

All cysteines were broadly classified based on their
intrinsic disorder status (Figure 1). For a given protein,
intrinsically disordered (>.5) residues from the first
instance until the first instance of an ordered residue
were considered to be the N-terminal tail (N-DIS). The
reverse principle was used for the C-terminal tail
(C-DIS); that is, intrinsically disordered residues from
the last residue toward the amino terminus, until the first
instance of an ordered residue. Cysteines within the
remaining internal residues were further classified based
on predicted intrinsic disorder, where sites with a disor-
der score of greater than or equal to .5 were considered
‘disordered middle’ (M-DIS), whereas sites less than .5
were considered ‘ordered’ (ORD).

Figure 1. Classification of predicted termini based on disorder
score.
Notes: In this model PONDR-FIT plot (Ras2, UniProt ID:
P01120), all sites until the first red tick mark were considered
N-DIS, all sites until the next red tick mark were considered
ORD or M-DIS (if the site had a disorder score less than or
greater than .5, respectively), and all sites after were considered
C-DIS.
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Disulfide bond filtering

Cysteines identified as disulfide-bonded by both UniProt
annotations and CYSPRED prediction (Fariselli et al.,
1999) were removed from the data-set. This filter
removed 0 cysteines from the P set and 592 cysteines
from the NP set, which was expected considering our
initial assumptions.

Analysis

WebLogo

The WebLogo software is able to generate graphical rep-
resentations of consensus sequences (Crooks, Hon,
Chandonia, & Brenner, 2004; Schneider & Stephens,
1990). The default values were generally used, with min-
imal exceptions. The default color scheme based on
chemical properties was used, where small/polar residues
(G, S, T, Y, C) are green, neutral residues (Q, N) are
purple, basic residues (K, R, H) are blue, acidic residues
(D, E) are red, and hydrophobic residues (A, V, L, I, P,
W, F, M) are black.

Two-sample logos

The two-sample WebLogo (2SWL) was utilized in order
to display the differences between P and NP sets (Vacic,
Iakoucheva, & Radivojac, 2006). In this tool, residues
are separated into two groups: (a) enriched in the P set,
or (b) depleted in the P set. The color scheme used was
the WebLogo default mentioned previously. Statistically
significant residues are displayed proportionally to the
difference between the two sets. The p-value was calcu-
lated using a t-test, and p-values calculated via binomial
distribution did not yield significantly different results
(data not shown).

Composition profiler

In order to determine the differences of physicochemical
properties between the P and NP sets, the Composition
Profiler tool was used (Vacic, Uversky, Dunker, &
Lonardi, 2007). Like the two-sample logo, this tool dis-
plays differences between two data-sets, except using
specific amino acid physicochemical properties such as
charge, hydrophobicity, size, and flexibility.

Model training and feature selection

For design of a predictive algorithm, the open-source
WEKA tool was used (Frank, Hall, Trigg, Holmes, &
Witten, 2004). Default values were generally used unless
otherwise specified. The ‘SimpleLogistic’ (linear regres-
sion) classifier was used, although different classifiers
did not yield significantly lower values.

Generally, the output of a predictor can have four
potential output values: known palmitoylated cysteine is
predicted to be palmitoylated (true positive, TP), known
not-palmitoylated cysteine is not predicted to be palmi-
toylated (true negative, TN), known palmitoylated cys-
teine is not predicted to be palmitoylated (false negative,
FN), and known not-palmitoylated cysteine is predicted
to be palmitoylated (false positive, FP). These values
can be interpreted in several different ways: Sensitivity
is the true positive rate (TP/[TP + FN]), specificity is the
true negative rate (TN/[FP + TN]), and accuracy is the
combination of sensitivity and sensitivity ([TP + TN]/
[TP + TN + FP + FN]). The Matthews Correlation Coef-
ficient (MCC) is generally regarded as the most balanced
measure of predictive capability, and can be represented
by the equation below. The resulting value is from −1
to + 1, where −1 is completely imperfect prediction, 0 is
completely random prediction, and 1 is completely per-
fect prediction.

