
Chapter 8

Linear Classifiers

Suppose we are interested in building a linear classifer f : Rd
æ {≠1, +1}. Linear classifiers

try to find the relationship between inputs and outputs by constructing a linear function
(a point, a line, a plane or a hyperplane) that splits Rd into two half-spaces. The two half-
spaces act as decision regions for the positive and negative examples, respectively. Given
a data set D = {(xi, yi)}n

i=1
consisting of positive and negative examples, there are many

ways in which linear classifiers can be constructed. For example, a training algorithm may
explicitly work to position the decision surface in order to separate positive and negative
examples according to some problem-relevant criteria; e.g., it may try to minimize the
fraction of examples on the incorrect side of the decision surface. Alternatively, the goal of
the training algorithm may be to directly estimate the posterior distribution p(y|x), in which
case the algorithm is more likely to rely on the formal parameter estimation principles; e.g.,
it may maximize the likelihood. An example of a classifier with a linear decision surface is
shown in Figure 8.1.

To simplify the formalism in the following sections, we will add a component x0 = 1 to
each input (x1, . . . , xd). This extends the input space to X = Rd+1 but, fortunately, it also
leads us to a simplified notation in which the decision boundary in Rd can be written as
w€x = 0, where w = (w0, w1, . . . , wd) is a set of weights and x = (x0 = 1, x1, . . . , xd) is any
element of the input space. Nevertheless, we should remember that the actual inputs are
d-dimensional.

Earlier in the introductory remarks, we presented a classifier as a function f : X æ Y

and have transformed the learning problem into approximating p(y|x). In the case of

(,)x1 1y

(,)xi yi(,)x2 2y

w w w x0 1 2 2+ +x1 0=

x1

x2

+
+

+

+

+

+

+

+ +

Figure 8.1: A data set in R2 consisting of nine positive and nine negative examples. The
gray line represents a linear decision surface in R2. The decision surface does not perfectly
separate positives from negatives.

106

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(t) =
1

1 + e�t

t

Figure 8.2: Sigmoid function in [≠5, 5] interval.

linear classifiers, our flexibility is restricted because our method must learn the posterior
probabilities p(y|x) and at the same time have a linear decision surface in Rd. This, however,
can be achieved if p(y|x) is modeled as a monotonic function of w€x; e.g., tanh(w€x) or
(1 + e≠w

€
x)≠1. Of course, a model trained to learn posterior probabilities p(y|x) can be

seen as a “soft” predictor or a scoring function s : X æ [0, 1]. Then, the conversion from s
to f is a straightforward application of the maximum a posteriori principle: the predicted
output is positive if s(x) Ø 0.5 and negative if s(x) < 0.5. More generally, the scoring
function can be any mapping s : X æ R, with thresholding applied based on any particular
value · .

8.1 Logistic regression

Let us consider binary classification in Rd, where X = Rd+1 and Y = {0, 1}. The basic
idea for many classification approaches is to hypothesize a closed-form representation for
the posterior probability that the class label is positive and learn parameters w from data.
In logistic regression, this relationship can be expressed as

P (Y = 1|x, w) = 1
1 + e≠w

€
x

, (8.1)

which is a monotonic function of w€x. Function f(t) =
!
1 + e≠t

"≠1 is called the sigmoid
function or the logistic function and is plotted in Figure 8.2. It allows us to map the input
w€x œ (≠Œ, Œ) to [0, 1] using a monotonic transformation.

8.1.1 Maximum conditional likelihood estimation
To frame the learning problem as parameter estimation, we will assume that the data set
D = {(xi, yi)}n

i=1
is an i.i.d. sample from a fixed but unknown probability distribution

p(x, y). Even more specifically, we will assume that the data generating process randomly

107

draws a data point x, a realization of the random vector (X0 = 1, X1, . . . , Xd), according
to p(x) and then sets its class label Y according to the Bernoulli distribution

p(y|x) =

Y
__]

__[

3
1

1+e≠Ê€
x

4
y

3
1 ≠

1

1+e≠Ê€
x

41≠y

for y = 1

for y = 0
(8.2)

where Ê = (Ê0, Ê1, . . . , Êd) is a set of unknown coe�cients we want to recover (or learn)
from the observed data D. Based on the principles of parameter estimation, we can estimate
Ê by maximizing the conditional likelihood of the observed class labels y = (y1, y2, . . . , yn)
given the inputs X = (x€

1 , x€
2 , . . . , x€

n).
We shall first write the conditional likelihood function p(y|X, w), or simply l(w), as

l(w) =
nŸ

i=1

p(yi|xi, w). (8.3)

This function can be thought of as the probability of observing a set of labels y given the
set of data points X and the particular set of coeficients w. However, compared to Eq. (8.2)
where for a given x and Ê ˆ

p(y|x, Ê)dy = 1,

here we have that for a given x and yˆ
p(y|x, w)dw ”= 1.

