
Chapter 2

Basic Principles of Optimization

Much of machine learning deals with learning functions by finding the optimal function
according to an objective. For example, one may be interested in finding a function that
minimizes the squared di�erences to some targets for all the examples; i.e.,

q
n

i=1(f(xi)≠yi)2.
To find such a function, we need to have a basic grasp of optimization techniques.

In this chapter, we discuss basic optimization tools for generic smooth objectives. Many
of the algorithms in machine learning rely on a simple approach called gradient descent. We
will this first discuss how to minimize objectives using both first and second-order gradient
descent. This overview covers only a small part of optimization, but fortunately, many
machine learning algorithms are based on these simple approaches.

2.1 The basic optimization problem and stationary points

A basic optimization goal is to select a set of parameters w œ Rd to minimize a given
objective function c : Rd

æ R
min
wœRd

c(w)

For example, to obtain the parameters w for linear regression that minimizes the squared
di�erences, we use c(w) =

q
n

i=1(Èxi, wÍ ≠ yi)2, for dot product

Èxi, wÍ =
dÿ

j=1

xij , wj .

We use the term objective here, rather than error, since error has an explicit connotation
that the function is inaccurate. Later we will see that objectives will include both error
terms—indicating how accurately they recreate data—as well as terms the provide other
preferences on the function. Combining these terms with the error produces the final
objective we would like to minimize. For example, for linear regression, we will optimize a
regularized objective, c(w) =

q
n

i=1(Èxi, wÍ≠yi)2+
q

d

j=1 w2
j
, where the second term encodes

a preference for smaller coe�cients wj .
The goal then is to find w that minimizes the objective. The most straightforward,

naive solution could be to do a random search; i.e., generate random w and check c(w). If
any newly generated wt on iteration t outperforms the previous best solution w, in that
c(wt) < c(w), then we can set wt to be the new optimal solution. We will assume that our
objectives are continuous, and so can take advantage of this smoothness to design better
search strategies. In particular, for smooth functions, we will be able to use gradient descent,
which we describe in the next section.

Gradient descent enables us to reach stationary points, points w where the gradient is
zero. Consider first the univariate case. The derivative tells us the rate of change of the

41

Local Minima

Global Minima

Saddlepoint

Figure 2.1: Stationary points on a smooth function surface: local minima, global minima
and saddle points.

function surface at a point w. When the derivative of the objective is zero at w œ R; i.e.,
d

dw
c(w) = 0. This means that locally the function surface is flat. Such points correspond

to local minima, local maxima and saddle points, as shown in Figure 2.1. For example,
assume again that we are doing linear regression, with only one feature and so only one
weight w œ R. The derivative of the objective c(w) =

q
n

i=1(xiw ≠ yi)2 is

d

dw
c(w) = d

dw

nÿ

i=1

(xiw ≠ yi)2

=
nÿ

i=1

d

dw
(xiw ≠ yi)2

=
nÿ

i=1

2(xiw ≠ yi)xi

where the last step follows from the chain rule. Our goal is to find w such that d

dw
c(w) = 0;

once we find such a stationary point, we can then determine if it is a local minimum,
local maximum or saddle point. Because this objective is convex, we in fact know that all
stationary points must be global minima, and so we would not need to do this check. We
discuss this further in the last section, where we discuss some properties of objectives.

For the multivariate case, we need to consider gradients instead of derivatives. For
w œ Rd where d > 1, we need to ask: how does the function change locally, depending on
how each element of w is changed? To quantify this, we use the gradient which is composed
of partial derivatives

Òc(w) =
5

ˆc

ˆw1

(w) ˆc

ˆw2

(w) . . .
ˆc

ˆwd

(w)
6

.

