
Chapter 1

Introduction to Probabilistic Modeling

Modeling the world around us and making predictions about the occurrence of events is a
multidisciplinary endeavor standing on the solid foundations of probability theory, statistics,
and computer science. Although intertwined in the process of modeling, these fields have
relatively discernible roles and can be, to a degree, studied individually. Probability theory
brings the mathematical infrastructure, firmly grounded in its axioms, for manipulating
probabilities and equips us with a broad range of models with well-understood theoretical
properties. Statistics contributes frameworks to formulate inference and the process of nar-
rowing down the model space based on the observed data and our experience in order to
find, and then analyze, solutions. Computer science provides us with theories, algorithms,
and software to manage the data, compute the solutions, and study the relationship be-
tween solutions and available resources (time, space, computer architecture, etc.). As such,
these three disciplines form the core quantitative framework for all of empirical science and
beyond.

Probability theory and statistics have a relatively long history; the formal origins of both
can be traced to the 17th century. Probability theory emerged out of e�orts to understand
games of chance and gambling. The correspondence between Blaise Pascal and Pierre de
Fermat in 1654 serves as the oldest record of modern probability theory. Statistics, on the
other hand, originated from data collection initiatives and attempts to understand trends
in the society (e.g., manufacturing, mortality causes, value of land) and political a�airs
(e.g., public revenues, taxation, armies). The two disciplines started to merge in the 18th

century with the use of data for inferential purposes in astronomy, geography, and social
sciences. The increased complexity of models and availability of data in the 19th century
emphasized the importance of computing machines. This contributed to establishing the
foundations of the field of computer science in the 20th century, which is generally attributed
to the introduction of the von Neumann architecture and formalization of the concept of
an algorithm. The convergence of the three disciplines has now reached the status of a
principled theory of probabilistic inference with widespread applications in science, business,
medicine, military, political campaigns, etc. Interestingly, various other disciplines have
also contributed to the core of probabilistic modeling. Concepts such as a Boltzmann
distribution, a genetic algorithm, or a neural network illustrate the influence of physics,
biology, psychology, and engineering.

We will refer to the process of modeling, inference, and decision making based on prob-
abilistic models as probabilistic reasoning or reasoning under uncertainty. Some form of
reasoning under uncertainty is a necessary component of everyday life. When driving, for
example, we often make decisions based on our expectations about which way would be
best to take. While these situations do not usually involve an explicit use of probabilities
and probabilistic models, an intelligent driverless car such as Google Chau�eur must make
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use of them. And so must a spam detection software in an email client, a credit card fraud
detection system, or an algorithm that infers whether a particular genetic mutation will re-
sult in disease. Therefore, we first need to understand the concept of probability and then
introduce a formal theory to incorporate evidence (e.g., data collected from instruments)
in order to make good decisions in a range of situations. At a basic level, probabilities are
used to quantify the chance of the occurrence of events. As Jacob Bernoulli brilliantly put
it in his work The Art of Conjecturing (1713), “[p]robability, [...] is the degree of certainty,
and it di�ers from the latter as a part di�ers from the whole”. He later adds, “To make a
conjecture [prediction] about something is the same as to measure its probability. There-
fore, we define the art of conjecturing [science of prediction] or stochastics, as the art of
measuring probabilities of things as accurately as possible, to the end that, in judgements
and actions, we may always choose or follow that which has been found to be better, more
satisfactory, safer, or more carefully considered.” The techniques of probabilistic modeling
formalize many intuitive concepts. They provide toolkits for rigorous mathematical analysis
and inference, often in the presence of evidence, about events influenced by factors that we
either do not fully understand or have no control of.

To give a quick insight into the concept of uncertainty and modeling, consider rolling a
fair six-sided die. We could accurately predict, or so we think, the outcome of a roll if we
carefully incorporated the initial position, force, friction, shape defects, and other physical
factors and then executed the experiment. But the physical laws may not be known, they
can be di�cult to incorporate or such actions may not be allowed by the rules of the
experiment. Thus, it is practically useful to simply assume that each outcome is equally
likely; in fact, if we rolled the die many times, we would indeed observe that each number is
observed roughly equally. Assigning an equal chance (probability) to each outcome of the
roll of a die provides an e�cient and elegant way of modeling uncertainties inherent to the
experiment.

Another, more realistic example in which collecting data provides a basis for simple
probabilistic modeling is a situation of driving to work every day and predicting how long
it will take us to reach the destination tomorrow. If we recorded the “time to work” for a
few months we would observe that trips generally took di�erent times depending on many
internal (e.g., preferred speed for the day) and also external factors (e.g., weather, road
works, encountering a slow driver). While these events, if known, could be used to predict
the exact duration of the commute, it is unrealistic to expect to have full information—
rather we have partial observability. Therefore, it is useful to provide ways of aggregating
external factors via collecting data over a period of time and providing the distribution of
the commute time. Such a distribution, in the absence of other information, would then
facilitate reasoning about events such as making it on time to an important meeting at
9 am. One way of using the recorded data is to create histograms and calculate percentiles.
Another would be to estimate the parameters of some mathematical function that fits the
data well. Both approaches are illustrated in Figure 1.1.

As the examples above suggest, the techniques of probabilistic modeling provide a for-
malism for dealing with repetitive “experiments” influenced by a number of external factors
over which we have little control or knowledge. However, we shall see later that probabili-
ties need not be assigned only to events that repeat, but to any event in general. As long
as they are assigned according to the formal axioms of probability, we can make inferences
because the mathematical formalism does not depend on how the probabilities are assigned.
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Figure 1.1: A histogram of recordings of the commute time (in minutes) to work. The data
set contains 340 measurements collected over one year, for a distance of roughly 3.1 miles.
The data was modeled using a gamma family of probability distributions, with the particu-
lar location and scale parameters estimated from the raw data. The values of the gamma
distribution are shown as dark circles. Although it might seem that fitting the data using
a gamma distribution brings little value in this one-dimensional situation, this approach
is far superior on high-dimensional data where the number of bins in a multidimensional
histogram can be orders of magnitude larger than the data set size.

This gives us an opportunity to incorporate our assumptions and existing knowledge into
modeling, including the subjective assessments (beliefs) about occurrence of non-repetitive
events. But let us start from the beginning.

1.1 Probability Theory
Probability theory can be seen as a branch of mathematics that deals with set functions.
At the heart of probability theory is the concept of an experiment. An experiment can be
the process of rolling a die, checking the temperature tomorrow or figuring out the location
of one’s keys. When carried out, each experiment has an outcome, which is an element
“drawn” from a set of predefined options, potentially infinite in size. The outcome of a
roll of a die is a number between one and six; the temperature tomorrow might be a real
number; the outcome of the location of one’s keys can be a discrete set of places such as
a kitchen table, under a couch, in o�ce etc. In many ways, the main goal of probabilistic
modeling is to formulate a particular question or a hypothesis pertaining to the physical
world as an experiment, collect the data, and then construct a model. Once a model is
created, we can compute quantitative measures of sets of outcomes we are interested in and
assess the confidence we should have in these measures.

1.1.1 Axioms of probability
We start by introducing the axioms of probability. Let the sample space (�) be a non-empty
set of outcomes of the experiment and the event space (A) be a non-empty set of subsets
of � such that

1. A œ A ∆ Ac
œ A

2. A1, A2, . . . œ A ∆
t

Œ

i=1 Ai œ A
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where A and all Ai’s are events, and Ac is the complement of A; i.e., Ac = � ≠ A. If
both conditions hold, A is called a sigma field, or sigma algebra, and is a set of so-called
measurable events.1 The tuple (�, A) is then called a measurable space.

It is important to emphasize that the definition of sigma field requires that A be closed
under both finite and countably infinite number of basic set operations (union, intersection,
complementation and set di�erence). The operations union and complementation are in the
definition. For intersection, we can use De Morgan’s laws: fiAi = (flAc

i
)c and flAi = (fiAc

i
)c.

Any intersection of sets in A must again be in A because A is closed under union and
complementation. Therefore, a sigma field is also closed under intersection. Similarly for
set di�erence, we can write A1 ≠ A2 = (A1 fl A2)c

fl A1, which then implies A1 ≠ A2 œ A.
Because A is non-empty, we observe that all the above conditions imply that � œ A and
? œ A, where ? is the empty set.