MCC ¼ TP"TN#FP"FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p

We began with 356 features in our data-set, which
included per-residue and cumulative scores of cysteines
and surrounding residues (Atchley, Zhao, Fernandes, &
Druke, 2005; Petersen, Petersen, Andersen, Nielsen, &
Lundegaard, 2009; Romero et al., 1998; Xue et al.,
2010), classification tags annotating structural context
(Krogh et al., 2001; Xue et al., 2010), binary myristoyla-
tion/prenylation annotation, evolutionary features
(Altschul et al., 1997), and a previous palmitoylation
predictor (Pejaver et al., 2014). The entire list is avail-
able upon request. We performed feature selection using
the in-built Weka attribute evaluator ‘CfsSubsetEval’ and
search method ‘Exhaustive.’

Results

The final data-set (Supplementary Table S1) consists of
244 proteins containing 473 P sites and 1973 NP sites.
These sites were further subdivided into transmembrane
(TMP) versus non-transmembrane (Non-TMP) based on
the annotated membrane association state of the protein.
Finally, the sequences of the TMP were further subdi-
vided based on TMHMM 2.0 predictions, where cysteines
were predicted to be either within a transmembrane helix
(TMhelix), predicted to be luminal facing (TMP-OUT), or
predicted to be cytosolic facing (TMP-IN). The distribu-
tion of the data-set across organisms is skewed toward
vertebrates, with 192/244 of the sequences falling under
this category. The final composition of the data-set after
assembly and annotation is graphically represented in
Figure 2. Examination of our entire data-set using a
WebLogo suggests that there is no inherent sequence bias
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around cysteines independent of palmitoylation
(Figure 3(A))

Sequence composition directly surrounding cysteines
influences likelihood of palmitoylation

Analysis of our entire data-set using a two-sample
WebLogo (2SWL) revealed an apparent enrichment of
hydrophobic residues on the amino side, and basic resi-
dues on the carboxyl side of palmitoylated cysteines
(Figure 3(B)). Further separation of our entire data-set
based on transmembrane association state reveals that
this physicochemical contribution appears to be specific
to transmembrane proteins (Figure 3(C)) but not cytoso-
lic proteins (Figure 3(D)), which is in agreement with a
previous study (Blanc et al., 2015).

Cysteine position relative to a transmembrane helix
determines physicochemical properties of regions
surrounding palmitoylatable sites

To investigate more closely the apparent ‘sidedness’ of
hydrophobic and basic residues, we further parsed the
TMP set using a combination of UniProt annotation and
the TMHMM 2.0 algorithm (described further in Meth-
ods), which predicts transmembrane domains as well as
orientation of a protein relative to the lumen and cytosol.
Cysteines located within a predicted transmembrane
helix (TMhelix) displayed a greater ratio of carboxyl-
terminal basic residues compared to amino-terminal
hydrophobic residues (Figure 4(A)), with this enrichment
being significantly greater than that of the TMP set.

The predicted cytosolic (TMP-IN) set was used as a
comparison to the TMhelix set, as the ratio of P/NP sites
were more significant in the TMP-IN set compared to
the predicted luminal (TMP-OUT) set (.71–.06, respec-
tively). This ~12.4-fold increase in ratio is likely reflec-
tive of the relevance of biological context, since
cytosolic proteins are palmitoylated whereas luminal pro-
teins are not. Within the TMP-IN set, there is a clear
increase in enrichment of hydrophobic residues on the
amino-terminal side of the site, whereas the predomi-
nance of basic residues on the carboxyl-terminal side not
only appears to be greatly depleted, but also dampened
by the presence of residues with different physicochemi-
cal properties (Figure 4(B)). In other words, cysteines
prone to palmitoylation within a transmembrane protein
will either have surrounding basic or hydrophobic resi-
dues, and this is dependent on whether or not the cys-
teine is within a transmembrane helix.