Each partial derivative ˆc(w)

ˆwj
represents how the function c changes, when only wj is

changed and the other w1, . . . , wj≠1, wj+1, . . . , wd are kept constant. For example, for

42

c(w = (w1, w2)) = 1

2
(x1w1 + x2w2 ≠ y)2, the partial derivatives are

ˆc

ˆw1

(w) = (x1w1 + x2w2 ≠ y)x1

ˆc

ˆw2

(w) = (x1w1 + x2w2 ≠ y)x2

Usefully, we do not have to consider how the whole vector changes jointly in all the variables.
Rather, it is su�cient to find stationary points by finding w where the partial derivatives
are zero.

2.2 Gradient descent
The key idea behind gradient descent is to approximate the function with a Taylor series
approximation. This approximation facilitates computation of a descent direction locally
on the function surface. We begin by considering the univariate setting, with w œ R. A
function c(w) in the neighborhood of point w0, can be approximated using the Taylor series
as

c(w) =
Œÿ

n=0

c(n)(w0)
n! (w ≠ w0)n,

where c(n)(w0) is the n-th derivative of function c(w) evaluated at point w0. This assumes
that c(w) is be infinitely di�erentiable, but in practice we will take such polynomial approx-
imations for a finite n. A second-order approximation to this function uses the first three
terms of the series as

c(w) ¥ ĉ(w) = c(w0) + (w ≠ w0)cÕ(w0) + 1
2(w ≠ w0)2cÕÕ(w0).

A stationary point of this ĉ(w) can be easily found by finding the first derivative and setting
it to zero

cÕ(w) ¥ cÕ(w0) + (w ≠ w0)cÕÕ(w0) = 0.

Solving this equation for w gives

w1 = w0 ≠
cÕ(w0)
cÕÕ(w0) .

Locally, this new w1 will be an improvement on w0, and will be a stationary point of this
local approximation ĉ. Moving (far enough) from w0, however, makes this local second-
order Taylor series inaccurate. We would need to check the local approximation at this new
point w1, to determine if we can further improve locally. Therefore, to find the optimal w,
we can iteratively apply this procedure

wt+1 = wt ≠
cÕ(wt)
cÕÕ(wt)

. (2.1)

constantly improving wi until we reach a point where the derivative is zero, or nearly zero.
This method is called the Newton-Raphson method, or second-order gradient descent. In

43

(a) Step-size too small (b) Step-size too big (c) Adaptive step-size

Figure 2.2: Di�erent optimization paths, due to di�erent stepsize choices.

first-order gradient descent, the approximation is worse, where we no longer use the second
derivative. Instead, when taking a first-order approximation, we know that we are ignoring
O((w ≠ w0)2) terms, and so the local approximation becomes

c(w) ¥ ĉ(w) = c(w0) + (w ≠ w0)cÕ(w0) + 1
2÷

(w ≠ w0)2

for some constant 1

÷
reflecting the magnitude of the ignored O((w ≠ w0)2) terms. The

resulting update is then, for step-size ÷t

wt+1 = wt ≠ ÷tc
Õ(wt). (2.2)

From this, one can see that, given access to the second derivative, a reasonable choice
for the stepsize is ÷t = 1

cÕÕ(wt)
.

We can similarly obtain such rules for multivariate variables. For example, gradient
descent for c : Rd

æ R consists of the update

wt+1 = wt ≠ ÷tÒc(wt). (2.3)

where
Òc(wt) =

3
ˆc

ˆw1

(wi),
ˆc

ˆw2

(wt), ...,
ˆc

ˆwd

(wt)
4

œ Rd

is the gradient of function c evaluated at wt. We will discuss how to derive this update in
the multivariable setting later in this Chapter.

2.3 Selecting the step-size

An important part of (first-order) gradient descent is to select the step-size. If the step-size
is too small, then many iterations are required to reach a stationary point (Figure 2.2(a));
If the step-size is too large, then you are likely to oscillate around the minimum (Figure 2.2
(b)). What we really want is an adaptive step-size (Figure 2.2 (c)), that likely starts larger
and then slowly reduces over time as a stationary point is approached.

