
Chapter 6

Linear Regression

Given a data set D = {(xi, yi)}n

i=1
the objective is to learn the relationship between features

and the target. We usually start by hypothesizing the functional form of this relationship.
For example,

f(x) = w0 + w1x1 + w2x2

where w = (w0, w1, w2) is a set of parameters that need to be determined (learned) and
x = (x1, x2). Alternatively, we may hypothesize that f(x) = –+—x1x2, where ◊ = (–, —) is
another set of parameters to be learned. In the former case, the target function is modeled
as a linear combination of features and parameters; i.e.,

f(x) =
dÿ

j=0

wjxj ,

where we extended x to (x0 = 1, x1, x2, . . . , xd). This same expression can be written in
the algebraic form as f(x) = x€w. Finding the best parameters w is then referred to as
linear regression problem, whereas all other types of relationship between the features and
the target fall into a category of non-linear regression. In either situation, the regression
problem can be presented as a probabilistic modeling approach that reduces to parameter
estimation; i.e., to an optimization problem with the goal of maximizing or minimizing
some performance criterion between target values {yi}

n

i=1
and predictions {f(xi)}n

i=1
. We

can think of a particular optimization algorithm as the learning or training algorithm.

6.1 Maximum likelihood formulation
We shall now consider a statistical formulation of linear regression. We first lay out the
assumptions behind this process and subsequently formulate the problem through max-
imization of the conditional likelihood function. In the following section, we will show
how to solve the optimization problem and analyze the solution and its basic statistical
properties.

Let us assume that the observed data set D is a product of a data generating process in
which n data points were drawn independently and according to the same distribution p(x).
Let us also assume that the target variable Y has an underlying linear relationship with
features X = (X1, X2, . . . , Xd), modified by some error term Á that follows a zero-mean
Gaussian distribution; i.e., Á : N (0, ‡2). That is, for a given input x, the target y is a
realization of a random variable Y defined as

Y =
dÿ

j=0

ÊjXj + Á,

82

where Ê = (Ê0, Ê1, . . . , Êd) is a set of unknown coe�cients we will seek to estimate. Gen-
erally, the assumption of normality for the error term is reasonable (recall the central limit
theorem!), although the independence between Á and X may not hold in practice. Using
a few simple properties of expectations, we can see that Y also follows a Gaussian dis-
tribution; i.e., its conditional density is p(y|x, Ê) = N (µ, ‡2), where µ is expressed in an
algebraic notation as Ê€x.

In linear regression, we seek to approximate the target as f(x) = w€x, where weights
w are to be determined. We first write the conditional likelihood function for a single pair
(x, y) as

p(y|x, w) = 1
Ô

2fi‡2
exp

Q

ca≠

1
y ≠

q
d

j=0 wjxj

22

2‡2

R

db ,

where we use the notation exp(a) = ea, to make the exponent easier to read. Observe that
the only change from the conditional density function of Y is that coe�cients w are used
instead of Ê. Incorporating the entire data set D = {(xi, yi)}n

i=1
, we can now write the

conditional likelihood function as p(y|X, w), where X is the data matrix, and find weights
as

wML = arg max
w

{p(y|X, w)} .

Since the n examples are independent and identically distributed (i.i.d.), we have

p(y|X, w) =
nŸ

i=1

p(yi|xi, w)

=
nŸ

i=1

1
Ô

2fi‡2
exp

Q

ca≠

1
yi ≠

q
d

j=0 wjxij

22

2‡2

R

db .

For the reasons of mathematical convenience, we will look at the logarithm (monotonic
function) of the likelihood function and express the log-likelihood as

ln(p(y|X, w)) = ≠

nÿ

i=1

log
1Ô

2fi‡2

2
≠

1
2‡2

nÿ

i=1

Q

ayi ≠

dÿ

j=0

wjxij

R

b
2

.

Given that the first term on the right-hand hand side is independent of w, maximizing the
likelihood function corresponds exactly to minimizing the sum of squared errors

Err(w) =
nÿ

i=1

(f(xi) ≠ yi)2 Û f(xi) =
dÿ

j=0

wjxij

=
nÿ

i=1

e2

i .

Geometrically, this error is the square of the Euclidean distance between the vector of
predictions ŷ = (f(x1), f(x2), . . . , f(xn)) and the vector of observed target values y =
(y1, y2, . . . , yn). A simple example illustrating the linear regression problem is shown in
Figure 6.1.

83

x

y

f x()

(,)x y1 1

(,)x y2 2

e f x y1 1 1= () {

Figure 6.1: An example of a linear regression fitting on data set D =
{(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}. The task of the optimization process is to find the best
linear function f(x) = w0 + w1x so that the sum of squared errors e2

1 + e2
2 + e2

3 + e2
4 is

minimized.

To more explicitly see why the maximum likelihood solution corresponds to minimizing
Err(w), notice that maximizing the likelihood is equivalent to maximizing the log-likelihood
(because log is monotonic) which is equivalent to minimizing the negative log-likelihood.
Therefore, the maximum likelihood wML corresponds to

wML = argmin
wœRd

≠ ln(p(y|X, w))

= argmin
wœRd

nÿ

i=1

log
1Ô

2fi‡2

2
+ 1

2‡2

nÿ

i=1

Q

ayi ≠

dÿ

j=0

wjxij

R

b
2

= argmin
wœRd

nÿ

i=1

Q

ayi ≠

dÿ

j=0

wjxij

R

b
2

= argmin
wœRd

Err(w)

In the next sections, we will discuss how to solve this optimization and the properties of
the solution.