Let (�, A) be a measurable space. Any function P : A æ [0, 1] where

1. P (�) = 1

2. A1, A2, . . . œ A, Ai fl Aj = ? ’i, j ∆ P (fiŒ

i=1
Ai) =

q
Œ

i=1 P (Ai)

is called a probability measure or a probability distribution and is said to satisfy the axioms
of probability.2 The tuple (�, A, P ) is called the probability space.

The beauty of these axioms lies in their compactness and elegance. Many useful ex-
pressions can be derived from the axioms of probability. For example, it is obvious that
P (?) = 0 or P (Ac) = 1 ≠ P (A). Similarly, closure under infinite unions of disjoint sets
(‡-additivity) implies finite closure (additivity), because the remaining sets can be set
to the empty set ?: ’A1, A2 œ A with A1 fl A2 = ?, set Ai = ? for i > 2 to get
P (A1 fi A2) = P (fiŒ

i=1
Ai) =

q
Œ

i=1 P (Ai) = P (A1) + P (A2). Another formula that is partic-
ularly important can be derived by considering a partition of the sample space; i.e., a set
of k non-overlapping sets {Bi}

k

i=1
such that � = fi

k

i=1
Bi. That is, if A is any set in � and

if {Bi}
k

i=1
is a partition of � it follows that

P (A) = P (A fl �)

= P
1
A fl

1
fi

k

i=1Bi

22

= P
1
fi

k

i=1(A fl Bi)
2

(1.1)

=
q

k

i=1P (A fl Bi) ,

where the last line followed from the axioms of probability. We will refer to this expression
as the sum rule. Another important expression, shown here without derivation, is that
P (A fi B) = P (A) + P (B) ≠ P (A fl B). It holds for any A, B œ A.

It is convenient to separately consider discrete (countable) and continuous (uncountable)
sample spaces. A roll of a die draws numbers from a finite space � = {1, 2, 3, 4, 5, 6}. For
finite and other countable sample spaces (e.g., the set of integers Z), A is usually the power
set P(�). An example of continuous sample space is the set of real numbers R. As we

1
This terminology is due to historical reasons; so though it sounds complex, one can simply think of a

sigma field as the set of events to which we can assign probabilities.
2
It seems intuitive that the second condition could be replaced with a union of finite sets (the simpler

requirement of additivity rather than ‡-additivity). However, for sigma fields, closure under finite unions

may not result in closure under infinite unions.
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shall see later, for uncountable spaces, A must be a proper subset of P(�); i.e., A µ P(�),
because there exist sets over which one cannot integrate. Technically, sample spaces can also
be mixed; e.g., � = [0, 1] fi {2} or � = [0, 1] ◊ {0, 1}. Such spaces are often used in machine
learning. The space � = [0, 1] ◊ {0, 1} is also said to be multidimensional because � is a
Cartesian product of multiple sets, here [0, 1] and {0, 1}. However, the main consideration
at this stage will be the distinction between discrete and continuous sample spaces that
will give rise to discrete and continuous probability distributions, respectively, and lead to
a distinct mathematical treatment.

Owing to many constraints in defining the distribution function P , it is clear that it
cannot be chosen arbitrarily. For example, if � = [0, 1] and P ([0, 1

2
)) = 1

2
, we cannot freely

assign P ([1

2
, 1]) = 1

3
because probabilities of complement sets must sum to one. It turns

out, in practice it is easier to define P indirectly, by selecting a probability mass function or
a probability density function. These “helper” functions are defined directly on the sample
space where we have fewer restrictions to be concerned with compared to the event space.
We address these two ways of defining probability distributions next.

1.1.2 Probability mass functions
Let � be a discrete (finite or countably infinite) sample space and A = P (�). A function
p : � æ [0, 1] is called a probability mass function (pmf) if

ÿ

Êœ�

p (Ê) = 1.

The probability of any event A œ A is defined as

P (A) =
ÿ

ÊœA

p(Ê).

It is straightforward to verify that P satisfies the axioms of probability and, thus, is a
probability distribution.

Example 1: Consider a roll of a fair six-sided die; i.e., � = {1, 2, 3, 4, 5, 6}, and the event
space A = P(�). What is the probability that the outcome is a number greater than 4?

First, because the die is fair, we know that p(Ê) = 1

6
for ’Ê œ �. Now, let A be an

event in A that the outcome is greater than 4; i.e., A = {5, 6}. Thus,

P (A) =
ÿ

ÊœA

p(Ê) = 1
3 .

It is important to note that P is defined on the elements of A, whereas p is defined on the
elements of �. That is, P ({1}) = p(1), P ({2}) = p(2), P ({1, 2}) = p(1) + p(2), etc. ⇤

In discrete cases, P ({Ê}) = p (Ê) for every Ê œ �, and the probability of a set is always
equal to the sum of probabilities of individual elements. We can define a discrete probability
space by providing the tuple (�, A, P ), but it is often much simpler to define P indirectly
by assuming that A = P (�) and providing a probability mass function p. In this case we
say that the probability measure P is induced by a pmf p. In fact, we rarely define (�, A, P )
directly.
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A few useful pmfs

Let us now look at some families of functions that are often used to induce discrete prob-
ability distributions. This is by no means a comprehensive review of the subject; we shall
simply focus on a few basic concepts and will later introduce other distributions as needed.
For simplicity, we will often refer to both pmfs and probability distributions they induce as
distribution functions.

The Bernoulli distribution derives from the concept of a Bernoulli trial, an experiment
that has two possible outcomes: success and failure. In a Bernoulli trial, a success oc-
curs with probability – and, thus, failure occurs with probability 1 ≠ –. A toss of a coin
(heads/tails), a basketball game (win/loss), or a roll of a die (even/odd) can all be seen as
Bernoulli trials. We model this distribution by setting a sample space to two elements and
defining the probability of one of them as –. More specifically, � = {success, failure} and

p(Ê) =
I

– Ê = success
1 ≠ – Ê = failure

where – œ (0, 1) is a parameter. If we take instead that � = {0, 1}, we can compactly write
the Bernoulli distribution as p(k) = –k

· (1 ≠ –)1≠k for k œ �. Here we replaced Ê with k,
which is a more common notation when the sample space is comprised of integers.

To be precise, the Bernoulli distribution as presented above is actually a family of
discrete probability distributions, one for each –. We shall refer to each such distribution
as Bernoulli(–). However, we do not need to concern ourselves with semantics because
the correct interpretation of a family vs. individual distributions should be clear from the
context.

The Binomial distribution is used to describe a sequence of n independent and identically
distributed (i.i.d.) Bernoulli trials. At each value k in the sample space the distribution
gives the probability that the success happened exactly k times out of n trials, where of
course 0 Æ k Æ n. More formally, given � = {0, 1, . . . , n}, for ’k œ � the binomial pmf is
defined as

p(k) =
A

n

k

B

–k(1 ≠ –)n≠k,

where – œ (0, 1), as before, is the parameter indicating the probability of success in a single
trial. Here, the binomial coe�cient

A
n

k

B

= n!
k!(n ≠ k)!

enumerates all ways in which one can pick k elements from a list of n elements (e.g., there
are 3 di�erent ways in which one can pick k = 2 elements from a group of n = 3 elements).
We will refer to a binomial distribution with parameters n and – as Binomial(n, –). The
experiment leading to a binomial distribution can be generalized to a situation with more
than two possible outcomes. This experiment results in a multidimensional probability mass
function (one dimension per possible outcome) called the multinomial distribution.

The Poisson distribution can be derived as a limit of the binomial distribution as n æ Œ

with a fixed expected number of successes (⁄). Here, � = {0, 1, . . .} and for ’k œ �

p(k) = ⁄ke≠⁄

k! ,
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where ⁄ œ (0, Œ) is a parameter (the relationship with the binomial distribution can be
obtained by taking – = ⁄/n). The Poisson distribution is often used to model counts of
events occurring sequentially and independently but with a fixed average (⁄) in a particular
time interval. Unlike the previous two distributions, Poisson(⁄) is defined over an infinite
sample space, but still countable.