This means that the likelihood is not a probability distribution over the domain of w. More
formally, we define the parameter vector that maximizes the likelihood as

wML = arg max
w

{l(w)}

= arg max
w

I
nŸ

i=1

p(yi|xi, w)
J

. (8.4)

By combining Eqs. (8.2-8.3) we can now express the likelihood function as

l(w) =
nŸ

i=1

3 1
1 + e≠w

€
xi

4
yi

·

3
1 ≠

1
1 + e≠w

€
xi

41≠yi

. (8.5)

Note that maximizing Eq. (8.5) is equivalent to maximizing the log-likelihood function
ll(w) = log(l(w))

ll(w) =
nÿ

i=1

3
yi · log

3 1
1 + e≠w

€
xi

4
+ (1 ≠ yi) · log

3
1 ≠

1
1 + e≠w

€
xi

44
. (8.6)

The negative of the log-likelihood from Eq. (8.6) is sometimes referred to as cross-entropy;
thus, cross-entropy minimization is equivalent to the maximum likelihood method. To make
everything more suitable for further steps, we will slightly rearrange Eq. (8.6) as

ll(w) =
nÿ

i=1

3
(yi ≠ 1) w€xi + log

3 1
1 + e≠w

€
xi

44
. (8.7)

108

It does not take much e�ort to realize that there is no closed-form solution to Òll(w) = 0
(we did have this luxury in linear regression, but not here). Thus, we have to proceed
with iterative optimization methods. That is, our goal is to calculate the gradient (Òll(w))
and Hessian (Hll(w)) in order to specify the update rule described by Newton-Raphson’s
method, as a function of inputs X, class labels y, and the current parameter vector. We
can calculate the first and second partial derivatives of ll(w) as follows

ˆll(w)
ˆwj

=
nÿ

i=1

3
(yi ≠ 1) · xij ≠

1
1 + e≠w

€
xi

· e≠w
€

xi · (≠xij)
4

=
nÿ

i=1

xij ·

A

yi ≠ 1 + e≠w
€

xi

1 + e≠w
€

xi

B

=
nÿ

i=1

xij ·

3
yi ≠

1
1 + e≠w

€
xi

4

= f €
j (y ≠ p) ,

where fj is the j-th column (feature) of data matrix X, y is an n-dimensional column vector
of class labels and p is an n-dimensional column vector of (estimated) posterior probabilities
pi = P (Yi = 1|xi, w), for i = 1, ..., n. Considering partial derivatives for every component
of w, we have

Òll(w) = XT (y ≠ p) . (8.8)
This has worked well because e = y ≠ p is the error vector and the zero error suggests
that the gradient is also a zero vector. The second partial derivative of the log-likelihood
function can be found as

ˆ2ll(w)
ˆwjˆwk

=
nÿ

i=1

xij ·
e≠w

€
xi

1
1 + e≠w

€
xi

22
· (≠xik)

= ≠

nÿ

i=1

xij ·
1

1 + e≠w
€

xi

·

3
1 ≠

1
1 + e≠w

€
xi

4
· xik

= ≠f €
j P (I ≠ P) fk,

where P is an n ◊ n diagonal matrix with Pii = pi = P (Yi = 1|xi, w) and I is an n ◊ n
identity matrix. The Hessian matrix Hll(w) can now be calculated as

Hll(w) = ≠XT P (I ≠ P) X. (8.9)

This is a negative semi-definite matrix, which guarantees that the optimum we find will
be a global maximum. Negative semi-definite Hessian corresponds to a concave likelihood
function and has a global maximum (unique if negative definite). Substituting Eqs. (8.8-8.9)
into Newton-Raphson’s method results in the following weight update rule

w(t+1) = w(t) +
1
X€P(t)

1
I ≠ P(t)

2
X

2
≠1

X€
1
y ≠ p(t)

2
, (8.10)

where the initial weights w(0) can be calculated using the ordinary least squares regression
as w(0) =

!
X€X

"≠1 X€y. Note that the second term on the right-hand side of Eq. (8.10)
is calculated in each iteration t; thus we wrote P and p as P(t) and p(t), respectively,
to indicate that w(t) was used to calculate them. The computational complexity of this
procedure is O(d3 +d2n) in each iteration, assuming O(d3) time for finding matrix inverses.

109

Weighted conditional likelihood function

In certain situations, it may be justified to allow for unequal importance of each data point.
This modifies the conditional likelihood function from Eq. (8.5) to

l(w) =
nŸ

i=1

pciyi

i
· (1 ≠ pi)ci(1≠yi) ,

where 0 Æ ci Æ 1 is a cost for data point i. Taking that C = diag (c1, c2, . . . , cn) we can
now express the gradient of the log-likelihood as

Òll(w) = X€C (y ≠ p)

and the Hessian as
Hll(w) = ≠X€CP (I ≠ P) X.

It is interesting to observe that the Hessian remains negative semi-definite. Thus, the update
rule is expected to converge to a global maximum.