Note that we could have simply started with some expert-defined error function and
solved the optimization problem. However, the statistical framework provides insights into
the assumptions behind OLS regression. In particular, the assumptions include that the
data D was drawn i.i.d.; there is an underlying linear relationship between features and the
target; that the noise (error term) is zero-mean Gaussian and independent of the features;
and that there is an absence of noise in the collection of features.

84

6.2 Ordinary Least-Squares (OLS) Regression

To minimize the sum of squared errors, we shall first re-write Err(w) as

Err(w) =
nÿ

i=1

(f(xi) ≠ yi)2

=
nÿ

i=1

Q

a
dÿ

j=0

wjxij ≠ yi

R

b
2

,

where, again, we expanded each data point xi by xi0 = 1 to simplify the expression.
We now calculate the gradient ÒErr(w). Finding weights for which ÒErr(w) = 0 will

result in a stationary point. To ensure that this stationary point is a global minimum, we
need a bit more information. We can look at the second derivative; this requires under-
standing of Hessian, so we include this later in the notes in Example 8. But, fortunately,
it is even simpler here, since we know that this objective is convex in w; therefore, any
stationary point will be a global minimum.

Now, we set the partial derivatives to 0 and solve the equations for each weight wj

ˆErr
ˆw0

= 2
nÿ

i=1

Q

a
dÿ

j=0

wjxij ≠ yi

R

b xi0 = 0

ˆErr
ˆw1

= 2
nÿ

i=1

Q

a
dÿ

j=0

wjxij ≠ yi

R

b xi1 = 0

...

ˆErr
ˆwd

= 2
nÿ

i=1

Q

a
dÿ

j=0

wjxij ≠ yi

R

b xik = 0

This results in a system of d+1 linear equations with d+1 unknowns that can be routinely
solved (e.g., by using Gaussian elimination).

While this formulation is useful, it does not allow us to obtain a closed-form solution
for w or discuss the existence and multiplicity of solutions. To address the first point we
will exercise some matrix calculus, while the remaining points will be discussed later. We
will first write the sum of square errors using the matrix notation as

Err(w) = (Xw ≠ y)€ (Xw ≠ y)
= ÎXw ≠ yÎ

2

2
,

where ÎvÎ
2

=
Ô

v€v =
Ò

v2
1

+ v2
2

+ . . . v2
n is the length of vector v; it is also called the ¸2

norm. We can now formalize the ordinary least-squares (OLS) linear regression problem as

wML = arg min
w

ÎXw ≠ yÎ
2

2
.

85

We proceed by finding ÒErr(w). The gradient function ÒErr(w) is a derivative of a scalar
with respect to a vector. However, the intermediate steps of calculating the gradient require
derivatives of vectors with respect to vectors (some of the rules of such derivatives are shown
in Table A.1). Application of the rules from Table A.1 results in

ÒErr(w) = 2X€Xw ≠ 2X€y

and, therefore, from ÒErr(w) = 0 we find that

wML = (X€X)≠1X€y. (6.1)

We can now express the predicted target values as

ŷ = XwML

= X(X€X)≠1X€y.

The matrix X(X€X)≠1X€ is called the projection matrix; we will see later that it projects
y to the column space of X.

Example 14: Consider again data set D = {(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)} from Figure
6.1. We want to find the optimal coe�cients of the least-squares fit for f(x) = w0 + w1x
and then calculate the sum of squared errors on D after the fit.

The OLS fitting can now be performed using

x =

S

WWWU

1 1
1 2
1 3
1 4

T

XXXV , w =
C

w0

w1

D

, y =

S

WWWU

1.2
2.3
2.3
3.3

T

XXXV ,

where a column of ones was added to x to allow for a non-zero intercept (y = w0 when
x = 0). Substituting x and y into Eq. (6.1) results in w = (0.7, 0.63) and the sum of square
errors is Err(w) = 0.223. ⇤

As seen in the example above, it is a standard practice to add a column of ones to
the data matrix x in order to ensure that the fitted line, or generally a hyperplane, does
not have to pass through the origin of the coordinate system. This e�ect, however, can be
achieved in other ways. Consider the first component of the gradient vector

ˆErr
ˆw0

= 2
nÿ

i=1

Q

a
dÿ

j=0

wjxij ≠ yi

R

b xi0 = 0

where, because xi0 = 1 by definition, we obtain that

0 =
nÿ

i=1

Q

a
dÿ

j=0

wjxij ≠ yi

R

b =
nÿ

i=1

Q

aw0 +
dÿ

j=1

wjxij ≠ yi

R

b

giving

nÿ

i=1

w0 =
nÿ

i=1

yi ≠

dÿ

j=1

wj

nÿ

i=1

xij .

86

When all features (columns of X) are normalized to have zero mean, i.e. when
q

n

i=1 xij = 0
for any column j, it follows that

w0 = 1
n

nÿ

i=1

yi.

We see now that if the target variable is normalized to the zero mean as well, it follows that
w0 = 0 and that the column of ones is not needed.