The basic method to obtain adaptive step-sizes is to use line search. The idea springs
from the following goal: we would like to obtain the optimal step-size according to

min
÷œR+

c(wt ≠ ÷Òc(wt))

44

The solution to this optimization corresponds to the best scalar stepsize we could select, for
the current point wt with descent direction ≠Òc(wt). Solving this optimization would be
too expensive; however, we can find approximate solutions quickly. One natural choice is
to use a backtracking line search, that tries the largest reasonable stepsize ÷max, and then
reduces it until the objective is decreased. The idea is to search along the line of possible
÷ œ (0, ÷max], with the intuition that a large step is good—as long as it does not overshoot.
If it does overshoot, then the stepsize was too large, and should be reduced. The reduction
is typically according to the rule ·÷ for some · œ [0.5, 0.9]. For · = 0.5, the stepsize
reduces more quickly—halves on each step of the backtracking line search; for · = 0.9, the
search more slowly backtracks from ÷max. As soon as a stepsize is found that decreases the
objective, it is accepted. We then obtain a new wt, again compute the gradient and start
the line search once again from ÷max.

One can imagine better strategies for selecting the stepsize than this simplistic search;
we will in fact discuss some of these in Section 3.5. Nonetheless, this basic line search—an
improvement therein—remains a common approach for selecting the stepsize.

Algorithm 1: Line Search(wt, c, g = Òc(wt))
1: Optimization parameters: ÷max = 1.0, · = 0.7, tolerance Ω 10e≠4

2: ÷ Ω ÷max

3: w Ω wt

4: obj Ω c(w)
5: while number of backtracking iterations is less than maximum iterations do
6: w Ω wt ≠ ÷g
7: // Ensure improvement is at least as much as tolerance
8: If c(w) < obj - tolerance then break
9: // Else, the objective is worse and so we decrease stepsize

10: ÷ Ω ·÷
11: if maximum number of iterations reached then
12: // Could not improve solution
13: return wt, ÷ = 0
14: return w, ÷

2.4 Optimization properties
There are several optimization properties to keep in mind when reading this handbook,
which we highlight here.

Maximizing versus minimizing We have so far discussed the goal of minimizing an
objective; an equivalent alternative is to maximize the negative of this objective.

argmin
wœRd

c(w) = argmax
wœRd

≠c(w)

where argmin returns w that produces the minimum value of c(w) and argmax returns
w that produces the maximum value of ≠c(w). The actual min and max values are not

45

the same, since for a given optimal solution, c(w) ”= ≠c(w). We opt to formulate each of
our optimizations as a minimization, and do gradient descent. It would be equally valid,
however, to formulate the optimizations as maximizations, and do gradient ascent.

Convexity A function c : Rd
æ R is said to be convex if for any w1, w2 œ Rd and

t œ [0, 1],
c(tw1 + (1 ≠ t)w2) Æ tc(w1) + (1 ≠ t)c(w2) (2.4)

This definition means that when we draw a line between any two points on the function
surface, the function values between these two points all lie below this line. Convexity is
an important property, because it means that every stationary point is a global minimum.
Therefore, regardless of where we start our gradient descent, with appropriately chosen
stepsize and su�cient iterations, we will reach an optimal solution.

A corresponding definition is a concave function, which is precisely the opposite: all
points lie above the line. For any convex function c, the negative of that function ≠c is a
concave function.

Uniqueness of the solution We often care if there is more than one solution to our
optimization problem. In some cases, we care about identifiability, which means we can
identify the true solution. If there is more than one solution, one might consider that
the problem is not precisely posed. For some problems, it is important or even necessary
to have identifiability (e.g., estimating the percentage of people with a disease) whereas
for other we simply care about finding a suitable (predictive) function f that reasonably
accurately predicts the targets, even if it is not the unique such function. We will not
consider identifiability further in this document, but it is important to be cognizant of if
your objective has multiple solutions.