It should be noted that in these data-sets, there are
instances that have surrounding sequence patterns that
are reverse of what would be predicted by our results
(i.e. amino-terminal basic residues and carboxyl-terminal
hydrophobic residues). This is readily explained by tak-
ing into consideration that cytosolic-facing, juxtamem-
brane cysteines can occur before or after the TMD in the
primary sequence, depending on the transmembrane
topology of the protein.

Palmitoylated cysteines associated with myristoyl/prenyl
modifications likely have no additional physicochemical
properties that contribute to palmitoylation propensity

It is well known that peripheral lipid modifications such
as myristoylation and prenylation can promote palmitoy-
lation of nearby cysteines. However, it is unclear if sur-
rounding sequence-based characteristics influence
likelihood of palmitoylation in the presence of other lipi-
dations. The N-DIS and C-DIS displayed minimal
enrichment with regard to local amino acid composition,
besides the presence of myristoylation and prenylation
motifs (MGC- and -CaaX, respectively) which are
known to promote palmitoylation (data not shown).

These sets were further divided into myristoylated and
prenylated P sets, as no NP cysteines were found at the
predicted N-terminus of myristoylated or prenylated pro-
teins. In these cases, sequences were aligned to the myris-
toyl or prenyl motifs, rather than a putative palmitoylated
cysteine, in order to determine if there was a relationship
between myristoylation/prenylation and putative palmi-
toylated cysteines. In these sets, there are still no signifi-
cant physicochemical features displayed. Additionally, the
palmitoylated cysteine appears to be more conserved
when located closer to the myristoylated/prenylated resi-
due (Figure 5(A) and (B), respectively), indicating there

Figure 2. Characteristics of the entire data-set. (A) Flow chart
of transmembrane filtering of palmitoylated substrates accord-
ing to likely palmitoylation state (P, NP), membrane association
state (TMP, NON-TMP), and predicted transmembrane helix
orientation (TMhelix, TMP-OUT, TMP-IN).
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may be a correlation between palmitoylation likelihood
and distance to the myristoyl or prenyl modification.

Improvement of predictive accuracy by incorporation of
physicochemical factors, contextual classification,
evolution, and data-set annotation

As classification of sites into categories revealed trends in
physicochemical properties of surrounding sequence, we
hypothesized that these annotations would significantly

improve accuracy of palmitoylation algorithms. Using
our manually curated data-set, classifications of mem-
brane association and disorder propensity, values for sec-
ondary structure/electrostatic charge/average surface area
(Atchley et al., 2005; Petersen et al., 2009), ModPred
palmitoylation output values (Pejaver et al., 2014), and
position-specific scoring matrix values (Altschul et al.,
1997), we created a predictive model based on a simple
logistic regression learning algorithm. Based on the 22
selected features (Table 1), our predictor accounts for

Figure 3. Properties of residues surrounding palmitoylated sites. (A) represents the distribution of the entire data-set using a
WebLogo. (B) 2SWL analysis of the entire data-set, which containes 473 P sites and 1973 NP sites. (C) 2SWL analysis of the TMP
data-set, which consist of 1169 NP sites and 229 P sites. (D) 2SWL analysis of the NON-TMP data-set, which consists of 804 NP
sites and 244 P sites.
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some but not all of the annotations that we hypothesized
were important, most significantly sidedness of charge/
hydrophobicity and the predicted transmembrane position
(TMP-OUT). The previously discussed ratio of P/NP sites
between the TMP-IN and TMP-OUT sets made the pres-
ence of this factor unsurprising, indicating that simply
considering the context of a cysteine in the cell may be a

powerful predictive factor. A notable absence is myris-
toyl/prenyl motifs, which we assume to be the case
because of the relatively low presence of these proteins in
our training set (24 and 17 proteins, respectively). More
notable absences are TMhelix and TMP-IN as predictive
factors, which may be due to either redundancy in
training data (i.e. secondary structure as an indicator of

Figure 4. Enrichment of sequences surrounding cysteines is dependent on proximity to a transmembrane domain (A) 2SWL analysis
of the TMhelix data-set, which consists of 241 NP sites and 41 P sites. (B) 2SWL analysis of the TMPIN sets, which consists of 208
NP sites and 147 P sites.