8.1.2 Minimizing Euclidean distance
Another approach that is frequently considered is minimization of the Euclidean distance
between a vector of class labels y and a vector of model outputs p = (p1, p2, ..., pn), where
pi = P (Yi = 1|xi, w). This is equivalent to minimizing the squared error function E(D, w)
or E(w) as

E(w) =
nÿ

i=1

(yi ≠ pi)2

=
nÿ

i=1

e2

i ,

where ei = yi ≠ pi is the error term that corresponds to a training data point xi. The
minimization of E(w) is formally expressed as

wú = arg min
w

{E(w)}

= arg min
w

I
nÿ

i=1

(yi ≠ pi)2

J

. (8.11)

Similar to the maximum likelihood process, our goal will be to calculate the gradient vector
and the Hessian of the error function. The partial derivatives of the error function can be

110

calculated as follows

ˆE(w)
ˆwj

= ˆ

ˆwj

nÿ

i=1

e2

i

=
nÿ

i=1

2 · ei ·
ˆei

ˆwj

= 2 ·

nÿ

i=1

3
yi ≠

1
1 + e≠w

€
xi

4
·

1
(1 + e≠w

€
xi)2

· e≠w
€

xi · (≠xij)

= ≠2 ·

nÿ

i=1

xij ·
1

1 + e≠w
€

xi

·

3
1 ≠

1
1 + e≠w

€
xi

4
·

3
yi ≠

1
1 + e≠w

€
xi

4

= ≠2f €
j P (I ≠ P) (y ≠ p) .

This provides the gradient vector in the following form

ÒE(w) = ≠2X€P (I ≠ P) (y ≠ p) .

Matrix J = P (I ≠ P) X is referred to as Jacobian. In general, Jacobian is an n ◊ d matrix
calculated as

JE(w) =

S

WWWWU

ˆe1
ˆw1

ˆe1
ˆw2

· · ·
ˆe1
ˆwd... . . .

ˆen

ˆw1
ˆen

ˆwd

T

XXXXV
.

The second partial derivative of the error function can be found as

ˆ2E(w)
ˆwjˆwk

= 2 ·

nÿ

i=1

ˆei

ˆwk

·
ˆei

ˆwj

+ ei ·
ˆ2ei

ˆwjˆwk

= 2 ·

nÿ

i=1

xij ·

1
p2

i (1 ≠ pi)2 + pi · (1 ≠ pi) · (2pi ≠ 1) · (yi ≠ pi)
2

· xik.

Thus, the Hessian can be computed as

HE(w) = 2X€ (I ≠ P)€ P€P (I ≠ P) X + 2X€ (I ≠ P)€ P€E(2P ≠ I)X
= 2J€J + 2J€E(2P ≠ I)X,

where P = diag {p}, E = diag {e} is a diagonal matrix containing elements Eii = ei = yi≠pi

and I is an identity matrix. Thus, the process of minimizing the Euclidean distance between
y and p results in the following update rule

w(t+1) = w(t) +
1
J(t)€J(t) + J(t)€E(t)(2P(t)

≠ I)X
2

≠1

X€P(t)
1
I ≠ P(t)

2 1
y ≠ p(t)

2
,

where w(0) can be calculated using ordinary least squares regression or assigned randomly.
An interesting problem here is that the Hessian is not guaranteed to be positive semi-

definite. This suggests that E(w) is not convex; i.e., it must have multiple minima with

111

di�erent values of the objective function. Finding a global optimum depends on how fa-
vorable the initial solution w(0) is and how well the weight update step can escape local
minima to find better ones. This di�culty can be mitigated when

ˆei

ˆwj

·
ˆei

ˆwk

----- ∫

-----ei ·
ˆ2ei

ˆwjˆwk

because the Hessian can be computed as

HE(w) ¥ 2J€J.

Such an approach is referred to as Gauss-Newton optimization. This Hessian is provably
positive semi-definite, but the error function has e�ectively been changed.

Furthermore, assuming that HE(w) = I, where I is the identity matrix, results in a
so-called gradient descent rule that is often used in unconstrained optimization. Gradient
descent occasionally su�ers from instability and is modified into the following update rule

w(t+1) = w(t) + ÷X€P(t)
1
I ≠ P(t)

2 1
y ≠ p(t)

2
,

where ÷ is a positive constant smaller than one. The computational complexity necessary
for each step of the gradient descent method is O(dn2).

8.1.3 Stochastic mode of optimization
We have derived that the weight update rule depends on the data set D = {(xi, yi)}n

i=1
and

the predictions on all training examples using the weight vector from the current step. We
will first rewrite the update rule of the gradient descent method as

w(t+1) = w(t) + �w(t),

where
�w(t) = ÷X€P(t)

1
I ≠ P(t)

2 1
y ≠ p(t)

2
.

To simplify the following steps, we will remove the designation of step t and rewrite �w as

�w = ÷ ·

S

WWWWU

p1(1 ≠ p1)x11 p2(1 ≠ p2)x21 · · · pn(1 ≠ pn)xn1

p1(1 ≠ p1)x12 p2(1 ≠ p2)x22

... . . .
p1(1 ≠ p1)x1d pn(1 ≠ pn)xnd

T

XXXXV
·

S

WWWWU

e1

e2

...
en

T

XXXXV

From here, we can see that the weight update is simply a linear combination of training
data points

�w = ÷
nÿ

i=1

eipi(1 ≠ pi)xi,

This leads us to an interesting modification of the learning method. When the training data
is large, it may be beneficial to update the weight vector after each data point is presented
to the learning algorithm. That is, if data point xi with its class label yi is presented to the
learner, we can modify the weight update to be

�w = ÷eipi(1 ≠ pi)xi.