Equivalence under a constant shift Adding or multiplying by a constant a ”= 0 does
not change the solution

argmin
wœRd

c(w) = argmin
wœRd

a c(w) = argmin
wœRd

c(w) + a.

You can see why by taking the gradient of all three objectives and noticing that the gradient
is zero under the same conditions

Òa c(w) = 0 ≈∆ aÒc(w) = 0 ≈∆ Òc(w) = 0

and
Ò(c(w) + a) = 0 ≈∆ Òc(w) = 0.

46

Chapter 3

More advanced optimization principles

Given the optimization background in Chapter 2, and seeing how it is useful in the following
chapters, we can now turn to more advanced optimization approaches. We will now discuss
more in-depth how we obtain the second-order gradient descent update for the multivariate
case. We then discuss some computational improvements on these methods, particularly
through the use of improved step-size selection techniques, by using stochastic gradient
descent and some small modifications to deal with non-di�erentiable points. Finally, we will
also provide some basics on constrained optimization. When moving to the multivariate
case, it will be useful to get used to multivariate calculus. We provide some basic rules in
Section A.1; a more complete reference for these rules can be found in the (highly useful)
matrix cookbook [15].

3.1 Multivariate gradient descent
We can generalize the discussion on obtaining the gradient descent update in Section 2.2
from the univariate case to the multivariate case using the multivariate Taylor series ap-
proximation. The second-order Taylor approximation for a real-valued function of multiple
variables can be written as

c(w) ¥ ĉ(w) = c(w0) + Òc(w0)€(w ≠ w0) + 1
2 (w ≠ w0)€ Hc(w0) (w ≠ w0) ,

where
Òc(w0) =

3
ˆc

ˆw1

(w0), ˆc

ˆw2

(w0), ...,
ˆc

ˆwd

(w0)
4

œ Rd

is the gradient of function c evaluated at w0 and

Hc(w0) =

S

WWWWWWU

ˆ
2
c

ˆw
2
1
(w0) ˆ

2
c

ˆw1ˆw2
(w0) · · ·

ˆ
2
c

ˆw1ˆwd

(w0)
ˆ

2
c

ˆw2ˆw1
(w0) ˆ

2
c

ˆw
2
2
(w0)

...
... . . .

ˆ
2
c

ˆwdˆw1
(w0) . . . ˆ

2
c

ˆw
2
d

(w0)

T

XXXXXXV
œ Rd◊d

is the Hessian matrix of function c evaluated at w0. We provide some intuition for the
Hessian in the next section, but here it can be intuitively considered analogous to the
second derivative. Like the second derivative, it provides information about the curvature
of the function, and so provides useful information about how much to step in the direction
of the gradient for each wi.

47

As a reminder about matrix-vector multiplication, the product of a d ◊ d matrix H and
d◊1 vector w is a d◊1 vector Hw. Then, taking w€Hw is the dot product between a 1◊d
vector w€ and d ◊ 1 vector Hw, resulting in a scalar. For matrix-vector multiplication,

Hw =

S

WWWWU

H1:

H2:

...
Hd:

T

XXXXV
w =

S

WWWWU

H1:w
H2:w

...
Hd:w

T

XXXXV
=

S

WWWWU

ÈH1:, wÍ

ÈH2:, wÍ

...
ÈHd:, wÍ

T

XXXXV

When performing matrix-vector multiplication, you can just imagine the vector w turning
sideways and multiplying each row of H. For matrix-matrix multiplication, AB, you have to
ensure that the second dimension of A equals the first dimension of B. The matrix-matrix
multiplication decomposes into matrix-vector multiplication, for each column of B.

As before, to get the incremental update, we can take the gradient of this approximation
and obtain the (local) stationary point. Using the basic rules summarized below in Section
A.1, the gradient of ĉ(w) is

Òĉ(w) = Òc(w0) + Hc(w0) (w ≠ w0) .