Figure 5. Correlation of myristoylation and prenylation motifs to the composition of nearby palmitoylated cysteine sites. (A)
WebLogo analysis of 23 myristoylated proteins that are also classified as N-DIS and palmitoylated. (B) WebLogo analysis of 17
prenylated proteins that are classified as C-DIS and also palmitoylated.
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TMDs), or simply weak correlations that require refine-
ment. Future predictors may consider creating separate
models for proteins predicted to undergo additional lipid
modifications, integral transmembrane proteins, and
peripherally associated membrane proteins.

To determine the overall predictive ability of our
algorithm, we used the Matthews Correlation Coefficient
(MCC) value determined by 10-fold cross validation,
which provides a value from −1 (completely imperfect
prediction) to 1 (perfect prediction), with 0 being ran-
dom prediction. In 10-fold cross-validation, the data-set
is randomly separated into 10 equally sized subsamples.
Nine subsamples are used for training, and 1 sample is
used for testing. This process is repeated 10 times
(folds), and the final output values are the average of the
10 folds. A more detailed explanation of the terms used
hereafter can be found in the Methods section (Model
training and feature selection). Our predictor achieved an
MCC of .74 via 10-fold cross validation (Table 2), a
marginally higher value than two recently published pre-
dictors, WAP-Palm and PalmPred (Kumari et al., 2014;
Shi et al., 2013), which were reported to achieve .73 and
.71, respectively.

However, MCC values can be easily biased by simi-
lar or redundant proteins in the data-set – in other words,
the same site could potentially be found in both the
training and testing sets. Therefore, a better method to
compare predictive capability between algorithms is to
use proteins that none of the algorithms have been
trained on. We tested 13 proteins not used for the train-
ing of any published predictor, including our own
(Supplementary Table S2). Our observations are limited
by the size of our data-set, which is an unavoidable issue

as relatively few unique palmitoylated proteins have
been described that have not been used for training of
any algorithm. To account for the fact that other predic-
tors do not consider other modifications of cysteines, we
did not remove disulfide-bonded and prenylated cys-
teines from our testing datasets. We found that our algo-
rithm performed significantly better than published
predictors, with a .43 and .34 increase in MCC over
WAP-Palm and PalmPred, respectively (Table 3).

We then directly compared our output when consid-
ering these 13 proteins to the outputs of CSS-Palm 4.0,
WAP-Palm, PalmPred, and ModPred (Supplementary
Table S3). In this limited data-set, our predictor outper-
forms others by having a similar if not better true posi-
tive (sensitivity) rate as others and a slightly higher true
negative (specificity) rate while maintaining a relatively
low false positive rate (Table 3). When predictions of
individual sites are compared to those of the most-cited
predictor in the field (CSS-Palm) and one of the more
recently published predictors (PalmPred), it can be seen
that the true negatives predicted are mostly common
between predictors while there is variation between true
positive, false positive, and false negative predictions.
Again, these comparisons suggest our predictor is an

Table 1. A combination of the 22 minimal physicochemical, evolutionary, and classification features of cysteines and their surround-
ing residues that contribute to palmitoylation prediction of our predictor described in this study.

Feature Properties Source Reference

BF: 8 Secondary Structure (Factor II) of
amino acid #8

N/A Atchley et al. (2005)

EF: 6, 16 Electrostatic Charge (Factor V) amino
acid #6, #16

N/A Atchley et al. (2005)

ORD Classification Tag PONDR-FIT, this
study

Xue et al. (2010)

C-DIS Classification Tag PONDR-FIT, this
study

Xue et al. (2010)

TMP-OUT Predicted Transmembrane Position TMHMM 2.0 Krogh et al. (2001)
ASA: 7 Average surface area of amino acid #7 NetSurfP Petersen et al. (2009)
Beta: 2, 6 Propensity for beta sheets at the #2, #6

residue
NetSurfP Petersen et al. (2009)

Coil: 5, 15 Propensity for coil sheets at #5, #15
residue

NetSurfP Petersen et al. (2009)

ModPred Score (PSSM) ModPred final score for palmitoylation ModPred Pejaver et al. (2014)
PSSM: 16, 21, 26, 46, 56, 77, 94,

100, 140, 145
Raw PSSM scores (out of 164
evolutionary features)

PSI-BLAST Altschul et al. (1997), Pejaver
et al. (2014)

Note: For a given 21-mer, the cysteine is constantly at position #11, the first residue is position #1, and the last residue is position #21.