6.2.1 Weighted error function
In some applications it is useful to consider minimizing the weighted error function

Err(w) =
nÿ

i=1

ci

Q

a
dÿ

j=0

wjxij ≠ yi

R

b
2

,

where ci > 0 is a cost for data point i. Expressing this in a matrix form, the goal is to
minimize (Xw ≠ y)€ C (Xw ≠ y), where C = diag (c1, c2, . . . , cn). Using a similar approach
as above, it can be shown that the weighted least-squares solution wC can be expressed as

wC =
1
X€CX

2≠1
X€Cy.

In addition, it can be derived that

wC = wML +
1
X€CX

2≠1
X€ (I ≠ C) (XwML ≠ y) ,

where wML is provided by Eq. (6.1). We can see that the solutions are identical when
C = I, but also when XwML = y.

6.2.2 Predicting multiple outputs simultaneously
The extension to multiple outputs is straightforward, where now the target is an m-
dimensional vector, y œ Rm, rather than a scalar, giving target matrix Y œ Rn◊m. Corre-
spondingly, the weights W œ Rd◊m to give W€x œ Rm, with error

Err(W) = ÎXW ≠ YÎ
2

F
=

nÿ

i=1

ÎXi,:W ≠ Yi,:Î
2

2 Û Frobenius norm

= trace
1
(XW ≠ Y)€(XW ≠ Y)

2

and solution

WML = (X€X)≠1X€Y.

Exercise: Derive this solution, by taking partial derivatives or, preferably, by using gradient
rules for matrix variables. A good resource for matrix gradients is the matrix cookbook
[15].

87

6.3 An Algebraic Perspective
Another powerful tool for analyzing and understanding linear regression comes from linear
and applied linear algebra. In this section we take a detour to address fundamentals of
linear algebra and then apply these concepts to deepen our understanding of regression. In
linear algebra, we are frequently interested in solving the following set of equations, given
below in a matrix form

Ax = b. (6.2)

Here, A is an m ◊ n matrix, b is an m ◊ 1 vector, and x is an n ◊ 1 vector that is to be
found. All elements of A, x, and b are considered to be real numbers. We shall start with
a simple scenario and assume A is a square, 2 ◊ 2 matrix. This set of equations can be
expressed as

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

For example, we may be interested in solving

x1 + 2x2 = 3
x1 + 3x2 = 5

This is a convenient formulation when we want to solve the system, e.g. by Gaussian
elimination. However, it is not a suitable formulation to understand the question of the
existence of solutions. In order for us to do this, we briefly review the basic concepts in
linear algebra.

6.3.1 The four fundamental subspaces
The objective of this section it to briefly review the four fundamental subspaces in linear
algebra (column space, row space, nullspace, left nullspace) and their mutual relationship.
We shall start with our example from above and write the system of linear equations as

C
1
1

D

x1 +
C

2
3

D

x2 =
C

3
5

D

.

We can see now that by solving Ax = b we are looking for the right amounts of vectors
(1, 1) and (2, 3) so that their linear combination produces (3, 5); these amounts are x1 = ≠1
and x2 = 2. Let us define a1 = (1, 1) and a2 = (2, 3) to be the column vectors of A;
i.e. A = [a1 a2]. Thus, Ax = b will be solvable whenever b can be expressed as a linear
combination of the column vectors a1 and a2.

All linear combinations of the columns of matrix A constitute the column space of A,
C(A), with vectors a1 . . . an being a basis of this space. Both b and C(A) lie in the m-
dimensional space Rm. Therefore, what Ax = b is saying is that b must lie in the column
space of A for the equation to have solutions. In the example above, if columns of A are
linearly independent1, the solution is unique; i.e., there exists only one linear combination

1
As a reminder, two vectors are independent if their linear combination is zero only when both x1 and

x2 are zero.

88

of the column vectors that will give b. Otherwise, because A is a square matrix, the system
has no solutions. An example of such a situation is

C
1 2
1 2

D C
x1

x2

D

=
C

3
5

D

,

where a1 = (1, 1) and a2 = (2, 2). Here, a1 and a2 are (linearly) dependent because
2a1 ≠ a2 = 0. There is a deep connection between the spaces generated by a set of vectors
and the properties of the matrix A. For now, using the example above, it su�ces to say
that if a1 and a2 are independent the matrix A is non-singular (singularity can be discussed
only for square matrices), that is of full rank.

In an equivalent manner to the column space, all linear combinations of the rows of
A constitute the row space, denoted by C(A€), where both x and C(A€) are in Rn. All
solutions to Ax = 0 constitute the nullspace of the matrix, N(A), while all solutions of
A€y = 0 constitute the so-called left nullspace of A, N(A€). Clearly, C(A) and N(A€)
are embedded in Rm, whereas C(A€) and N(A) are in Rn. However, the pairs of subspaces
are orthogonal (vectors u and v are orthogonal if u€v = 0); that is, any vector in C(A) is
orthogonal to all vectors from N(A€) and any vector in C(A€) is orthogonal to all vectors
from N(A). This is easy to see: if x œ N(A), then by definition Ax = 0, and thus each row
of A is orthogonal to x. If each row is orthogonal to x, then so are all linear combinations
of rows.