Again, we want to find w1 such that this gradient is zero. If you are not yet familiar with the
inverse of a matrix, this will be discussed more in later sections of these notes (particularly
for linear regression in Chapter 6). For now, to solve for Hc(w0) (w ≠ w0) = ≠Òc(w0),
one can compute the inverse H≠1

c(w0)
and multiply both sides of the equation by this inverse.

This is again analogous to the inverse of a scalar: h≠1h = 1. The corresponding multivariate
update, extended beyond Equation (2.1) for the scalar case, is

wi+1 = wi ≠

1
Hc(wi)

2≠1
Òc(wi). (3.1)

In Equation 3.1, both gradient and Hessian are evaluated at point wi.
The size of the Hessian makes the choice between first-order and second-order gradient

descent less obvious in the multivariate case. Unlike the scalar setting, computing the
Hessian itself is expensive (quadratic in the size of w) and it is further even more expensive
to compute the inverse of the Hessian. For this reason, more light-weight first-order updates
are often preferred. For example, if computing the Hessian costs O(d2n) as it does for the
linear regression objective, then the computational complexity of the second-order gradient
descent is O(d3 + d2n) in each iteration, assuming O(d3) time for finding matrix inverses.
On the other hand, again for linear regression, the computational complexity for first-order
gradient descent is only O(dn) per iteration.

The first order update for the multivariate case is an even greater approximation, because
the whole Hessian is approximated with a scalar 1

÷
(making the Hessian approximation a

diagonal matrix with 1

÷
on the diagonal). The gradient of the first-order approximation

then becomes
Òĉ(w) = Òc(w0) + 1

÷
(w ≠ w0)

and the resulting first-order update is

wi+1 = wi ≠ ÷iÒc(wi). (3.2)

The selection of this step-size is an important consideration. We have already discussed one
basic strategy to select the step-size; in Section 3.5, we discuss a few more.

48

3.2 Properties of the Hessian
Like the second-derivative, the Hessian reflects the curvature of the function at the point
w0. Each entry reflects how the partial derivative for wj changes when wi is changed.

For additional intuition, consider the directional derivative. The directional derivative
reflects how a (multivariate) function changes when stepping a small amount t in some fixed
direction u

lim
tæ0

c(w + tu) ≠ c(w)
t

.

Once we restrict ourselves to how the function changes in this one direction, it is easier
to imagine and it allows us to use the familiar second derivative rules for the univariate
setting. Let

w(t) = w + tu
g(t) = c(w(t)).

We can use the chain rule on g(t) to compute the derivative w.r.t. t.

gÕ(t) = Òc(w(t))€
ˆ(w(t))

ˆt
= Òc(w(t))€u

gÕ(0) = Òc(w(0))€u
= Òc(w)€u = 0

where the last equality occurs because w is a stationary point and so Òc(w) = 0. The
second derivative is

gÕÕ(t) = ˆ(w(t))
ˆt

€

Hc(w(t))

ˆ(w(t))
ˆt

= u€Hc(w(t))u
gÕÕ(0) = u€Hc(w)u

For this stationary point w (corresponding to t = 0) to be a local minimum, gÕÕ(0) has to
satisfy the second derivative test: gÕÕ(0) > 0. This test is only satisfied if Hc(w) is positive
definite, by definition of a positive definite matrix. Recall that a positive-definite matrix
H is one for which, given any u ”= 0, u€Hu > 0, or equivalently, has all eigenvalues
greater than zero. Since u was an arbitrary direction away from w, the Hessian must be
positive-definite to ensure that gÕÕ(0) > 0 for all u ”= 0.

The eigenvalues of the Hessian, therefore, reflect the curvature of the function locally.
If Hc(w) has a very small eigenvalue ⁄, then the corresponding eigenvector u—satisfying
Hc(w)u = ⁄u—is a direction away fro w where the function is almost flat. This is because
gÕÕ(0) = u€Hc(w)u = ⁄ÎuÎ

2
2 = ⁄ is very small.