Table 2. 10-fold cross validation values of the new predictive
algorithm described in this study.

10-fold cross validation Value

Sensitivity .732
Specificity .967
Accuracy .922
MCC .739
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improvement through relatively low false positive rates,
slightly higher true negative rates, and similar or better
true positive rates (Figure 6)

Interestingly, our results changed dramatically upon
inclusion of a unique protein, the ryanodine receptor
(RyR1) (Supplementary Table S4). RyR1 likely repre-
sents a challenge for present palmitoylation predictors, as
it is a multipass transmembrane protein that is extremely
large (~5000 amino acids) and contains many cysteines
(18 P, 82 NP) that undergo palmitoylation as well as
S-oxidation and S-nitrosylation due to reactive oxygen
and nitrogen species (Chaube et al., 2014). Including the

RyR in our testing set significantly decreased all MCC
values, suggesting that more factors may have to be con-
sidered for optimal predictive accuracy (Table 3). Devel-
opment of a web-based version of this predictor is
currently in progress, and updates on release progress
can be requested at descheneslab@gmail.com.

Discussion

It is widely assumed that S-palmitoylated substrates,
unlike those of many other post-translational modifica-
tions, lack a recognizable consensus motif. While studies
have identified residues proximal to palmitoylated cys-
teines that appear critical for efficient palmitoylation
(Khanal et al., 2015; Nadolski & Linder, 2009), a single
consensus sequence has not emerged. This has led some
to conclude that palmitoylation is promiscuous and there
is no sequence preference (Rocks et al., 2010). Another
possibility is that physiological context, with or without
sequence specificity, dictates the likelihood of palmitoy-
lation (Fukata & Fukata, 2010). For example, cysteines
adjacent to transmembrane domains appear to increase
the propensity of a cysteine being palmitoylated.

In this study, we addressed these questions using
computational techniques. First, we constructed a high-
quality data-set of palmitoylated proteins through an
exhaustive critical analysis of the literature, similar to the
publicly available database SwissPalm (Blanc et al.,
2015). This data-set only consisted of unique proteins
with very well-characterized palmitoylated sites, using a
set of guidelines comprehensible and reasonable to the
experimental biologist. Secondly, working under the
hypothesis that perhaps there are differential characteris-
tics guiding palmitoylation, we divided this data-set into
different groups based on predicted and known structural
and spatial context. While we assume that our data-set is
appropriately distributed among the many types of
palmitoylated proteins, the distribution is biased by the
limits of the techniques in the field. The majority of
palmitoylated sites in our data-set were identified by

Table 3. Comparison of the new predictive algorithm to existing predictors. Predictions of disulfide-bonded and prenylated cysteines
are included in these datasets.

Tool

13 proteins 13 proteins +
RyR1

Sensitivity (true positive
rate)

Specificity (true negative
rate)

Accuracy
(Sn+Sp) MCC MCC

CSS-Palm
4.0

.50 .91 .84 .42 .18

WAP-Palm .50 .65 .62 .11 .04
ModPred .44 .83 .76 .25 .17
PalmPred .22 .93 .81 .20 .06
This study .44 .98 .89 .54 .34

Note: The initial 13 proteins consist of 18 P sites and 88 NP sites. RyR consists of 18 P sites and 82 NP sites.