The geometric distribution is also used to model a sequence of independent Bernoulli
trials with the probability of success –. At each point k œ �, it gives the probability that
the first success occurs exactly in the k-th trial. Here, � = {1, 2, . . .} and for ’k œ �

p(k) = (1 ≠ –)k≠1–,

where – œ (0, 1) is a parameter. The geometric distribution, Geometric(–), is defined over
an infinite sample space; i.e., � = N.

For the hypergeometric distribution, consider a finite population of N elements of two
types (e.g., success and failure), K of which are of one type (e.g., success). The experiment
consists of drawing n elements, without replacement, from this population such that the
elements remaining in the population are equiprobable in terms of being selected in the
next draw. The probability of drawing k successes out of n trials can be described as

p(k) =
!

K

k

"
·
!

N≠K

n≠k

"

!
N

n

" ,

where 0 Æ n Æ N and k Æ n. The hypergeometric distribution is intimately related to the
binomial distribution where the elements are drawn with replacement (– = K/N). There,
the probability of drawing a success does not change in subsequent trials. We will refer to
the hypergeometric distribution as Hypergeometric(n, N, K).

The uniform distribution for discrete sample spaces is defined over a finite set of out-
comes each of which is equally likely to occur. Here we can set � = {1, . . . , n}; then for
’k œ �

p(k) = 1
n

.

The uniform distribution does not contain parameters; it is defined by the size of the sample
space. We refer to this distribution as Uniform(n). We will see later that the uniform
distribution can also be defined over finite intervals in continuous spaces.

All of the functions above satisfy the definition of a probability mass function, which
we can verify by summing over all possible outcomes in the sample space. Four examples
are shown in Figure 1.2.

In general, for discrete spaces, we can assign probabilities to outcomes quite freely. For
example, one could have a table of 365 values between zero and one for the probability
of a birthday falling on each day, as long as the probabilities sum to 1. We will see that
for continuous spaces it is more di�cult to define consistent probabilities and we will often
restrict ourselves to a limited set of known distributions.

1.1.3 Probability density functions
We shall see soon that the treatment of continuous probability spaces is analogous to that
of discrete spaces, with probability density functions replacing probability mass functions
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Figure 1.2: Four discrete probability mass functions.

and integrals replacing sums. Mathematically, however, there are fundamental di�erences
between the two situations which we should keep in mind whenever working with continuous
spaces. The main obstacle in generalizing the theory to uncountable sample spaces lies in
addressing mathematical nuances involving infinitesimal calculus, the countable nature of
a sigma field, and limitations of the definition of integrals. For example, there exist sets
over which we cannot integrate and thus the set of events A cannot be the power set of any
uncountable set (e.g., R). It is therefore necessary to define an adequate event space which
would be applicable to a vast majority of practically important situations.

To illustrate the treatment of continuous spaces, let us for simplicity take that � = R and
define the Borel field. The Borel field on R, denoted by B(R), is a set that contains all points
in R, all open, semi-open and closed intervals in R, as well as sets that can be obtained
by a countable number of basic set operations on them. By definition, B(R) is a sigma
field; B(R) is an uncountably infinite set, but still smaller than P(R). The construction of
subsets of R that are not in B(R) is di�cult and only of theoretical importance (e.g., Vitali
sets), but nevertheless, the use of P(R) as the event space would lead to a flawed theory.
Therefore, when discussing probability distributions over continuous sample spaces, we will
usually take � = R to be the sample space and implicitly consider B(R) to be the event
space A.

Let now � be a continuous sample space and A = B (�). A function p : � æ [0, Œ) is
called a probability density function (pdf) ifˆ

�

p(Ê)dÊ = 1.

The probability of an event A œ B(�) is defined as

P (A) =
ˆ

A

p(Ê)dÊ.
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There are a few mathematical nuances associated with this definition. First, interestingly,
the standard Riemann integration does not work for some sets in the Borel field (e.g.,
how would you integrate over the set of rational or irrational numbers within [0, 1] for any
pdf?). For that reason, probability density functions are formally defined using Lebesgue
integration which allows us to integrate over all sets in B(�). Luckily, Riemann integration,
when possible, provides identical results as Lebesgue’s; thus, it will su�ce to use Riemann
integration in all situations of our interest.

Second, we mentioned before for pmfs that the probability of a singleton event {Ê} is
the value of the pmf at the sample point Ê; i.e., P ({Ê}) = p(Ê). In contrast, the value of
a pdf at point Ê is not a probability; it can actually be greater than 1. The probability at
any single point, but also over any finite or countably infinite set is 0 (i.e., they constitute
a set of measure zero). One way to think about the probabilities in continuous spaces is to
look at small intervals A = [x, x + �x] as

P (A) =
ˆ

x+�x

x

p(Ê)dÊ

¥ p(x)�x.

Here, a potentially large value of the density function is compensated by the small interval
�x to result in a number between 0 and 1.

A few useful pdfs

Some important probability density functions are reviewed below. As before, the sample
space will be defined for each distribution and the Borel field will be implicitly assumed as
the event space.

The uniform distribution is defined by an equal value of a probability density function
over a finite interval in R. Thus, for � = [a, b] the uniform probability density function
’Ê œ [a, b] is defined as

p(Ê) = 1
b ≠ a

.

Note that one can also define Uniform(a, b) by taking � = R and setting p(Ê) = 0 whenever
Ê is outside of [a, b]. This form is convenient because � = R can then be used consistently
for all one-dimensional probability distributions. When we do this, we will refer to the
subset of R where p(Ê) > 0 as support of the density function.

The exponential distribution is defined over a set of non-negative numbers; i.e., � =
[0, Œ). Its probability density function is

p(Ê) = ⁄e≠⁄Ê,

where ⁄ > 0 is a parameter. As before, the sample space can be extended to all real
numbers, in which case we would set p(Ê) = 0 for Ê < 0.

The Gaussian distribution or normal distribution is one of the most frequently used
probability distributions. It is defined over � = R as

p(Ê) = 1
Ô

2fi‡2
e≠

1
2‡2 (Ê≠µ)

2
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Figure 1.3: Selection of a random number (x) from the unit interval [0, 1].

with two parameters, µ œ R and ‡ > 0. We will refer to this distribution as Gaussian(µ, ‡2)
or N (µ, ‡2). Both Gaussian and exponential distribution are members of a broader family
of distributions called the exponential family. We will see a general definition of this family
later.

The lognormal distribution is a modification of the normal distribution. Here, for � =
(0, Œ) the lognormal density can be expressed as

p(Ê) = 1
Ê

Ô

2fi‡2
e≠

1
2‡2 (ln Ê≠µ)

2
,

where µ œ R and ‡ > 0 are parameters. We will refer to this distribution as Lognormal(µ, ‡2)
or ln N (µ, ‡2).

The Gumbel distribution belongs to the class of extreme value distributions. Its proba-
bility density function is defined on � = R as

p(Ê) = 1
—

e≠
Ê≠–

— e≠e
≠ Ê≠–

—

,

where – œ R is the location parameter and — > 0 is the scale parameter. We will refer to
this distribution as Gumbel(–, —).

The Pareto distribution is useful for modeling events with rare occurrences of extreme
values. Its probability density function is defined on � = [Êmin, Œ) as

p(Ê) = –Êmin

Ê–+1
,

where – > 0 is a parameter and Êmin > 0 is the minimum allowed value for Ê. We will
refer to the Pareto distribution as Pareto(–, Êmin). It leads to a scale-free property when
– œ (0, 2].

Example 2: Consider selecting a number (x) between 0 and 1 uniformly randomly (Figure
1.3). What is the probability that the number is greater than 3

4
or lower than 1

4
?

We know that � = [0, 1]. We define an event of interest as A = [0, 1

4
) fi (3

4
, 1] and

calculate its probability as

P (A) =
ˆ

1/4

0

dÊ +
ˆ

1

3/4

dÊ Û p(Ê) = 1
b ≠ a

= 1

= 1
2 .