Example 8: We can now consider the Hessian Hc(w) for the linear regression solution. This
Hessian will enable us to verify if we indeed found a local minimum, of if instead we found
a stationary point that is a local maximum or a saddle point. The Hessian is

Hc(w) = 2X€X.

49

This Hessian is positive semi-definite matrix. To see why, consider that for any vector
w ”= 0,

w€X€Xw = (Xw)€Xw = ÎXwÎ
2

2
Ø 0

where equality can only happen—for some w—if the columns of X are linearly dependent.
Since the Hessian is positive semi-definite for every w, this verifies the convexity of c(w).
Furthermore, if the columns of x are linearly independent, the Hessian is positive definite,
which implies that the global minimum is unique. ⇤

3.3 Handling big data sets
One common approach to handling big datasets is to use stochastic approximation, where
samples are processed incrementally. To see how this would be done, let us revisit the
gradient of the objective function, Òc(w). We obtained a closed form solution for Òc(w) =
0; however, for many other objective functions, solving for Òc(w) = 0 in a closed form way
is not possible. Instead, we start at some initial w0 (typically random), and then step in the
direction of the negative of the gradient until we reach a local minimum. This approach is
called gradient descent and is summarized in Algorithm 2. Notice that here the gradient is
normalized by the number of samples n, as X€(Xw ≠ y) grows with the number of samples
and makes it more di�cult to select the stepsize.

Algorithm 2: Batch Gradient Descent(c, X, y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w Ω random vector in Rd

3: err Ω Œ

4: tolerance Ω 10e≠4

5: max iterations Ω 10e5

6: while |c(w) ≠ err| > tolerance and have not reached max iterations do
7: err Ω c(w) Û for linear regression, c(w) = 1

2n
ÎXw ≠ yÎ

2
2

8: g Ω Òc(w) Û for linear regression, Òc(w) = 1

n
X€(Xw ≠ y)

9: // The step-size ÷ could be chosen by line-search, as in Algorithm 1
10: ÷ Ω line search(w, c, g)
11: w Ω w ≠ ÷g
12: return w

For a large number of samples n, however, computing the gradient across all samples can
be expensive or infeasible. An alternative is to approximate the gradient less accurately
with fewer samples. In stochastic approximation, we typically approximate the gradient
with one sample1, as in Algorithm 3. Though this approach may appear to be too much of
an approximation, there is a long theoretical and empirical history indicating its e�ectiveness
(see for example [5, 4]). With ever increasing data-set size for many scenarios, the generality
of stochastic approximation makes it arguably the modern approach to dealing with big
data. For specialized scenarios, there are of course other approaches. For one example, see
[16].

1
Mini-batches are a way to obtain a better approximation but remain e�cient.

50

The training algorithm for stochastic gradient descent can now be revised to randomly
draw one data point at a time from D and then update the current weights using the
previous equation. Typically, in practice, this entails iterating one or more times over the
dataset in order (assuming it is random, with i.i.d. samples). Each iteration over the dataset
is called an epoch. The conditions for convergence typically include conditions on the step-
sizes, requiring them to decrease over time. As with batch gradient descent, these stochastic
gradient descent updates will converge, though with more oscillation around the true weight
vector, with the decreasing step-size progressively smoothing out these oscillations.

Algorithm 3: Stochastic Gradient Descent(c, X, y)
1: w Ω random vector in Rd

2: for i = 1, . . . number of epochs do
3: Shu�e data points from 1, . . . , n
4: for j = 1, . . . , n do
5: g Ω Òcj(w) Û for linear regression, Òcj(w) = (x€

j
w ≠ yj)xj

6: // For convergence, the step-size ÷t needs to decrease with time, such as
7: // ÷t = ÷0t≠1/2 or ÷t = ÷0i≠1 for an initial ÷0 (e.g., ÷0 = 1.0).
8: // In practice, it is common to pick a fixed, small stepsize
9: ÷t Ω i≠1