Figure 6. Comparison of predictors on the unbiased 13 pro-
tein testing set. The Venn Diagrams represent the (A) true posi-
tive, (B) true negative, (C) false positive, and (D) false
negative rates of PalmPred (orange, bottom left), CSS-Palm 4.0
(green, bottom right), and the predictor described in this study
(blue, top middle).
Notes: Within each Venn Diagram, each number represents the
number of sites either unique to a predictor, in common with
one predictor, or in common with two predictors. The area of
each circle is directly proportional to the total number of sites
within each circle.
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3[H] palmitate, which lacks the sensitivity of more recent
techniques such as ABE, and therefore our data-set may
be biased against transient or less favorable sites (Drisdel
& Green, 2004; Martin & Cravatt, 2009; Roth, Wan,
Green, Yates, & Davis, 2006). Additionally, identified
sites are not certain to be physiologically relevant, as the
identification techniques used throughout the literature
are generally based on the non-physiological conditions
of enzyme–substrate overexpression analysis (Fukata,
Iwanaga, & Fukata, 2006). Nevertheless, these excep-
tions likely represent a minor fraction compared to the
entire data-set.

Palmitoylated cysteines in transmembrane proteins
appear to be enriched in both amino-terminal hydrophobic
and carboxyl-terminal basic residues. We will discuss our
results in the context of cytosolic cysteines carboxyl-
terminal to a transmembrane domain, since our data-set
appears to be skewed toward those instances. Our results
suggest that the surrounding sequence of a palmitoylated
cysteine found in a predicted transmembrane helix tends
to be enriched in primarily basic residues, whereas
palmitoylated cysteines outside of TMDs are enriched in
primarily hydrophobic residues. The most likely reason
for this difference may be because palmitoylated cysteines
predicted to be within the transmembrane helix are specif-
ically juxtamembrane, and the adjacent residues promote
palmitoylation through interaction with the zDHHC PAT,
membrane interactions, or some other mechanism. This
mechanism has been seen in reovirus p10, which requires
basic residues adjacent to the palmitoylated cysteine for
p10-mediated membrane fusion (Shmulevitz, Salsman, &
Duncan, 2003). Alternatively, basic residues could alter
the accessibility of the cysteine to the zDHHC PAT cat-
alytic cysteine-rich domain (CRD). Since polar residues
within transmembrane helices contribute to charge–charge
repulsions or interactions (Eilers, Shekar, Shieh, Smith, &
Fleming, 2000), loose helix packing of multipass trans-
membrane proteins through repulsions of positively
charged residues may increase accessibility of the cysteine
to the CRD, which may be partially embedded in the
membrane bilayer to prevent hydrolysis of the autopalmi-
toylation state by water (Mitchell, Mitchell, Ling, Budde,
& Deschenes, 2010; Mitchell et al., 2012). Conversely,
cysteines outside of transmembrane domains could be
enriched in hydrophobic residues because they are either
near a TMD, or require helix-promoting residues for either
recognition or membrane-binding.

In the case of cysteines proximal to myristoylated and
prenylated sites, no amino acid preference emerged in our
results. The only noticeable information that could be
extracted was a greater conservation of cysteines closer to
the myristoyl/prenyl motif of the palmitoylated protein.
Interestingly, no NP cysteines were found that were
predicted to be at the disordered N-terminus of a myris-
toylated protein, or that were at the disordered C-terminus

of a prenylated protein. Taken together, we hypothesize
that the presence of a myristoyl or prenyl motif is suffi-
cient to promote palmitoylation of a nearby cysteine. Con-
sistent with this hypothesis, it has been previously
observed that alterations of residues flanking the palmi-
toylated cysteines of H-Ras have no effect on the palmi-
toylation state (Willumsen, Cox, Solski, Der, & Buss,
1996). However, these mutants did not correctly localize
to the plasma membrane, indicating there may be some
targeting function of these residues independent of palmi-
toylation. Also in H-Ras, a mutant H-Ras which is myris-
toylated but not farnesylated is still a substrate for
palmitoylation, and properly localizes to the plasma mem-
brane (Cadwallader, Paterson, Macdonald, & Hancock,
1994), perhaps hinting that the exact chemical composi-
tion of the prior lipid modification is not especially
important.