Because the probability of any individual event in a continuous case is 0, there is no di�erence
in integration if we consider open or closed intervals. ⇤
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1.1.4 Multidimensional distributions
It is often convenient to think of the sample space as a multidimensional space. In the
discrete case, one can think of the sample space � as a multidimensional array or as a
d-dimensional tensor (note: a matrix is a 2D tensor). That is, � = �1 ◊ �2 ◊ . . . ◊ �d,
where �i can be seen as the sample space along dimension i. Then, any function p :
�1 ◊ �2 ◊ . . . ◊ �d æ [0, 1] is called a multidimensional probability mass function if

ÿ

Ê1œ�1

· · ·

ÿ

Êdœ�d

p (Ê1, Ê2, . . . , Êd) = 1.

One example of the multidimensional pmf is the multinomial distribution, which generalizes
the binomial distribution to the case when the number of outcomes in any trial is a positive
integer d Ø 2.

The multinomial distribution is used to model a sequence of n independent and identi-
cally distributed (i.i.d.) trials with d outcomes. At each point (k1, k2, . . . , kd) in the sample
space, the multinomial pmf gives the probability that the outcome 1 occurred k1 times,
outcome 2 occurred k2 times, etc. Of course, 0 Æ ki Æ n for ’i and

q
d

i=1 ki = n. More
formally, given the sample space � = {0, 1, . . . , n}

d, the multinomial pmf is defined as

p(k1, k2, . . . , kd) =

Y
__]

__[

!
n

k1,k2,...,kd

"
–k1

1
–k2

2
. . . –kd

d
k1 + k2 + · · · + kd = n

0 otherwise

where –i’s are positive coe�cients such that
q

d

i=1 –i = 1. That is, each coe�cient –i gives
the probability of outcome i in any trial. The multinomial coe�cient

A
n

k1, k2, . . . , kd

B

= n!
k1!k2! · · · kd!

generalizes the binomial coe�cient by enumerating all ways in which one can distribute n
balls into d boxes such that the first box contains k1 balls, the second box k2 balls, etc.
An experiment consisting of n tosses of a fair six-sided die and counting the number of
occurrences of each number can be described by a multinomial distribution. Clearly, in this
case –i = 1/6, for each i œ {1, 2, 3, 4, 5, 6}.

In the continuous case, we can think of the sample space as the d-dimensional Euclidean
space; i.e., � = Rd and an event space as A = B(R)d. Then, the d-dimensional probability
density function can be defined as any function p : Rd

æ [0, Œ) such that
ˆ

Œ

≠Œ

· · ·

ˆ
Œ

≠Œ

p(Ê1, Ê2, . . . , Êd)dÊ1 · · · dÊd = 1.

The multivariate Gaussian distribution is a generalization of the Gaussian or normal dis-
tribution to the d-dimensional case, with � = Rd. It is defined as

p(Ê) = 1
Ò

(2fi)d|�|

exp
3

≠
1
2(Ê ≠ µ)T �≠1(Ê ≠ µ)

4
,

with parameters µ œ Rd and a positive definite d-by-d matrix � (|�| is the determinant of
�). We will refer to this distribution as Gaussian(µ, �) or N (µ, �).
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1.1.5 Conditional probabilities
Let (�, A, P ) be a probability space and B an event that already occurred. We are interested
in the probability that event A also occurred; i.e., P (A|B). The conditional probability is
defined as

P (A|B) = P (A fl B)
P (B) , (1.2)

where P (B) > 0. From this expression, which is sometimes referred to as product rule, we
can now derive two important formulas. The first one is Bayes’ rule

P (A|B) = P (B|A)P (A)
P (B) .

The second formula, referred to as the chain rule, applies to a collection of d events {Ai}
d

i=1

and can be derived by recursively applying the product rule. Then,

P (A1 fl A2 . . . fl Ad) = P (A1)P (A2|A1) . . . P (Ad|A1 fl A2 . . . fl Ad≠1).

In some situations we refer to the probability P (A) as prior probability because it quantifies
the likelihood of occurrence of event A in absence of any other information or evidence.
The probability P (A|B) is referred to as posterior probability because it quantifies the
uncertainty about A in the presence of additional information (event B). The probability
P (B) is also an unconditional (prior) probability but in this context can be thought of as
the probability of observing evidence B. The product rule from Equation (1.2) has long
history; it was first derived by Abraham de Moivre in 1718.

One way to think about conditional probabilities is to consider that the experiment has
already been conducted, but that we do not know the outcome yet. For example, a fair die
has been rolled and we are interested in an event that the outcome was 4; i.e., A = {4}.
The prior probability of event A is P (A) = 1

6
. But imagine that someone had observed the

experiment and told us that the number was even (B = {2, 4, 6}). The probability after
hearing this news becomes P (A|B) = 1

3
. Proper estimation of posterior probabilities from

data is central to statistical inference.

1.1.6 Independence of events
Let (�, A, P ) be a probability space. Two events A, B œ A are defined as independent if

P (A fl B) = P (A) · P (B)

or, alternatively, if P (A|B) = P (A) or P (B|A) = P (B). More broadly, two or more events
are (mutually or jointly) independent, if the probability of intersection of any group of events
(of size two, three, etc.) can be expressed as the product of probabilities of individual events.
For d events, there are 2d

≠ d ≠ 1 independence tests, one for each subset excluding the
empty set and singletons.

It is important to distinguish between mutually exclusive events and independent events.
Mutually exclusive events are in fact never independent because the knowledge that the
outcome of the experiment belongs to event A excludes the possibility that it is in B (Figure
1.4). It is often di�cult, and quite non-intuitive, to simply look at events and conclude
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Figure 1.4: Visualization of dependent and independent events. Events A and B on the
left are dependent because the occurrence of one excludes the occurrence of the other one.
Events C and D on the right are independent. Each event occupies 1/4 of the sample space
�, while their intersection occupies 1/16 of the sample space.

whether they are independent or not. One should (almost) always calculate P (A fl B)
and P (A) · P (B) and numerically verify independence. Sometimes there may exist deep
physical reasons why particular events are independent or assumed to be independent. In
other occasions it may just be a numerical coincidence.

Let (�, A, P ) be a probability space and A, B, and C some events from A. Events A
and B are defined as conditionally independent given C if

P (A fl B|C) = P (A|C) · P (B|C)

or, alternatively, if P (A|B fl C) = P (A|C). Independence between events does not imply
conditional independence and, likewise, conditional independence between events does not
imply their independence. We shall see an example later.

1.1.7 Interpretation of probability
There are two opposing philosophical views of probability, an objectivist and a subjectivist
one. Objectivists see probability as a concept rooted in reality. Their scientific method is
based on the existence of an underlying true probability for an experiment or a hypothesis in
question; this underlying probability then needs to be estimated from data. An objectivist
is restricted by the known facts about reality (assuming these facts are agreed upon) and
derives from them to estimate probabilities. On the other end of the spectrum is a purely
subjectivist view in which probabilities represent an observer’s degree of belief or conviction
about the outcome of the experiment. A subjectivist is unrestricted by the agreed upon
facts and can express any views about an experiment because probabilities are inherently
related to one’s perception. The good news is, this long-standing philosophical debate has
almost no bearing on the use of probability theory in practice. No matter how probabilities
are assigned, and it mostly happens through a combination of subjective and objective
steps, the mechanics of probabilistic manipulations are the same and valid, as long as the
assignments adhere to the axioms of probability.

1.2 Random Variables
Until now we operated on relatively simple sample spaces and produced measure functions
over sets of outcomes. In many situations, however, we would like to use probabilistic
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modeling on sets (e.g., a group of people) where elements can be associated with various
descriptors. For example, a person may be associated with his/her age, height, citizenship,
IQ, or marital status and we may be interested in events related to such descriptors. In
other situations, we may be interested in transformations of sample spaces such as those
corresponding to digitizing an analog signal from a microphone into a set of integers based on
some set of voltage thresholds. The mechanism of a random variable facilitates addressing
all such situations in a simple, rigorous and unified manner.