Orthogonality is a key property of the four subspaces, as it provides useful decomposition
of vectors x and b from Eq. (6.2) with respect to A (we will exploit this in the next Section).
For example, any x œ Rn can be decomposed as

x = xr + xn,

where xr œ C(A€) and xn œ N(A), such that ÎxÎ
2

2
= ÎxrÎ

2

2
+ ÎxnÎ

2

2
. Similarly, every

b œ Rm can be decomposed as

b = bc + bl,

where bc œ C(A), bl œ N(A€), and ÎbÎ
2

2
= ÎbcÎ

2

2
+ ÎblÎ

2

2
.

We mentioned above that the properties of fundamental spaces are tightly connected
with the properties of matrix A. So, to conclude this section, let us briefly discuss the rank
of a matrix and its relationship with the dimensions of the fundamental subspaces. The
basis of the space is the smallest set of vectors that span the space (this set of vectors is not
unique). The size of the basis is also called the dimension of the space. In the example at
the beginning of this subsection, we had a two dimensional column space with basis vectors
a1 = (1, 1) and a2 = (2, 3). On the other hand, for a1 = (1, 1) and a2 = (2, 2) we had
a one dimensional column space; i.e., a line, fully determined by any of the basis vectors.
Unsurprisingly, the dimension of the space spanned by column vectors equals the rank of
matrix A. One of the fundamental results in linear algebra is that the rank of A is identical
to the dimension of C(A), which in turn is identical to the dimension of C(A€).

6.3.2 Minimizing ÎAx ≠ bÎ
2

2

Let us now look again at the solutions to Ax = b. In general, there are three di�erent
outcomes:

89

b

e

C()A
p

Figure 6.2: Illustration of the projection of vector b to the column space of matrix A.
Vectors p (bc) and e (bl) represent the projection point and the error, respectively.

1. there are no solutions to the system

2. there is a unique solution to the system, and

3. there are infinitely many solutions.

These outcomes depend on the relationship between the rank (r) of A and dimensions m
and n. We already know that when r = m = n (square, invertible, full rank matrix A)
there is a unique solution to the system, but let us investigate other situations. Generally,
when r = n < m (full column rank), the system has either one solution or no solutions, as
we will see momentarily. When r = m < n (full row rank), the system has infinitely many
solutions. Finally, in cases when r < m and r < n, there are either no solutions or there
are infinitely many solutions. Because Ax = b may not be solvable, we generalize solving
Ax = b to minimizing ÎAx ≠ bÎ

2
. In such a way, all situations can be considered in a

unified framework.
Let us consider the following example

A =

S

WU
1 2
1 3
1 4

T

XV , x =
C

x1

x2

D

, b =

S

WU
b1

b2

b3

T

XV ,

which illustrates an instance where we are unlikely to have a solution to Ax = b, unless
there is some constraint on b1, b2, and b3; here, the constraint is b3 = 2b2 ≠ b1. In this
situation, C(A) is a 2D plane in R3 spanned by the column vectors a1 = (1, 1, 1) and
a2 = (2, 3, 4). If the constraint on the elements of b is not satisfied, our goal is to try to
find a point in C(A) that is closest to b. This happens to be the point where b is projected
to C(A), as shown in Figure 6.2. We will refer to the projection of b to C(A) as p. Now,
using the standard algebraic notation, we have the following equations

b = p + e
p = Ax

Since p and e are orthogonal, we know that p€e = 0. Let us now solve for x

(Ax)€(b ≠ Ax) = 0
x€A€b ≠ x€A€Ax = 0

x€
1
A€b ≠ A€Ax

2
= 0

90

and thus

xú =
1
A€A

2≠1
A€b.

This is exactly the same solution as one that minimized the sum of squared errors and
maximized the likelihood. The matrix

A† =
1
A€A

2≠1
A€

is called the Moore-Penrose pseudo-inverse or simply a pseudo-inverse. This is an important
matrix because it always exists and is unique, even in situations when the inverse of A€A
does not exist. This happens when A has dependent columns (technically, A and A€A will
have the same nullspace that contains more than just the origin of the coordinate system;
thus the rank of A€A is less than n). Let us for a moment look at the projection vector p.
We have

p = Ax

= A
1
A€A

2≠1
A€b,

where A
1
A€A

2≠1
A€ is the matrix that projects b to the column space of A.

While we arrived at the same result as in previous sections, the tools of linear algebra
allow us to discuss OLS regression at a deeper level. Let us examine for a moment the
existence and multiplicity of solutions to

arg min
x

ÎAx ≠ bÎ
2

. (6.3)

Clearly, the solution to this problem always exists. However, we shall now see that the
solution to this problem is generally not unique and that it depends on the rank of A.
Consider x to be one solution to Eq. (6.3). Recall that x = xr +xn and that it is multiplied
by A; thus, any vector x = xr + –xn, where – œ R, is also a solution. Observe that xr

is common to all such solutions; if you cannot see it, assume there exists another vector
from the row space and show that it is not possible. If the columns of A are independent,
the solution is unique because the nullspace contains only the origin. Otherwise, there are
infinitely many solutions. In such cases, what exactly is the solution found by projecting b
to C(A)? Let us look at it:

xú = A†b

=
1
A€A

2≠1
A€(p + e)

=
1
A€A

2≠1
A€p

= xr,

as p = Axr. Given that xr is unique, the solution found by the least squares optimization is
the one that simultaneously minimizes ÎAx ≠ bÎ

2
and ÎxÎ

2
(observe that ÎxÎ

2
is minimized

because the solution ignores any component from the nullspace). Thus, the OLS regression
problem is sometimes referred to as the minimum-norm least-squares problem.

