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BRIEF INTRODUCTION

◦ branch of mathematics

◦ part of measure theory

Probability theory

Important concepts

◦ experiment (coin toss, roll of dice, ...)

◦ outcome (one of predefined options)

A way to formalize this

◦ define sample space, event space

◦ introduce P : assignment of numbers in [0, 1] to groups of outcomes.



AXIOMS OF PROBABILITY

Ω = sample space, all outcomes of the experiment
A = event space, set of subsets of Ω

1. A ∈ A ⇒ Ac ∈ A

2. A1, A2, . . . ∈ A ⇒
⋃

∞

i=1
Ai ∈ A

Consider non-empty Ω and A. If the following conditions hold:

A is called a sigma field or sigma algebra.

(Ω,A) = a measurable space



EXAMPLE: SIGMA ALGEBRA

Ω = non-empty set
A = non-empty set of subsets of Ω

1. A ∈ A ⇒ Ac ∈ A

2. A1, A2, . . . ∈ A ⇒
⋃

∞

i=1
Ai ∈ A

Example:

Ω = R;
Let A contain ∅, R and all sets (−∞, a], (a, b], (b,∞), for all a, b ∈ Ω.

Is (Ω,A) a measurable space?

lim
i→∞

(

0,
i− 1

i

]

= (0, 1) /∈ A

i ∈ {2, 3, . . .}



1. P (Ω) = 1

2. A1, A2, . . . ∈ A, Ai ∩Aj = ∅ ∀i, j ⇒ P (∪∞

i=1
Ai) =

∑
∞

i=1
P (Ai)

Any function P : A → [0, 1] such that

is called a probability measure or probability distribution.

(Ω,A) = a measurable space

(Ω,A, P ) = a probability space

AXIOMS OF PROBABILITY



CONSEQUENCES OF THE AXIOMS OF PROBABILITY

1. P (∅) = 0

2. P (Ac) = 1− P (A)

3. P (A) =
∑k

i=1
P (A ∩Bi), where {Bi}ki=1

is a partition of Ω

4. P (A ∪B) = P (A) + P (B)− P (A ∩B)

(Ω,A, P ) = a probability space

. . . and everything else.



EXAMPLE: SMALLEST SIGMA ALGEBRA

Ω = R

What is the smallest A we can think of?

A = {∅,Ω}

How can we choose P?

P (∅) = 0
P (Ω) = 1

←− the only possible assignment!

Ω = non-empty set
A = non-empty set of subsets of Ω

1. A ∈ A ⇒ Ac ∈ A

2. A1, A2, . . . ∈ A ⇒
⋃

∞

i=1
Ai ∈ A

Example:



SAMPLE SPACES
Ω

discrete (countable) continuous (uncountable)

Ω = {1, 2, 3, 4, 5, 6}

Ω = N

Ω = [0, 1]

Ω = R

Ω = [0, 1] ∪ {2} = mixed space

Typically: A = P(Ω) Typically: A = B(Ω)

Borel field

Power set



EXAMPLE: FINDING PROBABILITY DISTRIBUTIONS

Clearly, we cannot do it arbitrarily.

(Ω,A) = a measurable space

How can we satisfy all constraints?

How can we choose P in practice?

Ω = {0, 1}
A = {∅, {0}, {1},Ω}

P (A) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1− α A = {0}

α A = {1}

0 A = ∅

1 A = Ω α ∈ [0, 1]



PROBABILITY MASS FUNCTIONS (PMFS)

Ω = discrete sample space
A = P(Ω)

Probability mass function:

1. p : Ω → [0, 1]

2.
∑

ω∈Ω
p (ω) = 1

The probability of any event A ∈ A is defined as

P (A) =
∑

ω∈A

p(ω)



WELL-KNOWN PMFS 

Bernoulli distribution:

p(ω) =

{

α ω = S

1− α ω = F

α ∈ (0, 1)Ω = {S, F}

p(k) = αk
· (1− α)1−k

∀k ∈ Ω

Alternatively, Ω = {0, 1}



WELL-KNOWN PMFS

Binomial distribution: α ∈ (0, 1)Ω = {0, 1, . . . , n}

∀k ∈ Ωp(k) =

(

n

k

)

αk(1− α)n−k

n = 30



WELL-KNOWN PMFS

Poisson distribution: Ω = {0, 1, . . .}

p(k) =
λke−λ

k!
∀k ∈ Ω

λ ∈ (0,∞)



WELL-KNOWN PMFS

Geometric distribution: α ∈ (0, 1)

p(k) = (1− α)k−1α ∀k ∈ Ω

Ω = {1, 2, . . .}



EXERCISE: CALCULATING PROBABILITIES OF EVENTS

Ω = {1, 2, . . .}
A = P(Ω)
P = induced by a geometric distribution (pmf) with parameter α

Consider the following event A ∈ A:

A = {k|k is odd}

P (A) = ?