A random variable is a variable that, from the observer’s point of view, takes values
non-deterministically, with generally di�erent preferences for di�erent outcomes. Mathe-
matically, however, it is defined as function that maps one sample space into another, with a
few technical caveats we will introduce later. Let us motivate the need for random variables.
Consider a probability space (�, A, P ), where � is a set of people and let us investigate the
probability that a randomly selected person Ê œ � is happy (we may assume we have a
diagnostic method to assess any person’s status). We start by defining an event A as

A = {Ê œ � : Status(Ê) = happy}

and simply calculate the probability of this event. This is a perfectly legitimate approach,
but it can be much simplified using the random variable mechanism. We first note that,
technically, our diagnostic method corresponds to a function Status : � æ S that maps
the sample space � to a new binary sample space S = {happy, not happy}. More in-
terestingly, our approach also maps the probability distribution P to a new probability
distribution PStatus that is defined on some sigma algebra of S; say, AStatus (for the map-
ping to work as expected, AStatus has to be the power set of S). We can now see that
we can calculate PStatus({happy}) from the probability of the aforementioned event A; i.e.,
PStatus({happy}) = P (A). This is a cluttered notation so we may wish to simplify it by
using P (Status = happy), where Status is a “random variable”.

We will use capital letters X, Y, . . . to denote random variables (such as Status) and
lowercase letters x, y, . . . to indicate elements (such as “happy”) of the new spaces X , Y . . .
Generally, we will write probabilities as P (X = x), which is a notational relaxation of
P ({Ê : X(Ê) = x}), or P (X Æ x) for P ({Ê : X(Ê) Æ x}) when the co-domain X is contin-
uous. We will also refer to the corresponding probability mass or density functions as p(x)
or pX(x) when we need to be more explicit about the random variable. This will indeed
happen when x takes a particular value; say, for x = 1, we will write pX(1). Before we
proceed to formally define random variables, we shall look at two illustrative examples.

Example 3: Consecutive tosses of a fair coin. Consider a process of three coin tosses and
two random variables, X and Y , defined on the sample space. We define X as the number
of heads in the first toss and Y as the number of heads over all three tosses. Our goal is to
find the probability spaces that are created after the transformations.

First, � = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} and

Ê HHH HHT HTH HTT THH THT TTH TTT
X(Ê) 1 1 1 1 0 0 0 0
Y (Ê) 3 2 2 1 2 1 1 0

Let us only focus on variable Y . Clearly, Y : � æ {0, 1, 2, 3} but we also need to find AY

and PY . To calculate PY , a simple approach is to find its pmf p(y). For example, let us
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calculate pY (2) = PY ({2}) as

PY ({2}) = P (Y = 2)
= P ({Ê : Y (Ê) = 2})
= P ({HHT, HTH, THH})

= 3
8 ,

because of the uniform distribution in the original space (�, A, P ). In a similar way, we can
calculate that P (Y = 0) = P (Y = 3) = 1/8, and that P (Y = 1) = 3/8. In this example, we
took that A = P(�) and AY = P(Y). As a final note, we mention that all the randomness
is defined in the original probability space (�, A, P ) and that the new probability space
(Y, AY , PY ) simply inherits it through a deterministic transformation.

⇤

Example 4: Quantization. Consider (�, A, P ) where � = [0, 1], A = B(�), and P is
induced by a uniform pdf. Define X : � æ {0, 1} as

X(Ê) =
I

0 Ê Æ 0.5
1 Ê > 0.5

and find the transformed probability space.
Technically, we have changed the sample space to X = {0, 1}. For an event space AX =

P(X ) = {?, {0}, {1}, {0, 1}} we would like to understand the new probability distribution
PX . We have

pX(0) = PX({0})
= P (X = 0)
= P ({Ê : Ê œ [0, 0.5]})

= 1
2

and

pX(1) = PX({1})
= P (X = 1)
= P ({Ê : Ê œ (0.5, 1]})

= 1
2

From here we can easily see that PX({0, 1}) = 1 and PX(?) = 0, and so PX is indeed a
probability distribution. Again, PX is naturally defined using P . Thus, we have transformed
the probability space (�, A, P ) into (X , AX , PX).

⇤
The mapping from a continuous � to other continuous samples spaces is slightly more

complicated and will be considered later.
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1.2.1 Formal definition of random variable
We now formally define a random variable. Given a probability space (�, A, P ), a ran-
dom variable X is a function X : � æ X such that for every A œ B (X ) it holds that
{Ê : X (Ê) œ A} œ A. It follows that

PX (A) = P ({Ê : X (Ê) œ A}) .

It is important to mention that, by default, we defined the event space of a random variable
to be the Borel field of X . This is convenient because a Borel field of a countable set � is
its power set. Thus, we are working with the largest possible event spaces for both discrete
and continuous random variables.

Consider now a discrete random variable X defined on (�, A, P ). As we can see from
the previous examples, the probability distribution for X can be found as

p (x) = PX({x})
= P ({Ê : X (Ê) = x})

for ’x œ X . The probability of an event A can be found as

PX (A) = P ({Ê : X (Ê) œ A})
=

ÿ

xœA

p(x)

for ’A ™ X .
The case of continuous random variables is more complicated, but reduces to an ap-

proach that is similar to that of discrete random variables. Here we first define a cumulative
distribution function (cdf) as

FX(t) = PX ({x : x Æ t})
= P ({Ê : X(Ê) Æ t})
= P (X Æ t) ,

where P (X Æ t), as before, presents a minor abuse of notation. If the cumulative distri-
bution function is di�erentiable, the probability density function of a continuous random
variable is defined as

p (x) = dFX (t)
dt

----
t=x

.

Alternatively, if p(x) exists, then

FX (t) =
ˆ

t

≠Œ

p (x) dx,

for each t œ R. Our focus will be exclusively on random variables that have their probability
density functions; however, for a more general view, we should always keep in mind “if one
exists” when referring to pdfs.
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The probability that a random variable will take a value from interval (a, b] can now be
calculated as

PX((a, b]) = P (a < X Æ b)

=
ˆ

b

a

p (x) dx

= FX (b) ≠ FX (a) ,

which follows from the properties of integration.
Suppose now that the random variable X transforms a probability space (�, A, P ) into

(X , B(X ), PX). To describe the resulting probability space, we commonly use probability
mass and density functions inducing PX . For example, if PX is induced by a Gaussian
distribution with parameters µ and ‡2, we use

X : N (µ, ‡2) or X ≥ N (µ, ‡2).

Both notations indicate that the probability density function for the random variable X is

p(x) = 1
Ô

2fi‡2
e≠

1
2‡2 (x≠µ)

2
.

The Gaussian density implicitly defined that X = R. This point however is superficial
because we can always extend the domain of a density function to R and set p(x) = 0
wherever the original function was not defined.

A group of d random variables {Xi}
d

i=1
defined on the same probability space (�, A, P )

is called a random vector or a multivariate (multidimensional) random variable. We have
already seen an example of a random vector provided by random variables (X, Y ) in Exam-
ple 3. A generalization of a random vector to infinite sets is referred to as a random process
or stochastic process; i.e., {Xi : i œ T }, where T is an index set usually interpreted as a set
of time indices. In the case of discrete time indices (e.g., T = N) the random process is
called a discrete-time random process; otherwise (e.g., T = R) it is called a continuous-time
random process. There are many models in machine learning that deal with temporally
connected random variables (e.g., autoregressive models for time series, Markov chains,
hidden Markov models, dynamic Bayesian networks). The language of random variables,
through stochastic processes, nicely enables formalization of these models. Most of these
notes, however, will deal with simpler settings only requiring (i.i.d.) multivariate random
variables.

1.2.2 Joint and marginal distributions
Let us first look at two discrete random variables X and Y defined on the same proba-
bility space (�, A, P ). We define the joint probability distribution p(x, y), or when needed
pXY (x, y), of X and Y as

p(x, y) = P (X = x, Y = y)
= P ({Ê : X(Ê) = x} fl {Ê : Y (Ê) = y}).

We can extend this to a d-dimensional random variable X = (X1, X2, . . . , Xd) and define a
multidimensional probability mass function as p(x) or pX(x), where x = (x1, x2, . . . , xd) is
a vector of values, such that each xi is chosen from some Xi.
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A marginal distribution is defined for a subset of X = (X1, X2, . . . , Xd) by summing
or integrating over the remaining variables. A marginal distribution p (xi) or pXi

(xi) is
defined as

p (xi) =
ÿ

x1

· · ·

ÿ

xi≠1

ÿ

xi+1

· · ·

ÿ

xd

p (x1, . . . , xd) ,

where the j-th variable takes values from Xj . The previous equation directly follows from
Equation (1.1) and is also referred to as sum rule.