91

Let us now consider situations where Ax = b has infinitely many solutions; i.e., when
b œ C(A). This usually arises when r Æ m < n. Here, because b is already in the column
space of A, the only question is what particular solution x will be found by the minimization
procedure. As we have seen above, the outcome of the minimization process is the solution
with the minimum L2 norm ÎxÎ

2
.

6.4 Linear regression for non-linear problems
At first, it might seem that the applicability of linear regression to real-life problems is
greatly limited. After all, it is not clear whether it is realistic (most of the time) to assume
that the target variable is a linear combination of features. Fortunately, the applicability
of linear regression is broader because we can use it to obtain non-linear functions. The
main idea is to apply a non-linear transformation to the data matrix X prior to the fitting
step, which then enables a non-linear fit. Obtaining such a useful feature representation is
a central problem in machine learning; we will discuss this in detail in Chapter 9. Here,
we will first examine a simpler expanded representation that enables non-linear learning:
polynomial curve fitting.

6.4.1 Polynomial curve fitting
We start with one-dimensional data. In OLS regression, we would look for the fit in the
following form

f(x) = w0 + w1x,

where x is the data point and w = (w0, w1) is the weight vector. To achieve a polynomial
fit of degree p, we will modify the previous expression into

f(x) =
pÿ

j=0

wjxj ,

where p is the degree of the polynomial. We will rewrite this expression using a set of basis
functions as

f(x) =
pÿ

j=0

wj„j(x)

= w€„,

where „j(x) = xj and „ = („0(x), „1(x), . . . , „p(x)). Applying this transformation to every
data point in x results in a new data matrix �, as shown in Figure 6.3.

Following the discussion from Section 6.2, the optimal set of weights is calculated as

wML =
1
�€�

2≠1
�€y.

Example 15: In Figure 6.1 we presented an example of a data set with four data points.
What we did not mention was that, given a set {x1, x2, x3, x4}, the targets were generated

92

x �
1 x1 „0(x1) ... „p(x1)

x2 æ
...

n xn „0(xn) ... „p(xn)

Figure 6.3: Transformation of an n ◊ 1 data matrix x into an n ◊ (p + 1) matrix � using
a set of basis functions „j, j = 0, 1, . . . , p .

by using function 1 + x

2
and then adding a measurement error e = (≠0.3, 0.3, ≠0.2, 0.3). It

turned out that the optimal coe�cients wML = (0.7, 0.63) were close to the true coe�cients
Ê = (1, 0.5), even though the error terms were relatively significant. We will now attempt
to estimate the coe�cients of a polynomial fit with degrees p = 2 and p = 3. We will
also calculate the sum of squared errors on D after the fit as well as on a large discrete set
of values x œ {0, 0.1, 0.2, . . . , 10} where the target values will be generated using the true
function 1 + x

2
.

Using a polynomial fit with degrees p = 2 and p = 3 results in w2 = (0.575, 0.755, ≠0.025)
and w3 = (≠3.1, 6.6, ≠2.65, 0.35), respectively. The sum of squared errors on D equals
Err(w2) = 0.221 and Err(w3) ¥ 0. Thus, the best fit is achieved with the cubic poly-
nomial. However, the sum of squared errors on the outside data set reveal a poor gen-
eralization ability of the cubic model because we obtain Err(w) = 26.9, Err(w2) = 3.9,
and Err(w3) = 22018.5. This e�ect is called overfitting. Broadly speaking, overfitting is
indicated by a significant di�erence in fit between the data set on which the model was
trained and the outside data set on which the model is expected to be applied (Figure 6.4).
In this case, the overfitting occurred because the complexity of the model was increased
considerably, whereas the size of the data set remained small.

One signature of overfitting is an increase in the magnitude of the coe�cients. For
example, while the absolute values of all coe�cients in w and w2 were less than one, the
values of the coe�cients in w3 became significantly larger with alternating signs (suggesting
overcompensation). We will discuss regularization in Section 6.5.2 as an approach to prevent
this e�ect. ⇤

Polynomial curve fitting is only one way of non-linear fitting because the choice of basis
functions need not be limited to powers of x. Among others, non-linear basis functions that
are commonly used are the sigmoid function

„j(x) = 1

1 + e
≠

x≠µj

sj

or a Gaussian-style exponential function

„j(x) = e
≠

(x≠µj)2

2‡
2
j ,

where µj , sj , and ‡j are constants to be determined. However, this approach works only for
a one-dimensional input x. For higher dimensions, this approach can be generalized using
radial basis functions; see Section 9.1 for more details.

93

0 1 2 3 4 5

1

2

3

4

5

x

f3(x)

f1(x)

Figure 6.4: Example of a linear vs. polynomial fit on a data set shown in Figure 6.1. The
linear fit, f1(x), is shown as a solid green line, whereas the cubic polynomial fit, f3(x), is
shown as a solid blue line. The dotted red line indicates the target linear concept.

6.5 Stability and the bias-variance trade-o�
The OLS solution can be unstable. In this section, we show why this is the case, and
discuss how regularization can be used to mitigate this problem. We will then discuss a
foundational concept in machine learning: the bias-variance trade-o�.