112

A method where weights are updated after seeing each individual data point is referred to
as incremental or stochastic gradient descent method. Alternatively, the training algorithm
that utilizes all data points is frequently referred to as batch mode of training. The training
algorithm can now be revised to randomly draw one data point at a time from D and then
update the current weights using the previous equation. The algorithm stops when the
weight vector converges.

Observe that both stochastic and batch modes have the following property: the influence
of each data point on the weight update depends on how close the data point is to the
separation hyperplane and whether it lies on the correct side of it. The points on the
correct side but far away from the decision boundary have negligible influence on �w (this
is because pi(1 ≠ pi) ¥ 0 and ei ¥ 0), the points on the incorrect side and far away from
the decision boundary have a relatively larger influence (this is because pi(1 ≠ pi) ¥ 0
and |ei| ¥ 1), whereas the points close to the decision boundary have the most individual
influence (this is because pi(1 ≠ pi) ¥ 0.25 and |ei| ¥ 0.5).

8.1.4 Predicting class labels
For a previously unseen data point x and a set of coe�cients wú found from Eq. (8.4) or
Eq. (8.11), we simply calculate the posterior probability as

P (Y = 1|x, wú) = 1
1 + e≠wú€

·x
.

If P (Y = 1|x, wú) Ø 0.5 we conclude that data point x should be labeled as positive (ŷ = 1).
Otherwise, if P (Y = 1|x, wú) < 0.5, we label the data point as negative (ŷ = 0). We can see
this predictor as a simple mathematical function or as a computer code that outputs P (Y =
1|x, wú). Thus, the predictor maps a (d + 1)-dimensional vector x = (x0 = 1, x1, . . . , xd)
into a zero or one. Note that P (Y = 1|x, wú) Ø 0.5 only when w€x Ø 0. Expression
w€x = 0 represents equation of a hyperplane that separates positive and negative examples.
Thus, logistic regression model is a linear classifier.

It is also interesting to discuss the relationship between the posterior probability P (Y =
1|x, w) and distance of a data point x from the decision surface determined by w. It can
be shown that the distance from a point x and hyperplane w€x = 0 can be expressed as

d =
w0 +

q
d

j=1 wjxjÒq
d

j=1 w2
j

.

We usually refer to d as signed distance because its sign determines on which side of the
hyperplane the data point is found. This distance can also be expressed in a vector form as

d =
w0 + w€

≠x≠

Îw≠Î

where x≠ = (x1, x2, . . . , xd) and w≠ = (w1, w2, . . . , wd). Thus, it follows straightforwardly
that

P (Y = 1|x, w) = 1
1 + e≠dÎw≠Î

.

113

8.1.5 Maximizing likelihood vs. minimizing Euclidean distance
The previous sections showed alternative ways of training logistic regression classifiers by
maximizing likelihood and by minimizing Euclidean distance. Here we show that under
certain conditions these approaches are equivalent. Unfortunately, the assumptions will not
strictly apply to logistic regression and will become more important later when we consider
more powerful models (neural networks) that generalize logistic regression.

Consider a process of learning a classification model that is trained to minimize the
Euclidean distance between the class labels y and soft predictions s(x, w). We shall assume
binary classification on real-numbered inputs; i.e., X = Rd and Y = {0, 1}, and express the
expectation of the squared error e2(w) as

E
Ë
e2(w)

È
=
ˆ

X

ÿ

Y

(y ≠ s(x, w))2 p(x, y)dx,

where p(x, y) is the true but unknown distribution of the data. Because s(x, w) œ [0, 1] and
Y = {0, 1} we have

y ≠ s(x, w) =

Y
__]

__[

≠s(x, w) y = 0

1 ≠ s(x, w) y = 1

Using p(x, y) = p(y|x)p(x), we can now modify the expected squared error as

E
Ë
e2(w)

È
=
ˆ

X

1
s2(x, w)p(0|x) + (1 ≠ s(x, w))2p(1|x)

2
p(x)dx.

Assuming that s(x, w) is powerful enough to be independently optimized for each unit
volume dx, we observe that minimizing E

#
e2(w)

$
corresponds to finding a model that

minimizes
s2(x, w)p(0|x) + (1 ≠ s(x, w))2p(1|x)

for each dx. Minimizing the expression above results in

2s(x, wú)p(0|x) ≠ 2(1 ≠ s(x, wú))p(1|x) = 0

from where we infer that s(x, wú) = p(1|x); i.e., the classifier that minimizes Euclidean
distance is learning the posterior probability distribution and makes an optimal decision for
any given data point x. The expected squared error for such a predictor can be expressed
as

E
Ë
e2(wú)

È
=
ˆ

X

p(1|x) (1 ≠ p(1|x)) p(x)dx,

which is the expected variance of the class posteriors over the input space X .
Unfortunately, there are caveats in this argument. First, the model s(x, w) has to have

enough flexibility to be able to learn the posterior probability of class 1 in dx independently
of the rest of the input space. In addition, the data must be abundant to allow for such
training and the optimization step must be able to find a global minimum (recall that the
sum-of-squares objective function is not convex in classification). Linear classifiers are not
flexible enough to be considered models that learn class posterior probabilities; they exhibit
strong dependencies in predictions between faraway inputs. However, we will later see that

114

classification models that are theoretically capable of learning the posterior distribution are
neural networks.

