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BRIEF INTRODUCTION

Probability theory

o branch of mathematics

o part of measure theory

Important concepts
o experiment (coin toss, roll of dice, ...)
o outcome (one of predefined options)
A way to formalize this

o define sample space, event space

o introduce P: assignment of numbers in [0, 1] to groups of outcomes.



AXIOMS OF PROBABILITY

() = sample space, all outcomes of the experiment
A = event space, set of subsets of 2

Consider non-empty  and A. If the following conditions hold:

I.Ac A = A°ed
2. A1, As,...e A = U21AZEA

A is called a sigma field or sigma algebra.

(©2, A) = a measurable space



EXAMPLE: SIGMA ALGEBRA

) = non-empty set
A = non-empty set of subsets of (2

1. AcA = A€ A
2. Al,AQ,...EA = U;)ilAlEA

Example:

QO =R;
Let A contain (), R and all sets (—o0, a], (a,b], (b,00), for all a,b € Q.

Is (Q2, A) a measurable space?

lim <o, %} —(0,1) ¢ A

1—00

i€42,3,...}



AXIOMS OF PROBABILITY

(©2, A) = a measurable space

Any function P : A — [0, 1] such that

1. P(Q) =1
2. Al,AQ,... E.A,AiﬂAj :Q]V’L,j = P<Ufi1Az) :Z;)il P(AZ)

is called a probability measure or probability distribution.

(©2, A, P) = a probability space



CONSEQUENCES OF THE AXIOMS OF PROBABILITY

(©2, A, P) = a probability space

... and everything else.



EXAMPLE: SMALLEST SIGMA ALGEBRA

) = non-empty set
A = non-empty set of subsets of (2

I.Ac A = A°ed
2. A1, As,...e A = U;)ilAzE.A

Example:
Q=R
What is the smallest A we can think of?
A={0,0}
How can we choose P?

P®) =0 . .

|
P(Q) =1 <— the only possible assignment!



SAMPLE SPACES

2\

discrete (countable)

Q= {1,2,3,4,5,6}
Q=N

Typically: A = P(Q2)
\

Power set

2 =[0,1] U {2} = mixed space

continuous (uncountable)

Q= [0,1]
O=R

Typically: A = B(Q)

T

Borel field



EXAMPLE: FINDING PROBABILITY DISTRIBUTIONS

(©2, A) = a measurable space

Q= {01}
A= {@, {O}’ {1}’ Q}

l—a A={0}
)« A={1}
Pi4) = 0 A=
1 A=Q a € [0,1]

How can we choose P in practice?

Clearly, we cannot do it arbitrarily.

How can we satisfy all constraints?



PROBABILITY MASS FUNCTIONS (PMFSs)

() = discrete sample space

A=P()

Probability mass function:
1. p: Q—10,1]

2. Y peqPw) =1

The probability of any event A € A is defined as



WELL-KNOWN PMFs

Bernoulli distribution: Q={S,F} aec(0,1)

Alternatively, 2 = {0, 1}

p(k) =aF - (1 —a)t~* Vk € Q



WELL-KNOWN PMFs

Binomial distribution:
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WELL-KNOWN PMFs

Poisson distribution: Q=1{0,1,...} A€ (0,00)
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WELL-KNOWN PMFs

Geometric distribution: Q={1,2,...}

pk)=(1-a)" 1o VEk € Q)
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EXERCISE: CALCULATING PROBABILITIES OF EVENTS

O={1,2..}
A =P(Q)

P = induced by a geometric distribution (pmf) with parameter o

Consider the following event A € A:

A = {k|k is odd}

P(A) =7



PROBABILITY DENSITY FUNCTIONS (PDFS)

= continuous sample space

B(©)

Probability density function:
L. p: Q—1[0,00)

2. [op(w)dw =1

The probability of any event A € A is defined as

P(A):/Ap(w)dw.



WELL-KNOWN PDFs

Uniform distribution: Q= [a,b

VYw € [a,b]
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WELL-KNOWN PDFs

Gaussian distribution:
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WELL-KNOWN PDFs

Exponential distribution: Q= [0, 00) A>0
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PMFs vs. PDFs

() = discrete sample space

Consider a singleton event {w} € A, where w € Q2

P({w}) = p(w)

() = continuous sample space

Consider an interval event A = [z, z + Ax], where A is small



MULTIDIMENSIONAL PMFs

Q=01 x Oy x...xQy
A=P(Q)

Probability mass function:
Lop: Oy x Qo x ... x Qg — [0,1]

2. Zwleﬁl o 'deeﬁdp(wlao-)Qa s ,Wd) =1

The probability of any event A € A is defined as

P(A) =) p(w) w = (w1, wa, . ..,wq)

weEA



MULTIDIMENSIONAL PDFs

Q=R
A = B(R)4

Probability density function:
1. p:R? — [0,00)

2. ffooo"'ffooop(wlaw27"'7wd)dw1 dCdd =1

The probability of any event A € A is defined as

w = (w1,wsz,...,wq)



MULTIDIMENSIONAL GAUSSIAN

O — R4 TS R¢
A = B(R)? 3} = positive definite d-by-d matrix
|¥| = determinant of X

1 1
_ Twoe—1
pw) = ———==exp |~ (w—p) T (w—p)
v (2m)4 ]3]
0.2
d=2

0.15

0.1 <l

NN
/,"",:"‘““‘ MUY

NS
y

XXX



ELEMENTARY CONDITIONAL PROBABILITIES

(©2, A, P) = a probability space

B = event from A that already occurred

The probability that any event A € A has also occurred is

P(A|B) = %
where P(B) > 0.
Bayes’ rule:

P - PBIAPW)

P(B)



EXERCISE: CONDITIONAL PROBABILITIES

(Q, A, P) = probability space
A, B = events from A

Derive P(A|B)



SuM RULE, PRODUCT
(©2, A, P) = a probability space

Sum rule:

RULE

P(A) =Y}, P(ANB)

Product rule:

where {B;}k_, is a partition of Q

P(AN B) = P(A|B) - P(B)

where P(B) > 0



CHAIN RULE

(©2, A, P) = a probability space

Chain rule:

P(A; N As...NAg) = P(A)P(As|Ay) ... P(Ag|Ay N As... 0 Ag_1)

where {Ai}?zl is a collection of d events



INDEPENDENCE OF EVENTS

(©2, A, P) = a probability space

Events A and B are independent if:

P(ANB) = P(A) - P(B)

Events A and B are conditionally independent given C if:

P(AN B|C) = P(A|C) - P(B|C)

What if we had multiple events?



EXERCISE: INDEPENDENCE OF EVENTS

(©2, A, P) = a probability space

Q

middle point

Q1

0

+ middle point



EXERCISE: INDEPENDENCE OF EVENTS

W=

W=

Are A, B, and C collectively independent?

W=



