
Chapter 9

Representations for machine learning

At first, it might seem that the applicability of linear regression and classification to real-
life problems is greatly limited. After all, it is not clear whether it is realistic (most of the
time) to assume that the target variable is a linear combination of features. Fortunately,
the applicability of linear regression is broader than originally thought. The main idea is to
apply a non-linear transformation to the data matrix x prior to the fitting step, which then
enables a non-linear fit. Obtaining such a useful feature representation is a central problem
in machine learning.

We will first examine fixed representations for linear regression: polynomial curve fitting
and radial basis function (RBF) networks. Then, we will discuss learning representations.

9.1 Radial basis function networks and kernel representa-
tions

The idea of radial basis function (RBF) networks is a natural generalization of the poly-
nomial curve fitting and approaches from the previous Section. Given data set D =
{(xi, yi)}n

i=1
, we start by picking p points to serve as the “centers” in the input space

X . We denote those centers as c1, c2, . . . , cp. Usually, these can be selected from D or
computed using some clustering technique (e.g. the EM algorithm, K-means).

When the clusters are determined using a Gaussian mixture model, the basis functions
can be selected as
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where the cluster centers and the covariance matrix are found during clustering. When
K-means or other clustering is used, we can use
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where ‡j ’s can be separately optimized; e.g. using a validation set. In the context of
multidimensional transformations from x to �, the basis functions can also be referred to
as kernel functions, i.e. „j (x) = kj (x, cj). Matrix
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Figure 9.1: Radial basis function network.

is now used as a new data matrix. For a given input x, the prediction of the target y will
be calculated as

f(x) = w0 +
pÿ

j=1

wj„j (x)

=
pÿ

j=0

wj„j (x)

where „0 (x) = 1 and w is to be found. It can be proved that with a su�ciently large
number of radial basis functions we can accurately approximate any function. As seen in
Figure 9.1, we can think of RBFs as neural networks.

RBF networks and kernel representations are highly related. The main distinction is that
kernel representations use any kernel function for the similarity measure k(x, cj) = „j(x),
where radial basis functions are one example of a kernel. In addition, if an RBF kernel is
chosen, for kernel representations typical the centers are selected from the training dataset.
For RBF networks, the selection of the centers is left generally as an important step, where
they can be selected from the training set but can also be selected in other ways.

9.2 Learning representations
There are many approaches to learning representations. Two dominant approaches are
(semi-supervised) matrix factorization techniques and neural networks. Neural networks
build on the generalized linear models we have discussed, stacking multiple generalized
linear models together. Matrix factorization techniques (e.g., dimensionality reduction,
sparse coding) typically factorize the input data into a dictionary and a new representation
(a basis). We will first discuss neural networks, and then discuss the many unsupervised
and semisupervised learning techniques that are encompassed by matrix factorizations.
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