Let us now look into maximizing likelihood. Consider again a process of learning a
classification model that is trained to maximize the likelihood, where y are class labels and
s(x, w) are soft predictions. We shall assume binary classification on real-numbered inputs;
i.e., X = Rd and Y = {0, 1}, and express the expectation of the cross-entropy loss function
as

E [e(w)] = ≠

ˆ
X

ÿ

Y

(y log s(x, w) + (1 ≠ y) log(1 ≠ s(x, w))) p(x, y)dx,

where p(x, y) is the true but unknown distribution of the data. Because s(x, w) œ [0, 1] and
Y = {0, 1} we have that

E [e(w)] =
ˆ

X

(log(1 ≠ s(x, w))p(0|x) + log s(x, w)p(1|x)) p(x)dx.

Assuming that s(x, w) is powerful enough to be independently optimized for each unit vol-
ume dx, we observe that minimizing E [e(w)] corresponds to finding a model that minimizes

log(1 ≠ s(x, w))p(0|x) + log s(x, w)p(1|x)

for each dx. Minimizing the expression above results in

≠
1

1 ≠ s(x, wú)p(0|x) + 1
s(x, wú)p(1|x) = 0

from where we infer that s(x, wú) = p(1|x); i.e., the classifier that minimizes cross-entropy
is learning the posterior probability distribution and makes an optimal decision for any
given data point x. The expected cross-entropy for such a predictor can be expressed as

E [e(wú)] = ≠

ˆ
X

(p(0|x) log p(0|x) + p(1|x) log p(1|x)) p(x)dx,

which is the expected di�erential entropy of the class posteriors over the input space X .

8.2 Perceptron

As before, we will consider binary linear classifiers in Rd, where for convenience we will
take X = {1} ◊ Rd and Y = {≠1, +1}. However, in contrast to the logistic regression
approach where we used the logistic (sigmoid) function to model the posterior probability
p(y|x), here we are interested in a simpler task of directly finding a linear decision surface
w€x = 0 (line, plane, hyperplane) that separates positive and negative examples available
in the training set D = {(xi, yi)}n

i=1
.

The perceptron is a simple machine or function f : X æ Y defined as

f(x) =

Y
__]

__[

+1 w€x Ø 0

≠1 w€x < 0
, (8.12)

115

where, as before, w = (w0, w1, . . . , wd) œ Rd+1 is a vector of weights we seek to determine
through training and x = (x0 = 1, x1, . . . , xd) is a data point from the input space X .

Because f(x) is non-di�erentiable, we cannot use di�erential calculus to optimize a pre-
defined error or cost function. Instead, we will propose a weight update rule and then
demonstrate that the training algorithm finds a good solution under certain assumptions.

First, we will assume that the data points from D are presented to the learning algorithm
one at a time and the weights will be updated in the stochastic (incremental) mode. If the
data set is infinitely large (say, we consider a data stream), the examples are presented to
the learner, the weight update is made (if needed) and the example is deleted. On the other
hand, if the data set is finite the learning algorithm can loop over the data set; i.e., once
all n points have been presented to the learner, we start from the beginning. Second, and
this is a strong assumption, we will consider that the positive and negative examples in D

are linearly separable. Finally, for simplicity of downstream analysis, we will assume that
the initial weight vector w(0) = 0.

For each data point x drawn from the data set at step t we have to consider two cases:
(i) x is correctly classified and (ii) x is incorrectly classified using the decision surface
determined by the current set of weights w(t). If x is correctly classified, we do not need to
update the current set of weights; i.e., w(t+1) = w(t). On the other hand, if x is incorrectly
classified, there are two possibilities: (i) if x was classified as negative (and its true class
label is positive) we will update the weights using w(t+1) = w(t) + x; (ii) if x was classified
as positive (and its true class label is negative), we will update the weight vector using
w(t+1) = w(t)

≠ x.
Why are those decisions good? Consider the first scenario of incorrect classification

(underclassification); that is, when w(t)€x < 0. We will investigate the updated inner
product between the weight vector and input x used in Eq. (8.12); that is

w(t+1)€x = w(t)€x + x€x
= w(t)€x + ||x||

2

Ø w(t)€x,

and, therefore, the weight update rule is moving the inner product w(t)€x, and with it
the prediction f(x), in the right direction. A similar equation can be constructed for the
second case of incorrect classification (overclassification). Our hypothesis is that if the
algorithm always moves the decision boundary in the right direction, it will eventually find
a hyperplane that correctly separates positive examples from negative examples.

The update rules for correct and incorrect classification (both underclassification and
overclassification) can be combined as follows

w(t+1) =

Y
__]

__[

w(t) x is correctly classified

w(t) + yx x is incorrectly classified
, (8.13)

where y is the class label of a data point x. We refer to the weight update rule from
Eq. (8.13) as the perceptron training rule. The entire perceptron training algorithm is
presented in Algorithm 5.