6.5.1 Sensitivity of the OLS solution
The OLS solution is unstable if X€X is not invertible. This can occur for two main reasons:
linearly dependent features and small datasets. Data sets often include large numbers of
features, which are sometimes identical, similar, or nearly linearly dependent. If the dataset
is small, it is feasible that some features are the same across samples, again resulting in
low-rank X. When X€X is not invertible—or ill-conditioned—the OLS solution is highly
sensitive to small perturbations in y and X.

To see why, we will look at the singular value decomposition of X. As with the previous
linear algebra constructs, it allows us to easily examine properties of X. Let’s consider the
common case, where n > d: the number of samples is greater than the input dimension.
The singular value decomposition of X = U�V€ for orthonormal matrices2 U œ Rn◊n, V œ

Rd◊d and non-negative (rectangular) diagonal matrix � œ Rn◊d. The diagonal entries in �
are the singular values, which we typically order in descending order ‡1, ‡2, . . . , ‡d, giving

� =

S

WWWWWWWWWWWU

‡1 0 0 . . . 0
0 ‡2 0 . . . 0

...
0 0 . . . 0 ‡d

0 0 . . . 0 0
... (n ≠ d) rows of zeros

0 0 . . . 0 0

T

XXXXXXXXXXXV

=
C
�d

0

D

where �d =

S

WWWWU

‡1 0 . . . 0
0 ‡2 . . . 0

...
0 0 . . . ‡d

T

XXXXV
.

2
An orthonormal matrix U is square matrix that satisfies U€U = I and UU€

= I

94

Any matrix X œ Rn◊d can be decomposed into its singular value decomposition, because any
linear transformation can be decomposed into a rotation (multiplication by V€), followed
by a scaling (multiplication by �), followed again by a rotation (multiplication by U).

This decomposition simplifies analysis of the properties of a matrix. For example, the
number of non-zero singular values constitutes the rank of X. To see why, assume ‡d = 0,
and ‡d≠1 > 0, meaning X has rank d ≠ 1. Take any vector w œ Rd, and consider Xw.
We can write this product as U�V€w = U�w̃ for w̃ = V€w. The product �w̃ sets the
last dimension of w̃ to zero, e�ectively removing that dimension and so projecting w̃ into a
lower-dimensional (d ≠ 1) space. Then it rotates that projected vector afterwards, using U,
but cannot undo that projection into a lower-dimensional space. Therefore, Xw can only
product ŷ = Xw that lie in a d≠1-dimensional plane, rotated in Rd≠1. This decomposition,
then, can help us understand the space of possible predictions for linear regression Xw.

Now we can discuss the least-squares solution, in terms of the singular value decompo-
sition of X. Notice that

X€X = V�€U€U�V€ = V�2

dV€

because U is orthonormal and so U€U = I the identity matrix (I is a diagonal matrix with
ones on the diagonal). The inverse of X€X exists if X is full rank, i.e., �d has no zeros on
the diagonal, because (X€X)≠1 = V�≠2

d
V€. The resulting solution for w looks like3

w = (X€X)≠1X€y = V�≠1U€y =
dÿ

j=1

u€
j

y
‡j

vj (6.4)

where U = [u1, . . . , un] œ Rn◊n is the orthonormal matrix composed of the left singular
vectors, Ud = [u1, . . . , ud] œ Rn◊d is the first d left singular vectors, and V = [v1, . . . , vd] œ

Rd◊d is the orthonormal matrix composed of the right singular vectors.
The solution in Equation (6.5) makes it clear why the linear regression solution can be

sensitive to perturbations. For small singular values, ‡≠1
j

is large and amplifies any changes
in y. For example, for slightly di�erent noise component ‘i for the ith sample, the solution
vector w could be very di�erent. A common strategy to deal with this instability is to drop
or truncate small singular values. This is a form of regularization, which we discuss in the
next section.

Remark: In the general case, where X is not full rank, we can still obtain a least-squares
solution to X€Xw = X€y. Now, there are potentially infinitely many solutions. The
common choice is to select the minimum variance solution, which corresponds to dropping
the components (singular vectors) for the zero singular values:

w =
rank of Xÿ

j=1

u€
j

y
‡j

vj . (6.5)

Example 16: [Nearly linear dependent] Let’s look at a simple example of why X œ Rn◊d

might have small singular values. First, assume d = 2 and x2 = x1, i.e., that the second
features is a copy of the first and simply redundant. Then X = U2�2V€ is the thin SVD

3
The last step in the below equation, writing the matrix product as a sum, is not immediately obvious.

As an exercise, see if you can derive this last equality.

95

Figure 6.5: A comparison between Gaussian and Laplace priors. Both prefers values to be
near zero, but the Laplace prior more strongly prefers the values to equal zero.

of X, where U2 only has the first two columns of the full SVD. We can write this thin SVD
because X = U2�2V€ = U�V€, where the zero singular values zero out the remaining
columns of U.

The SVD of just the first column x1 œ Rn◊1 is straightforward: x1 = u1‡1v1, where
u1 = x1/Îx1Î, ‡1 = Îx1Î and v1 = 1. The SVD of X = [x1 x2] is therefore, for any n-
dimensional unit vector u2 that is orthogonal to u1, and right singular vectors v1, v2 œ R2,

X = [u1 u2]�[v1 v2]€ = [u1 u2]
C

2‡1 0
0 0

D C
0.5 0.5

≠0.5 0.5

D

= u1‡1[1.0 1.0]

where we extended v1 to two-dimensions (since d = 2), and defined v2 to be orthogonal
to that vector, and had to rescale ‡1 to maintain unit singular vectors. So because x2 is
dependent on x1, the rank does not increase when we add it as a column and the singular
value ‡2 = 0.