In the continuous case, we define a multidimensional cdf as

FX(t) = PX ({x : xi Æ ti, i = 1 . . . d})
= P (X1 Æ t1, X2 Æ t2, . . . , Xd Æ td)

and the probability density function, if it exists, is defined as

p (x) = ˆd

ˆt1 · · · ˆtd

FX (t1, . . . td)
-----
t=x

.

The marginal density pXi
(xi) is defined as

p (xi) =
ˆ

X1
· · ·

ˆ
Xi≠1

ˆ
Xi+1

· · ·

ˆ
Xd

p (x) dx1 · · · dxi≠1dxi+1 · · · dxd

If the sample space for each discrete random variable is seen as a countable subset of R,
then the probability space for any discrete or continuous d-dimensional random variable X
can be defined as (Rd, B(R)d, PX).

Example 5: Three tosses of a fair coin (again). Consider two random variables from
Example 3 and calculate their probability spaces, joint and marginal distributions. Recall
X is the number of heads in the first toss and Y is the number of heads over all three tosses.

A joint probability mass function p(x, y) = P (X = x, Y = y) is shown below
Y

0 1 2 3

X
0 1/8 1/4 1/8 0
1 0 1/8 1/4 1/8

but let us step back for a moment and show how we can calculate it. Let us consider two
sets A = {HHH, HHT, HTH, HTT} and B = {HHT, HTH, THH}, corresponding to the
events that the first toss was heads and that there were exactly two heads over the three
tosses, respectively. Now, let us look at the probability of the intersection of A and B

P (A fl B) = P ({HHT, HTH})

= 1
4

We can represent the probability of the logical statement X = 1 · Y = 2 as

pXY (1, 2) = P (X = 1, Y = 2)
= P (A fl B)
= P ({HHT, HTH})

= 1
4 .
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The marginal probability distribution can be found in a straightforward way as

p (x) =
ÿ

yœY

p (x, y) ,

where Y = {0, 1, 2, 3} . Thus,

pX (0) =
ÿ

yœY

pXY (0, y)

= 1
2 .

We note for the end that in the discrete case we have |X | · |Y| ≠ 1 free parameters (because
the sum must equal 1) to fully describe the joint distribution p(x, y). Asymptotically, this
corresponds to an exponential growth of the number of entries in the table with the number
of random variables (d). For example, if |Xi| = 2 for ’Xi, there are 2d

≠ 1 free elements
in the joint probability distribution. Estimating such distributions from data is intractable
and is one form of the curse of dimensionality.

⇤

1.2.3 Conditional distributions
The conditional probability distribution for two random variables X and Y , p(y|x) or
pY |X(y|x), is defined as3

p(y|x) = p(x, y)
p(x) , (1.3)

where p(x) > 0. For discrete spaces, we know that p(x, y) and p(x) are probabilities,
which gives the interpretation that p(y|x) = P (Y = y|X = x) as a direct consequence of
the product rule from Equation (1.2). For continuous spaces, on the other hand, we shall
consider this formula as a definition for mathematical convenience. Equation (1.3) now
allows us to calculate the posterior probability of an event A, given some observation x, as

P (Y œ A|X = x) =

Y
__]

__[

q
yœA

p(y|x) Y : discrete

´
A

p(y|x)dy Y : continuous

Writing p(x, y) = p(x|y)p(y) = p(y|x)p(x) is called the product rule. The extension to more
than two variables is straightforward. We can write

p(xd|x1, . . . , xd≠1) = p(x1, . . . , xd)
p(x1, . . . , xd≠1) .

By a recursive application of the product rule, we obtain

p(x1, . . . , xd) = p(x1)
dŸ

i=2

p(xi|x1, . . . , xi≠1) (1.4)

3
It is straightforward to verify that p(y|x) sums (integrates) to 1 over all values y œ Y, and thus satisfies

the conditions of a probability mass (density) function.
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which is referred to as the chain rule or general product rule. Using the product rule, we
can derive Bayes’ rule:

p(x|y) = p(y|x)p(x)
p(y) . (1.5)

1.2.4 Independence of random variables
Two random variables are independent if their joint probability distribution can be expressed
as

p (x, y) = p(x) · p(y).

As before, d random variables are (mutually, jointly) independent if a joint probability
distribution of any subset of variables can be expressed as a product of individual (marginal)
probability distributions of its components.

Another, di�erent, form of independence can be found even more frequently in proba-
bilistic calculations. It represents independence between variables in the presence of some
other random variable (evidence); e.g.,

p (x, y|z) = p(x|z) · p(y|z)

and is referred to as conditional independence. Interestingly, the two forms of independence
are unrelated; i.e., neither one implies the other. We show this in two simple examples from
Figure 1.5.

1.2.5 Expectations and moments
Expectations of functions are defined as sums (or integrals) of function values weighted ac-
cording to the probability mass (or density) function. Given a probability space (X , B(X ), PX),
we consider a function f : X æ C and define its expectation function as

E [f(X)] =

Y
__]

__[

q
xœX

f(x)p(x) X : discrete

´
X

f(x)p(x)dx X : continuous

Note that we use a capital X for the random variable (with f(X) the random variable
transformed by f) and lower case x when it is an instance (e.g., p(x) is the probability of a
specific outcome). The capital X in E [f(X)] also specifies that the summation (integration)
is defined over p(x); this will become more important later when we consider multiple
random variables. It can happen that E [f(X)] = ±Œ; in such cases we say that the
expectation does not exist or is not well-defined.4 For f(x) = x, we have a standard
expectation E [X] =

q
xp(x), or the mean value of X. Using f(x) = xk results in the

k-th moment, f(x) = log 1/p(x) gives the well-known entropy function H(X), or di�erential
4
There is sometimes disagreement on terminology, and some definitions allow the expected value to be

infinite, which, for example, still allows the strong law of large numbers. In that setting, an expectation is

not well-defined only if both left and right improper integrals are infinite. For our purposes, this is splitting

hairs. An example of an expectation function that does not exist is the variance of the Pareto distribution

when – œ (0, 2]; thus the scale-free terminology for such distributions.
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Figure 1.5: Independence vs. conditional independence using probability distributions involv-
ing three binary random variables. Probability distributions are presented using factorization
p(x, y, z) = p(x)p(y|x)p(z|x, y), where all constants a, b, c, d, e œ [0, 1]. (A) Variables X and
Y are independent, but not conditionally independent given Z. When c = 0, Z = X ü Y ,
where ü is an “exclusive or” operator. (B) Variables X and Z are conditionally independent
given Y , but are not independent.

30



f(x) Symbol Name

x E[X] Mean

(x ≠ E [X])2 V [X] Variance

xk E[Xk] k-th moment; k œ N

(x ≠ E [X])k E[(X ≠ E [X])k] k-th central moment; k œ N
etx MX(t) Moment generating function

eitx ÏX(t) Characteristic function

log 1

p(x)
H(X) (Di�erential) entropy

log p(x)

q(x)
D(p||q) Kullback-Leibler divergence

1
ˆ

ˆ◊
log p(x|◊)

22

I(◊) Fisher information

Table 1.1: Some important expectation functions E [f(X)] for a random variable X described
by its distribution p(x). Function q(x) in the definition of the Kullback-Leibler divergence
is non-negative and must sum (integrate) to 1; i.e., it is a probability distribution itself.
The Fisher information is defined for a family of probability distributions specified by a
parameter ◊. Note that the moment generating function may not exist for some distributions
and all values of t; however, the characteristic function always exists, even when the density
function does not.

entropy for continuous random variables, and f(x) = (x ≠ E [X])2 gives the variance of a
random variable X, denoted by V [X]. Interestingly, the probability of some event A ™ X

5

can also be expressed in the form of expectation; i.e.,

P (A) = E [1(X œ A)] ,

where

1(t) =
I

1 t is true
0 t is false

(1.6)

is an indicator function. With this, it is possible to express the cumulative distribution
function as FX(t) = E[1(X œ (≠Œ, t])].

Function f(x) inside the expectation can also be complex-valued. For example, ÏX(t) =
E[eitX ], where i is the imaginary unit, defines the characteristic function of X. The charac-
teristic function is closely related to the inverse Fourier transform of p(x) and is useful in
many forms of statistical inference. Several expectation functions are summarized in Table
1.1.