We will now prove that, if the data points in D = {(xi, yi)}n

i=1
are linearly separable,

the perceptron training algorithm converges and finds a separation hyperplane in a finite

116

Algorithm 5: Perceptron training algorithm. The algorithm loops over the training
data D until either the weight vector is unchanged for a pre-specified number of steps
or the maximum number of steps is exceeded.

Input:
Training data: D = {(xi, yi)}n

i=1
, X = {1} ◊ Rd and Y = {≠1, +1}

Learning parameter: ÷ œ (0, 1]
Termination criteria; e.g., the maximum number of steps

Initialization:
w Ω 0

Weight learning:
repeat until termination criteria are satisfied

draw the next labeled example (x, y) from D

if (w€x Ø 0 · y = ≠1) ‚ (w€x < 0 · y = +1)
w Ω w + ÷yx

end
end

Output:
Weight vector w œ Rd+1

number of steps. Alternatively, if the data set is infinitely large, the number of incorrect
classifications during training will be finite. To do this, we will turn the entire data set
into a set of positive examples D

+ by using xi Ω ≠xi and yi Ω ≠yi, whenever the original
class label is negative. This does not a�ect the weight update because the product yixi is
unchanged, but it does simplify the weight update rule to w(t+1) = w(t) +x for the learning
from D

+.
The assumption that data points are linearly separable corresponds to the fact that

there exists at least one solution vector, say w0, as well as a positive constant Á such that
wT

0 x > Á for ’x œ D
+. Without loss of generality, we will also assume that w0 has unit

length; i.e., ||w0|| = 1. We will now look at the weight vector updated after the ¸-th
misclassified example, w(¸), and calculate the cosine of the angle between w0 and w(¸) as

cos(w0, w(¸)) = w€
0 w(¸)

||w0|| · ||w(¸)||
. (8.14)

We will first investigate the growth of the numerator and denominator with the number
of updates ¸. Considering that x(¸) is the ¸-th misclassified example, we first look at the
numerator

w€
0 w(¸) = w€

0

1
w(¸≠1) + x(¸)

2

= w€
0 w(¸≠1) + w€

0 x(¸)

> w€
0 w(¸≠1) + Á,

117

given that w€
0 x > Á for ’x œ D

+. By repeating this approach recursively for w(¸≠1), w(¸≠2),
. . ., w(1) and taking that w(0) = 0, we see that

w€
0 w(¸) > ¸Á. (8.15)

Next, we will look at the norm of w(¸)

||w(¸)
||

2 =
1
w(¸≠1) + x(¸)

2€ 1
w(¸≠1) + x(¸)

2

= ||w(¸≠1)
||

2 + 2w(¸≠1)€x(¸) + ||x(¸)
||

2

< ||w(¸≠1)
||

2 + ||x(¸)
||

2,

where we used that w(¸≠1)€x(¸) < 0 because the (positive) data point was misclassified.
From here, we see that

||w(¸)
||

2 <
¸ÿ

l=1

||x(¸)
||

2

Æ ¸M2, (8.16)

where
M = max

xiœD+
||xi||.

We introduced the constant M to indicate that the norm of the input vectors is bounded.
It is now important to make the following observations.

1. Eq. (8.15) shows that the numerator in Eq. (8.14) grows at least linearly with ¸

2. Eq. (8.16) shows that the denominator in Eq. (8.14) grows at most linearly with
Ô

¸.

However, the two conditions become incompatible as ¸ æ Œ because the cosine function
cannot be larger than 1. Therefore, we conclude that there must exist some number of
updates, say ¸max, for which

¸maxÁ < w€w(¸max)
Æ ||w(¸max)

|| <

¸maxM2.

This, in turn, leads to the upper limit on the number of updates

¸max <
M2

Á2
.

Under the aforementioned assumptions, the linear decision boundary (i.e., the underlying
concept) will be learned after a finite number of ¸max updates, which guarantees the conver-
gence of the perceptron training algorithm. Therefore, the perceptron training algorithm
will find a separating hyperplane.

In practice, it is useful to modify the update rule to

w(t+1) = w(t) + ÷yx,

where ÷ œ (0, 1] in order to avoid rapid movements of the separating hyperplane during
training. The convergence of the perceptron training algorithm can be readily proved when
÷ œ (0, 1].

118

Problems with the perceptron training algorithm

While interesting in the context of learning theory, the perceptron training algorithm has a
strong assumption on linear separability of the data, that is necessary for the algorithm to
converge. If the data are not linearly separable, the algorithm never stops and the cycles in
weight updates can be hard to detect. Therefore, a di�erent learning algorithm is needed
to correct for this deficiency. We discuss this next.