If instead x2 = x1 +‘ for a small noise vector ‘ œ Rn, then instead we would find that ‡2

would no longer be zero, but would be very close to zero, because u1 and the first singular
value ‡1 would largely be able to recreate x2. ⇤

6.5.2 Regularization
So far, we have discussed linear regression in terms of maximum likelihood. But, as before,
we can also propose a MAP objective. Instead of specifying no prior over w, we can select
a prior to help regularize overfitting to the observed data. We will discuss two common
priors (regularizers): the Gaussian prior (¸2 norm) and the Laplace prior (¸1 norm), shown
in Figure 6.5.

Taking the log of the zero-mean Gaussian prior, N (0, ⁄≠1I), we get

≠ ln p(w) = ln(2fi|⁄≠1I|) + w€w
2⁄≠1

= ln(2fi) ≠ d ln(⁄) + ⁄

2 w€w.

because |⁄≠1I| = ⁄≠d, where |A| is the determinant of the matrix A. As before, we can
drop the first constant which does not a�ect the selection of w.

Now we can combine the negative log-likelihood and the negative log prior. Then ig-
noring constants, we can add up the negative log-likelihood and negative log to the prior

96

to get

argmin
w

≠ ln(p(y|X, w)) ≠ ln p(w) = argmin
w

1
2‡2

nÿ

i=1

Q

ayi ≠

dÿ

j=0

wjxij

R

b
2

+ ⁄

2 w€w

= argmin
w

nÿ

i=1

Q

ayi ≠

dÿ

j=0

wjxij

R

b
2

+ ⁄‡2

2 w€w.

Therefore if we assume that the weights have a zero-mean Gaussian prior N (0, ⁄≠1‡2I),
then we get the following ridge regression problem:

c(w) = (Xw ≠ y)€(Xw ≠ y) + ⁄w€w Û ÎwÎ
2

2 = w€w

where ⁄ is a user-selected parameter that is called the regularization parameter. The idea
is to penalize weight coe�cients that are too large; the larger the ⁄, the more large weights
are penalized. Correspondingly, larger ⁄ corresponds to a smaller covariance in the prior,
pushing the weights to stay near zero. The MAP estimate, therefore, has to balance between
this prior on the weights, and fitting the observed data.

If we solve this equation in a similar manner as before, we obtain

wMAP = (X€X + ⁄I)≠1X€y.

This has the nice e�ect of shifting the squared singular values in �2

d
by ⁄, removing stability

issues with dividing by small singular values, as long as ⁄ is itself large enough.
If we choose a Laplace distribution, we get an ¸1 penalized objective

c(w) = (Xw ≠ y)€(Xw ≠ y) + ⁄ÎwÎ1

which is often called the Lasso. This objective can be obtained similarly to the ¸2 regularized
objective, but instead using a Laplace distribution with parameter ⁄ for the prior. As with
the ¸2 regularizer for ridge regression, this regularizer penalizes large values in w. However,
it also produces more sparse solutions, where entries in w are zero. This preference can
be seen in Figure 6.5, where the Laplace distribution is more concentrated around zero. In
practice, however, this preference is even stronger than implied by the distribution, due to
how the spherical least-squares loss and the ¸1 regularizer interact.

Forcing entries in w to zero has the e�ect of feature selection, because zeroing entries
in w is equivalent to removing the corresponding feature. Consider the dot product each
time a prediction is made,

x€w =
dÿ

j=0

xjwj =
ÿ

j:wj ”=0

xjwj .

This is equivalent to simply dropping entries in x and w where wj = 0.
For the Lasso, we no longer have a closed-form solution. We do not have a closed form

solution, because we cannot solve for w in closed-form that provides a stationary point.
Instead, we use gradient descent to compute a solution to w. The ¸1 regularizer, however,
is non-di�erentiable at 0. Understanding how to optimize this objective requires a bit more
optimization background, so we provide this algorithm in the next chapter, in Algorithm 4.

97

6.5.3 Expectation and variance for the regularized solution
A natural question to ask is how this regularization parameter can be selected, and the
impact on the final solution vector. The selection of this regularization parameter leads
to a bias-variance trade-o�. To understand this trade-o�, we need to understand what it
means for the solution to be biased, and how to characterize the variance of the solution,
across possible datasets.

Let us begin with understanding the bias and variance of the non-regularized solu-
tion, presuming that the distributional assumptions behind linear regression are true. This
means that there exists a true parameter Ê such that for each of the data points Yi =q

d

j=0 ÊjXij + Ái, where the Áj are i.i.d. random variables drawn according to N (0, ‡2).
We can characterize the solution vector (estimator) wML as a random variable, where the
randomness is across possible datasets that could have been observed. In this sense, we
are considering the dataset D to be a random variable, and the solution wML(D) from that
dataset as a function of this random variable.