10: w Ω w ≠ ÷tg
11: return w

3.4 Non-smooth but still continuous optimization
We assume throughout these notes that our objectives are continuous. However, this need
not mean that they are smooth: in some cases, these continuous objectives may have non-
di�erentiable points. For example, the ¸1 regularizer is non-di�erentiable at 0, making
ÎXw≠yÎ

2
2 +⁄ÎwÎ1 non-di�erentiable. One strategy is to use sub-gradient descent; loosely,

this amounts to selecting a reasonable choice for the gradient at the non-di�erentiable point.
Here, for example, we could take the partial derivative of ¸1 for wj to be zero at zero, -1 for
wj < 0 and 1 for wj > 0. Unfortunately, this descent is slow because there is a tendency
to jump around zero. Unlike ¸2, the gradient does not gradually decrease near zero, slowly
decreasing wj , but rather jumps between two large values ≠1 and 1. With such large
gradient, it is di�cult to gradually decrease wj to zero, even if that is the optimal solution.

One alternative for such non-smooth objectives is to use proximal methods. The idea
is simple: use gradient descent for the smooth component of the optimization (the error
term ÎXw ≠ yÎ

2
2), and then for values in w that are close to zero, set them to zero. This

thresholding idea, though simple, is a theoretically sound approach for optimizing with the
non-smooth ¸1. This thresholding operator is called the proximal operator, and can be
seen as a projection operator. Each time w is updated with the gradient, it moves it away
from a sparse solution; the proximal operator then projects w back onto the space of sparse
solutions. The proximal operator for ¸1 is applied element-wise to w, and so is defined on

51

each wi as, with stepsize ÷ and regularization parameter ⁄,

prox÷⁄¸1(wi) =

Y
_]

_[

wi ≠ ÷⁄ if wi > ÷⁄
0 if |wi| Æ ÷⁄
wi + ÷⁄ if wi < ≠÷⁄.

The proximal operator on the entire vector w is defined element-wise: prox÷⁄¸1(w) =
[prox÷⁄¸1(w1), . . . , prox÷⁄¸1(wd)]. Nicely, the theory states that the stepsize should be no
larger than the inverse of the Lipschitz constant for the smooth part of the objective, where
intuitively the Lipschitz constants reflects how quickly the function changes. In Algorithm
4, we provide a gradient descent algorithm for the incremental update with the ¸1 regu-
larizer, introduced as an algorithm called ISTA [3]. More generally, proximal methods are
used for other non-smooth objectives, though in these notes we only consider Lasso.

Algorithm 4: Batch gradient descent for ¸1 regularized linear regression (X, y, ⁄)
1: w Ω 0 œ Rd

2: err Ω Œ

3: tolerance Ω 10e≠4

4: // Precomputing these matrices, to avoid recomputing them in the loop
5: XX Ω

1

n
X€X

6: Xy Ω
1

n
X€y

7: // This stepsize is specific to the least-squares loss for linear regression
8: ÷ Ω 1/(2ÎXXÎF)
9: while |c(w) ≠ err| > tolerance and have not reached max iterations do

10: err Ω c(w)
11: // Proximal operator projects back into the space of sparse solutions given by ¸1

12: w Ω prox÷⁄¸1(w ≠ ÷XXw + ÷Xy)
13: return w

3.5 More methods to select the step-size
Because selecting the step-size is such an important part of an e�ective descent algorithm,
there are many ways to do so. In addition to line search, one of the most popular methods is
to use quasi-second-order (or quasi-Newton) methods. As we saw, the inverse of the Hessian
provides a good way to select the stepsize, but is typically too expensive to compute let
alone invert. Quasi-second-order methods approximate the Hessian, with as little storage
and computation as possible. One of the simplest such approximations is to approximate
only the diagonal of the Hessian, and the invert it, which only costs O(d) computation and
space. Such an approximation is typically quite poor for even the diagonal of the inverse
Hessian, and so is not commonly used. Instead, the most popular methods include LBFGS
[13], Adadelta [19] and Adam [10].

52