8.2.1 The Pocket algorithm
To overcome the problem with linear separability of the data, the perceptron training algo-
rithm needs to be modified. One of the best approaches to that problem is the Pocket algo-
rithm. The idea is simple: execute the perceptron training algorithm, but count the number
of consecutive examples that are classified correctly after each weight update. Whenever the
longest count is achieved (at the next necessary weight update), keep the best performing
set of weights “in the pocket”. Over time, the set of weights with the smallest misclassifi-
cation error will remain in the pocket with high probability. In fact, it can be shown that
in the limit the Pocket algorithm indeed minimizes the misclassification rate. The training
procedure is presented in Algorithm 6.

8.2.2 Representational power of the perceptron
The perceptron is a linear classifier in that it learns a decision boundary w€x = 0 which
separates the input space X = Rd into two half-spaces. While this is relatively straightfor-
ward, let us also take a look at a special case when the input examples lie in the corners of
a d-dimensional hypercube; i.e., X = {≠1, +1}

d. This case is important in computational
learning theory and will also help us to understand the inductive bias of the perceptron
compared to that of, say, decision trees.

We can immediately recognize that the perceptron cannot either represent or learn all
binary functions. Using d = 2, we can see that regardless of the data set for training, the
perceptron cannot represent an exclusive-or (XOR) function

fXOR(x) =
I

+1
≠1

for x1 ”= x2

for x1 = x2

The XOR function can be seen in d-dimensional space as a parity function that outputs +1
if the number of 1’s is odd and ≠1 if the number of ones in x is even. However, perceptron
can learn an important class of functions that detect when at least m-out-of-d input features
are +1. Looking at the linear combination of weights

w0 + w1x1 + w2x2 + . . . + wdxd Ø 0

we can see that setting weights w1 = w2 = . . . = wd = 1 and w0 = ≠m (when X = {0, 1}
d)

and w0 = d≠2m (when X = {≠1, +1}
d) will achieve the desired e�ect of w0+

q
d

j=1 wjxj Ø 0.

8.2.3 Kernelizing perceptrons
The weight vector found by the perceptron training algorithm is obtained by adding or
subtracting data points from D. This leads us to the following expression for the weight

119

Algorithm 6: Pocket algorithm. The algorithm loops over the training data D until
either wpocket is unchanged for a pre-specified number of steps or the maximum number
of steps is exceeded.

Input:
Training data: D = {(xi, yi)}n

i=1
, X = {1} ◊ Rd and Y = {≠1, +1}

Learning parameter: ÷ œ (0, 1]
Termination criteria; e.g., the maximum number of steps

Initialization:
w Ω 0
wpocket Ω 0
run Ω 0
runpocket Ω 0

Weight learning:
repeat until termination criteria are satisfied

draw the next labeled example (x, y) from D

if (w€x Ø 0 · y = ≠1) ‚ (w€x < 0 · y = +1)
if run > runpocket

wpocket Ω w
runpocket Ω run

end
w Ω w + ÷yx
run Ω 0

else
run Ω run + 1

end
end

Output:
Weight vector wpocket œ Rd+1

120

vector w
w =

nÿ

i=1

–iyixi,

where –i is the number of times example xi was misclassified during training. Given that
the classification of the data point x is made based on the linear combination with the
weight vector w, this leads us to the following expression

w€x =
nÿ

i=1

–iyix€
i x

=
nÿ

i=1

–iyik(xi, x), (8.17)

where k(xi, xj) is an inner product of data points i and j. This formulation, however, gives
us an opportunity to exploit a richer set of similarity functions k(·, ·) that will allow us to
find non-linear decision surfaces as long as k(·, ·) can be seen as an inner product of data
points in a transformed vector space; e.g., k(xi, xj) = „(xi)€„(xj). This will also allow
classification on complex objects such as sequences or graphs, where „ can be interpreted
as an embedding function.

The price to pay for kernelizing the perceptron is that a set of misclassified examples
must be maintained together with the number of times they were misclassified. In addition,
the speed of training and classification is impacted because Eq. (8.17) must be recomputed
for each prediction.

8.3 Naive Bayes classifiers as linear models
Naive Bayes binary classifier is generally referred to as a soft non-linear classifier because it
can learn non-linear concepts but is not a universal approximator. In some cases, however,
this classifier is guaranteed to find linear decision boundaries. We here investigate such
situations by first considering a simple case of binary features (X = {0, 1}

d) and then
broadening it to the class of distributions from the exponential family (X = Rd). We only
consider binary classification; that is, Y = {0, 1}.

8.3.1 Linear classification boundary for binary features
Naive Bayes classifier with binary features and two classes is a linear classifier. This is
somewhat surprising, as this generative approach looks very di�erent from what we did
before. To see why this is the case, notice that the classifier will make a positive decision
when

P (Y = 1|x) Ø P (Y = 0|x)

that is, when

p(x|Y = 1)p(Y = 1) Ø p(x|Y = 0)p(Y = 0)

121

We will shorten this notation using p(Y = 0) = p(0), p(x|Y = 0) = p(x|0), etc. Using the
naive Bayes assumption from Eq. (4.1), we now have

p(1)
dŸ

j=1

p(xj |1) Ø p(0)
dŸ

j=1

p(xj |0),

which, after applying a logarithm, becomes

log p(1) +
dÿ

j=1

log p(xj |1) Ø log p(0) +
dÿ

j=1

log p(xj |0).