5
This notation is a bit loose; we should say A œ B(X ) instead of A ™ X . We used it to re-emphasize

(through this footnote) that some subsets of continuous sets are not measurable.
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f(x, y) Symbol Name

(x ≠ E [X]) (y ≠ E [Y ]) Cov[X, Y ] Covariance
(x≠E[X])(y≠E[Y ])

Ô
V [X]V [Y ]

Corr[X, Y ] Correlation

log p(x,y)

p(x)p(y)
I(X; Y ) Mutual information

log 1

p(x,y)
H(X, Y ) Joint entropy

log 1

p(x|y)
H(X|Y ) Conditional entropy

Table 1.2: Some important expectation functions E [f(X, Y )] for two random variables,
X and Y , described by their joint distribution p(x, y). Mutual information is sometimes
referred to as average mutual information.

Given two random variables X and Y and a specific value x assigned to X, we define
the conditional expectation as

E [f(Y )|x] =

Y
__]

__[

q
yœY

f(y)p(y|x) Y : discrete

´
Y

f(y)p(y|x)dy Y : continuous

where f : Y æ C is some function. Again, using f(y) = y results in E [Y |x] =
q

yp(y|x) or
E [Y |x] =

´
yp(y|x)dy. We shall see later that under some conditions E [Y |x] is referred to

as the regression function. These types of integrals are often seen and evaluated in Bayesian
statistics.

For two random variables X and Y we also define

E [f(X, Y )] =

Y
__]

__[

q
xœX

q
yœY

f(x, y)p(x, y) X, Y : discrete

´
X

´
Y

f(x, y)p(x, y)dxdy X, Y : continuous

Expectations can also be defined over a single variable

E [f(X, y)] =

Y
__]

__[

q
xœX

f(x, y)p(x) X : discrete

´
X

f(x, y)p(x)dx X : continuous

where E [f(X, y)] is now a function of y.
We define the covariance function as

Cov[X, Y ] = E [(X ≠ E [X]) (Y ≠ E [Y ])]
= E [XY ] ≠ E [X]E [Y ] ,

with Cov[X, X] = V [X] being the variance of the random variable X. Similarly, we define
a correlation function as

Corr[X, Y ] = Cov[X, Y ]


V [X] · V [Y ]
,
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which is simply a covariance function normalized by the product of standard deviations.
Both covariance and correlation functions have wide applicability in statistics, machine
learning, signal processing and many other disciplines. Several important expectations for
two random variables are listed in Table 1.2.

Example 6: Three tosses of a fair coin (yet again). Consider two random variables from
Examples 3 and 5, and calculate the expectation and variance for both X and Y . Then
calculate E [Y |X = 0].

We start by calculating E [X] = 0 · pX(0) + 1 · pX(1) = 1

2
. Similarly,

E [Y ] =
3ÿ

y=0

y · pY (y)

= pY (1) + 2pY (2) + 3pY (3)

= 3
2

The conditional expectation can be found as

E [Y |X = 0] =
3ÿ

y=0

y · pY |X(y|0)

= pY |X(1|0) + 2pY |X(2|0) + 3pY |X(3|0)
= 1

where p(y|x) = p(x, y)/p(x).
⇤

In many situations we need to analyze more than two random variables. A simple
two-dimensional summary of all pairwise covariance values involving d random variables
X1, X2, . . . , Xd is called the covariance matrix. More formally, the covariance matrix is
defined as

� = [�ij ]d
i,j=1

where

�ij = Cov[Xi, Xj ]
= E [(Xi ≠ E [Xi]) (Xj ≠ E [Xj ])]

with the full matrix written as

� = Cov[X, X]
= E[(X ≠ E[X])(X ≠ E(X)€]
= E[XX€] ≠ E[X]E[X]€.

Here, the diagonal elements of a d ◊ d covariance matrix are individual variance values for
each variable Xi and the o�-diagonal elements are the covariance values between pairs of
variables. The covariance matrix is symmetric and positive semi-definite; i.e., � ≤ 0. We
will discuss more about positive semi-definite matrices later in the notes.
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Properties of expectations

Here we review, without proofs, some useful properties of expectations. We can generically
consider multivariate random variables, X œ Rd and Y œ Rd, for d œ N, with univariate
random variables as a special case. We consider the more general case because it will be
useful to start thinking directly in terms of random vectors. For a constant c œ R, it holds
that:

1. E [cX] = cE [X]

2. E [X + Y ] = E [X] + E [Y ]

3. V [c] = 0 Û the variance of a constant is zero

4. V[X] ≤ 0 (i.e., is positive semi-definite), where for d = 1, V[X] Ø 0 is a scalar. Note
that V[X] is shorthand for Cov[X, X].

5. V[cX] = c2V[X].

6. Cov[X, Y ] = E[(X ≠ E[X])(Y ≠ E(Y )€] = E[XY €] ≠ E[X]E[Y ]€

7. V[X + Y ] = V[X] + V[Y ] + 2Cov[X, Y ]

8. Cov[X1 + X2 + . . . + Xm] =
mÿ

i=1

mÿ

j=1

Cov[Xi, Xj ] =
mÿ

i=1

V[Xi] + 2
ÿ

1Æi<jÆm

Cov[Xi, Xj ]

In addition, if X and Y are independent random variables of the same dimension, it holds
that:

1. E [XiYj ] = E [Xi]E [Yj ] for all i, j

2. Cov[X + Y ] = V[X] + V[Y ]

3. Cov[X, Y ] = 0.

1.2.6 Mixtures of distributions
In previous sections we saw that random variables are often described using particular fam-
ilies of probability distributions. This approach can be generalized by considering mixtures
of distributions; i.e., linear combinations of other probability distributions. As before, we
shall only consider random variables that have their probability mass or density functions.

Given a set of m probability distributions, {pi(x)}m

i=1
, a finite mixture distribution

function, or mixture model, p(x) is defined as

p(x) =
mÿ

i=1

wipi(x), (1.7)

where w = (w1, w2, . . . , wm) is a set of non-negative real numbers such that
q

m

i=1 wi = 1. We
refer to w as mixing coe�cients or, sometimes, as mixing probabilities. A linear combination
with such coe�cients is called a convex combination. It is straightforward to verify that a
function defined in this manner is indeed a probability distribution.
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Here we will briefly look into the basic expectation functions of the mixture distribution.
Suppose {Xi}

m

i=1
is a set of m random variables described by their respective probability

distributions {pXi
(x)}m

i=1
. Suppose also that a random variable X is described by a mixture

distribution with coe�cients w and probability distributions {pXi
(x)}m

i=1
. Then, assuming

continuous random variables defined on R, the expectation function is given as

E [f(X)] =
ˆ

+Œ

≠Œ

f(x)pX(x)dx

=
ˆ

+Œ

≠Œ

f(x)
mÿ

i=1

wipXi
(x)dx

=
mÿ

i=1

wi

ˆ
+Œ

≠Œ

f(x)pXi
(x)dx

=
mÿ

i=1

wiE[f(Xi)].

We can now apply this formula to obtain the mean, when f(x) = x and the variance, when
f(x) = (x ≠ E[X])2, of the random variable X as

E[X] =
mÿ

i=1

wiE[Xi],

and

V [X] =
mÿ

i=1

wiV [Xi] +
mÿ

i=1

wi (E[Xi] ≠ E[X])2 ,

respectively. A mixture distribution can also be defined for countably and uncountably
infinite numbers of components. Such distributions, however, are rare in practice.

Example 7: Signal communications. Consider transmission of a single binary digital
signal (bit) over a noisy communication channel shown in Figure 1.6. The magnitude of
the signal X emitted by the source is equally likely to be 0 or 1 Volt. The signal is sent
over a transmission line (e.g., radio communication, optical fiber, magnetic tape) in which
a zero-mean normally distributed noise component Y is added to X. Derive the probability
distribution of the signal Z = X + Y that enters the receiver.