PROBABILITY DENSITY FUNCTIONS (PDFS)

Ω = continuous sample space
A = B(Ω)

Probability density function:

1. p : Ω → [0,∞)

2.
∫
Ω
p(ω)dω = 1

The probability of any event A ∈ A is defined as

P (A) =

∫
A

p(ω)dω.



WELL-KNOWN PDFS

Uniform distribution:

p(ω) =
1

b− a
∀ω ∈ [a, b]

Ω = [a, b]



WELL-KNOWN PDFS

Gaussian distribution:

p(ω) =
1

√

2πσ2
e
−

1

2σ2
(ω−µ)2

Ω = R µ ∈ R, σ ∈ R+

∀ω ∈ R



WELL-KNOWN PDFS

Exponential distribution:

p(ω) = λe−λω

Ω = [0,∞) λ > 0

∀ω ≥ 0

1 is here!



PMFS VS. PDFS

Consider a singleton event {ω} ∈ A, where ω ∈ Ω

Ω = discrete sample space

P ({ω}) = p(ω)

Ω = continuous sample space

P (A) =

∫
x+∆x

x

p(ω)dω

≈ p(x)∆x

Consider an interval event A = [x, x+∆x], where ∆ is small



MULTIDIMENSIONAL PMFS

Ω = Ω1 × Ω2 × . . .× Ωd

A = P(Ω)

Probability mass function:

1. p : Ω1 × Ω2 × . . .× Ωd → [0, 1]

2.
∑

ω1∈Ω1
· · ·

∑
ωd∈Ωd

p (ω1,ω2, . . . ,ωd) = 1

The probability of any event A ∈ A is defined as

P (A) =
∑

ω∈A

p(ω) ω = (ω1,ω2, . . . ,ωd)



Probability density function:

1. p : Rd
→ [0,∞)

2.
∫
∞

−∞
· · ·

∫
∞

−∞
p(ω1,ω2, . . . ,ωd)dω1 · · · dωd = 1

The probability of any event A ∈ A is defined as

P (A) =

∫
ω∈A

p(ω)dω

MULTIDIMENSIONAL PDFS

ω = (ω1,ω2, . . . ,ωd)

Ω = Rd

A = B(R)d



MULTIDIMENSIONAL GAUSSIAN

p(ω) =
1

√

(2π)d|Σ|
exp

(

−
1

2
(ω − µ)TΣ−1(ω − µ)

)

µ ∈ Rd

Σ = positive definite d-by-d matrix
|Σ| = determinant of Σ

d = 2

Σ =

[

1 .75

.75 1

]

µ = (0, 0)

Ω = Rd

A = B(R)d



ELEMENTARY CONDITIONAL PROBABILITIES

The probability that any event A ∈ A has also occurred is

P (A|B) =
P (A ∩B)

P (B)

(Ω,A, P ) = a probability space

B = event from A that already occurred

where P (B) > 0.

P (A|B) =
P (B|A)P (A)

P (B)

Bayes’ rule:



EXERCISE: CONDITIONAL PROBABILITIES

(Ω,A, P ) = probability space

A,B = events from A

Derive P (A|B)



SUM RULE, PRODUCT RULE

(Ω,A, P ) = a probability space

where P (B) > 0

P (A) =
∑k

i=1
P (A ∩Bi)

Sum rule:

P (A ∩B) = P (A|B) · P (B)

where {Bi}ki=1
is a partition of Ω

Product rule:



CHAIN RULE

(Ω,A, P ) = a probability space

P (A1 ∩A2 . . . ∩Ad) = P (A1)P (A2|A1) . . . P (Ad|A1 ∩A2 . . . ∩Ad−1)

Chain rule:

where {Ai}
d

i=1
is a collection of d events



INDEPENDENCE OF EVENTS

P (A ∩B) = P (A) · P (B)

Events A and B are independent if:

P (A ∩B|C) = P (A|C) · P (B|C)

Events A and B are conditionally independent given C if:

What if we had multiple events?

(Ω,A, P ) = a probability space



Ω

A

B

Ω

A

B

Ω

A
B

Ω

C
C

A B

EXERCISE: INDEPENDENCE OF EVENTS

middle point

← middle point

←

(Ω,A, P ) = a probability space



EXERCISE: INDEPENDENCE OF EVENTS

Are A, B, and C collectively independent?

A B

C

00

0

1

27

1

3

1

3

1

3