Let us now look at the expected value (with respect to training data set D) for the
weight vector wML, with Á = (Á1, Á2, . . . , Án):

E[wML(D)] = E
51

X€X
2≠1

X€ (XÊ + Á)
6

= E
51

X€X
2≠1

(X€X)Ê
6

+ E
51

X€X
2≠1

X€Á
6

= E [Ê] + E
51

X€X
2≠1

X€
6
E [Á]

= Ê,

where the third equality follows from the fact that the noise terms Á are independent of the
features and the last equality because Ê is a constant vector (non-random) and E[Á] = 0.
An estimator whose expected value is the true value of the parameter is called an unbiased
estimator. The covariance matrix for the optimal set of parameters can be expressed as

Cov[wML(D)] = E
Ë
(wML(D) ≠ Ê) (wML(D) ≠ Ê)€

È

= E
Ë
wML(D)wML(D)€

È
≠ ÊÊ€

Taking4 X† =
!
X€X

"≠1 X€, we have wML(D) = Ê + X†Á, so

Cov[wML(D)] = E
51

Ê + X†Á
2 1

Ê + X†Á
2€

6
≠ ÊÊ€

= ÊÊ€ + E
Ë
X†ÁÁ€X†€

È
≠ ÊÊ€

because E
#
X†ÁÊ€$

= E
#
X†$

E [Á] Ê€ = 0. Now because the noise terms are independent
of the inputs, i.e., E

#
ÁÁ€

|X
$

= E
#
ÁÁ€$

= ‡2I, we can use the law of total probability (also
4
This matrix is called the pseudo-inverse of X. The idea of a pseudo-inverse generalizes the concept of

inverses to non-invertible matrices, including rectangular matrices. It is a useful concept, but not one we

will need to use again and so is not explained in-depth here.

98

called the tower rule), to get

E
Ë
X†ÁÁ€X†€

È
= E

Ë
E

Ë
X†ÁÁ€X†€

|X
ÈÈ

= E
Ë
X†E

Ë
ÁÁ€

|X
È

X†€
È

= ‡2E
Ë
X†X†€

È
.

Thus, we have
Cov[wML(D)] = ‡2E

Ë
(X€X)≠1

È
.

It can be shown that estimator wML(D) = X†y is the one with the smallest variance among
all unbiased estimators (Gauss-Markov theorem).

Unfortunately, however, as discussed above, the matrix X€X = V�V€ can be poorly
conditioned, with some zero or near-zero singular values. Consequently, this covariance ma-
trix can be poorly conditioned, with high magnitude co-variance values. This implies that,
across datasets, the solution wML(D) can vary widely. This type of behavior is suggestive
of overfitting, and is not desirable. If our solution could be very di�erent across several
di�erent random subsets of data, we cannot be confident in any one of these solutions.

The regularized solution, on the other hand, is much less likely to have high covariance,
but will no longer be unbiased. Let wMAP(D) be the MAP estimate for the ¸2 regularized
problem with some ⁄ > 0. Using a similar analysis to above, the expected value of wMAP(D)
is

E[wMAP(D)] = E
51

X€X + ⁄I
2≠1

X€ (XÊ + Á)
6

= E
51

X€X + ⁄I
2≠1

(X€X)Ê
6

”= Ê.

As ⁄ æ 0, the MAP solution becomes closer and closer to being unbiased. The covariance
is

Cov[wMAP(D)] = ‡2E
Ë
(X€X + ⁄I)≠1

È
.

This covariance is much less susceptible to ill-conditioned X€X, because as discussed above,
the shift by ⁄ improves the condition. Consequently, we expect wMAP to have lower variance
across di�erent datasets that could have been observed. This correspondingly implies that
we are less likely to overfit to anyone dataset. Notice that as ⁄ æ Œ, the variance decreases
to zero, but the bias increases to infinity. As depicted in Figure 6.6, there is an optimal
choice of ⁄ that minimizes this bias-variance trade-o�—if we could find it.

Exercise: Derive the covariance formula for wMAP(D).

The bias-variance trade-o� comes in many forms. One such trade-o� is in the selection of
our function class. If we select a simple function class, the class is likely not large enough—
not powerful enough—to represent the true function. This introduces some bias, but likely
also has lower variance, because that simpler function class is less likely to overfit to any
one dataset. If this class is too simple, we might say that our function is underparametrized
and is underfitting. On the other hand, if we select a more powerful function class, that

99

Figure 6.6: The bias-variance trade-o�. Image obtained from: http://scott.fortmann-roe.
com/docs/BiasVariance.html

does contain the true function, we may not have any bias but could have high variance due
to the ability to find a function in your large class that overfits a given dataset. In this
setting, we might say the function is over-parametrized, and though we have the ability to
learn a highly accurate function, it will be di�cult to actually find that function amongst
this larger class. Instead, one is likely to select a model that overfits to the given data, and
does not generalize to new data (i.e., performs poorly on new data).

Finding the balance between bias and variance, and between underfitting and overfitting,
is a core problem in machine learning. We discuss ways to theoretically and empirically
investigate this trade-o�, in Chapter 10.

Remark: Above we assumed that the true model was linear, and so the only bias
introduced was from the regularization. This assumed that the hypothesis space of linear
functions was su�ciently powerful. In reality, when using linear regression with regular-
ization, we are introducing bias both from selecting a simpler function class and from the
regularization. If a powerful basis is used to first transform the data, to provide nonlin-
ear functions even though the solution uses linear regression, then it is feasible that this
function class is su�ciently powerful, and the bias is mostly due to regularization.

100