We will consider a slightly more general situation where X : Bernoulli(–) and Y :
Gaussian(µ, ‡2). To find p(z) we will use characteristic functions of random variables X, Y
and Z, written as ÏX(t) = E[eitX ], ÏY (t) = E[eitY ] and ÏZ(t) = E[eitZ ]. Without derivation
we write

ÏX(t) = 1 ≠ – + –eit

ÏY (t) = eitµ≠
‡

2
t
2

2
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Source Channel

Noise

X

Y

Z

Z X Y= +

Receiver

X: Bernoulli(®)

Y : Gaussian(¹  , ¾  )2

Figure 1.6: A digital signal communication system with additive noise.

and subsequently

ÏZ(t) = ÏX+Y (t)
= ÏX(t) · ÏY (t)

=
1
1 ≠ – + –eit

2
· eitµ≠

‡
2

t
2

2

= –eit(µ+1)≠
‡

2
t
2

2 + (1 ≠ –)eitµ≠
‡

2
t
2

2 .

By performing integration on ÏZ(t) we can easily verify that

p(z) = – ·
1

Ô

2fi‡2
e≠

1
2‡2 (z≠µ≠1)

2
+ (1 ≠ –) ·

1
Ô

2fi‡2
e≠

1
2‡2 (z≠µ)

2
,

which is a mixture of two normal distributions N (µ + 1, ‡2) and N (µ, ‡2) with coe�cients
w1 = – and w2 = 1 ≠ –, respectively. Observe that a convex combination of random
variables Z = w1X + w2Y does not imply pZ(x) = w1pX(x) + w2pY (x).

⇤

1.2.7 Graphical representation of probability distributions
We saw earlier that a joint probability distribution can be factorized using the chain rule
from Equation (1.4). Such factorizations can be visualized using a directed graph represen-
tation, where nodes represent random variables and edges depict dependence. For example,

p(x, y, z) = p(x)p(y|x)p(z|x, y)

is shown in Figure 1.7A. Graphical representations of probability distributions using directed
acyclic graphs, together with conditional probability distributions, are called Bayesian net-
works or belief networks. They facilitate interpretation as well as e�ective statistical infer-
ence.

Visualizing relationships between variables becomes particularly convenient when we
want to understand and analyze conditional independence properties of variables. Figure
1.7B shows the same factorization of p(x, y, z) where variable Z is independent of X given
Y . To carefully determine conditional independence and dependence properties, however,
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X

Y
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1
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P Z X Y|( = 1 , )

P X Y( , ) = | |= = , = ( = ) ( = = ) ( = = , = )x y Z z P X x P Y y X x P Z z X x Y y

P X Y( , ) = | |= = , = ( = ) ( = = ) ( = = )x y Z z P X x P Y y X x P Z z Y y

0.3
0.1
0.7
0.4

Y

0
1
0
1

X

Y

Z

P X( = 1)

0.3

P X( = 1)

0.3

X

0
1

P Y X|( = 1 )

0.5
0.9

X

0
1

P Y X|( = 1 )

0.5
0.9

Y

0
1

P Z Y|( = 1 )

0.2
0.7

A. Discrete probability distribution without conditional independences

B. Discrete probability distribution; is conditionally independent of givenZ X Y

Figure 1.7: Bayesian network: graphical representation of two joint probability distribu-
tions for three discrete (binary) random variables (X, Y, Z) using directed acyclic graphs.
The probability mass function p(x, y, z) is defined over {0, 1}

3. (A) Full factorization; (B)
Factorization that shows and ensures conditional independence between Z and X, given Y .
Each node is associated with a conditional probability distribution. In discrete cases, these
conditional distributions are referred to as conditional probability tables.
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X

X

Y

Y

Z

Z

P X Y( ) =|= = ( = )x y P X x

P ( )X x Y y Z z P X x Z z| |= = , = ( = = )

P ( ) =X x Y y Z z P X x Z z| |= = , = ( = = )

P ( ) =Y y X x Z z P Y y Z z| |= = , = ( = = )

A.

B.

X Yis independent of , but not given Z

X Yand are dependent, but conditionally independent given Z

≠

Figure 1.8: Two examples of Bayesian networks. (A) A model where the lack of an edge
between nodes does not indicate independence. Given information about Z, X and Y are
actually dependent; i.e., they are conditionally dependent through Z. (B) A model where
the lack of an edge between nodes does indicate independence. Given information about Z,
X and Y are conditionally independent. We will see this representation later under Naive
Bayes models.

one usually uses the d-separation rules for belief networks. Though often relationships
are intuitive, sometimes dependence properties can get more complicated due to multiple
relationships between nodes. For example, in Figure 1.8A, two nodes do not have an edge,
but are conditionally dependent through another node. On the other hand, in Figure 1.8B,
the absence of an edge does imply conditional independence. We will not further examine d-
separation rules at this time; they can easily be found in any standard textbook on graphical
models.

Belief networks have a simple, formal definition. Given a set of d random variables
X = (X1, . . . , Xd), belief networks factorize the joint probability distribution of X as

p(x) =
dŸ

i=1

p
1
xi|xParents(Xi)

2
,

where Parents(X) denotes the immediate ancestors of node X in the graph. In Figure 1.7B,
node Y is a parent of Z, but node X is not a parent of Z.

It is important to mention that there are multiple (how many?) ways of factorizing a
distribution. For example, by reversing the order of variables p(x, y, z) can be also factorized
as

p(x, y, z) = p(z)p(y|z)p(x|y, z),

which has a di�erent graphical representation and its own conditional probability distribu-
tions, yet the same joint probability distribution as the earlier factorization. Selecting a
proper factorization and estimating the conditional probability distributions from data will
be discussed in detail later.
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X1 X2

X3 X4

X5 X6 X7

X8

X X X X2 3 4, , }
C1

= {X1,

X X X2 5, }
C2

= {

X X6}C3
= {X5,

X X X7 8, }
C4

= {X6,

Figure 1.9: Markov network: graphical representation of a probability distribution using
maximum clique decomposition. Shown is a set of eight random variables with their interde-
pendency structure and maximum clique decomposition (a clique is fully connected subgraph
of a given graph). A decomposition into maximum cliques covers all vertices and edges in
a graph with the minimum number of cliques. Here, the set of variables is decomposed into
four maximal cliques C = {C1, C2, C3, C4}.

Undirected graphs can also be used to factorize probability distributions. The main idea
here is to decompose graphs into maximal cliques C (the smallest set of cliques that covers
the graph) and express the distribution in the following form

p(x) = 1
Z

Ÿ

CœC

ÂC(xC),

where each ÂC(xC) Ø 0 is called the clique potential function and

Z =
ˆ

x

Ÿ

CœC

ÂC(xC)dx,

is called the partition function, used strictly for normalization purposes. In contrast to
conditional probability distributions in directed acyclic graphs, the clique potentials usually
do not have conditional probability interpretations and, thus, normalization is necessary.
One example of a maximum clique decomposition is shown in Figure 1.9.

The potential functions are typically taken to be strictly positive, ÂC(xC) > 0, and
expressed as

ÂC(xC) = exp (≠E(xC)) ,

where E(xC) is a user-specified energy function on the clique of random variables XC . This
leads to the probability distribution of the following form

p(x) = 1
Z

exp
A

ÿ

CœC

log ÂC(xC)
B

.

As formulated, this probability distribution is called the Boltzmann distribution or the
Gibbs distribution.
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The energy function E(x) must be lower for values of x that are more likely. It also may
involve parameters that are then estimated from the available training data. Of course, in a
prediction problem, an undirected graph must be created to also involve the target variables,
which were here considered to be a subset of X.

Consider now any probability distribution over all possible configurations of the random
vector X with its underlying graphical representation. If the following property

p (xi|x≠Xi
) = p

1
xi|xN(Xi)

2
(1.8)

is satisfied, the probability distribution is referred to as Markov network or a Markov random
field. In the equation above

X≠Xi
= (X1, . . . , Xi≠1, Xi+1, . . . , Xd)

and N(X) is a set of random variables neighboring X in the graph; i.e., there exists an edge
between X and every node in N(X). The set of random variables in N(X) is also called
the Markov blanket of X.

It can be shown that every Gibbs distribution satisfies the property from Equation (1.8)
and, conversely, that for every probability distribution for which Equation (1.8) holds can
be represented as a Gibbs distribution with some choice of parameters. This equivalence
of Gibbs distributions and Markov networks was established by the Hammersley-Cli�ord
theorem.
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