While cytosolic palmitoylated proteins were not a
primary focus of this study, an interesting future direc-
tion of this work will be determining physicochemical
parameters of these proteins. Our studies in peripherally
bound membrane proteins suggest that properties pro-
moting membrane association are critical in determining
palmitoylation propensity. One possibility is that cytoso-
lic proteins may be weakly interacting with membranes,
through transient secondary structure and/or electrostatic
interactions, a phenomenon seen with intrinsically disor-
dered proteins such as α-synuclein (Jo, McLaurin, Yip,
St George-Hyslop, & Fraser, 2000). This hypothesis is
supported by a number of studies in the Ras family of
GTPases. In the case of Saccharomyces cerevisiae Ras2,
methods of membrane association appear interchangeable
– replacement of the C-terminal Ras2 farnesylation motif
(-CIIS) with a nonprenylated mutant rich in hydrophobic
and basic residues (-CIIKLIKRK) is able to complement
the loss of Ras2 (Mitchell, Farh, Marshall, & Deschenes,
1994), and a similar result is observed in mammalian
H-Ras (Booden et al., 1999).

Through our studies and various observations in the
literature, we propose a model where in order for most
proteins to be palmitoylated, it requires an initial mem-
brane association in order to increase the likelihood of
interacting with an active zDHHC enzyme (Figure 7).
This would suggest that most, if not all palmitoylated
proteins are either juxtaposed to or within transmem-
brane domains, located near previously lipidated resi-
dues, or are surrounded by hydrophobic and/or basic
residues which would likely have affinities toward phos-
pholipid membranes. After this initial membrane associa-
tion, there are multiple possibilities – either the protein
is palmitoylated stochastically by the closest available
enzyme, the enzyme specifically palmitoylates the
protein through a substrate recognition mechanism, or a
balance between both. Previous research supports all of
these possibilities. Redundancy of PATs has been
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documented – knockdown of zDHHC9, a PAT specific
for H-Ras and N-Ras when using recombinant protein
(Swarthout et al., 2005), did not significantly affect
H-Ras membrane association kinetics in HeLa cells
(Rocks et al., 2010), supporting a model of stochastic
palmitoylation where any PAT can palmitoylate any sub-
strate. Conversely, substrate recognition sequences have
been found on a few PATs, such as the ankyrin repeats
of zDHHC13 and zDHHC17 (Lemonidis, Gorleku,
Sanchez-Perez, Grefen, & Chamberlain, 2014; Lemoni-
dis, Sanchez-Perez, & Chamberlain, 2015), or the PDZ-
binding motif of zDHHC8 (Thomas, Hayashi, Chiu,
Chen, & Huganir, 2012; Thomas, Hayashi, Huganir, &
Linden, 2013). However, it remains to be seen if these
are a general phenomenon of zDHHC PATs, or simply
outliers which recognize sequences distant to residues
surrounding palmitoylated cysteines.

We have applied our findings toward the improve-
ment of S-palmitoylation predictive algorithms. Several
algorithms already exist and have increased in predictive
accuracy over time (Kumari et al., 2014; Li et al., 2015;
Pejaver et al., 2014; Ren et al., 2008), but most do not
account for the structural and spatial parameters we have
proposed. In general, our predictor appears to predict
palmitoylated sites with a similar or better rate than other
predictors, while avoiding overprediction of palmitoyla-
tion, shown by the lower false positive rate. Therefore,
overall predictive capability toward unique palmitoylated
proteins appears to increase when a combination of
structural and spatial contexts, sequence enrichments,
and manual curation is taken into account. Which
combination of these factors is most important is unclear

at this time; however, we expect that future iterations of
palmitoylation predictors will continue to be improved
by including only experimentally validated and curated
data-sets such as SwissPalm (Blanc et al., 2015).
Additionally, the extremely poor prediction of the unique
RyR1 protein suggests that new factors may also need to
be considered, such as propensity of S-nitrosylation and
S-oxidation due to proximity of the mitochondria. These
technical and contextual considerations, combined with
continued investigation of the physicochemical properties
of palmitoylated cysteines and zDHHC PAT regulation,
should lead to better understanding of palmitoylation.
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The supplementary material for this paper is available online
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