Let us now investigate class-conditional probabilities p(xj |y) when y œ {0, 1}. Recall that
each feature is Bernoulli distributed; i.e.,

p(xj |1) = p
xj

j,1
(1 ≠ pj,1)1≠xj

and

p(xj |0) = p
xj

j,0
(1 ≠ pj,0)1≠xj ,

where parameters pj,c are estimated from the training set. Taking p(Y = c) = pc, we have

dÿ

j=1

xj log pj,1(1 ≠ pj,0)
(1 ≠ pj,1)pj,0

+
dÿ

j=1

log 1 ≠ pj,1

1 ≠ pj,0

+ log p1

p0

Ø 0.

We can write the previous expression as

w0 +
dÿ

j=1

wjxj Ø 0,

where

w0 = log p1

p0

+
dÿ

j=1

log 1 ≠ pj,1

1 ≠ pj,0

wj = log pj,1(1 ≠ pj,0)
(1 ≠ pj,1)pj,0

j œ {1, 2, . . . , d}.

Therefore, in the case of binary features, naive Bayes is a linear classifier.

8.3.2 Linear classification boundary for continuous features
Let us now consider binary classification on a d-dimensional feature space of real numbers;
i.e., X = Rd and Y = {0, 1}. Suppose that the class-conditional distribution for every
feature j comes from an exponential family and that the same distribution from the expo-
nential family is used to model each class-conditional distribution for that feature. Recall
that the exponential family distributions have the following canonical form

p(xj |◊jc) = exp
1
◊T

jct(xj) ≠ a(◊jc) + b(xj)
2

,

122

where ◊jc indicates di�erent parameters for each feature j and class value c œ {0, 1}. Let
us now express the posterior probability P (Y = 1|x) as

p(1|x) = p(x|1)p(1)
p(x|0)p(0) + p(x|1)p(1)

= 1
1 + p(x|0)p(0)

p(x|1)p(1)

= 1
1 + exp

1
≠ ln p(x|1)p(1)

p(x|0)p(0)

2

1
1 + exp (≠“(x))

We can now separately look at the function “(x) and under what conditions it can be
expressed as a linear combination of feature values. By applying the naive Bayes assumption
from Eq. (4.1) we get

“(x) = ln p(1)
p(0) +

dÿ

j=1

1
◊T

j1t(xj) ≠ a(◊j1) + b(xj) ≠ ◊T

j0t(xj) ≠ a(◊j0) + b(xj)
2

= “0(x) +
dÿ

j=1

“j(x)

where “0(x) does not depend on x. To proceed from here, we will look at two di�erent
distributions for xj and then infer broader conclusions. We easily see that we can consider
every component “j(x) separately. If we can show that “j(x) = wj0 +wjxj we can conclude
that the entire expression is a linear combination of feature values.

Let us first assume a Poisson distributed class-conditional distributions for a feature j.
Using exponential family notation, we can re-write the Poisson distribution as

p(x|⁄) = exp(x log ⁄ ≠ ⁄ ≠ log x!),

with ◊ = log ⁄, t(x) = x, a(◊) = ⁄, and b(x) = ≠ log x!, and observe that

“j(x) = xj ln ⁄j1 ≠ ⁄j1 ≠ ln xj ! ≠ xj ln ⁄j0 + ⁄j0 + ln xj !
= wj0 + wjxj

where wj0 = ⁄j0 ≠ ⁄j1 and wj = ln ⁄j1/⁄j0. If we now consider a mixture of Poisson
distributions for every feature, we get

“(x) = w0 +
dÿ

j=1

wjxj ,

where

w0 = ln p(1)
p(0) +

dÿ

j=1

(⁄j0 ≠ ⁄j1)

and
wj = ln ⁄j1 ≠ ln ⁄j0.

123

Therefore, the Poisson distributed features lead to a linear classification model as long as
both class-conditional distributions for each feature are separate Poisson distributions.

The case of Gaussian features is a bit more complex. Using the exponential family
re-write for a Gaussian distribution

p(x|µ, ‡) = exp
A

≠
x2

2‡2
+ x

µ

‡2
≠

µ2

2‡2
≠

1
2 ln(2fi‡2)

B

we obtain that

“j(x) = ≠
x2

j

2‡2
j1

+ xj

µ2
j1

‡2
j1

≠
µ2

j1

‡2
j1

≠
ln(2fi‡2

j1
)

2 +
x2

j

2‡2
j0

≠ xj

µ2
j0

‡2
j0

+
µ2

j0

‡2
j0

+
ln(2fi‡2

j0
)

2
”= wj0 + wjxj

because of the squared xj ’s. However, we can see that the quadratic terms cancel each
other out if ‡j1 = ‡j0. Therefore, the case of Gaussian features will also result in a linear
combination if the class-conditional Gaussians for the same feature are modeled with equal
variance.

This analysis suggests that there exists a broad range of conditions that result in linear
classification models when naive Bayes assumptions are applied. These include that the
distribution of each feature is considered to be a two-component mixture of the distributions
from the same group within exponential family, sometimes with additional constraints as
with the Gaussians above. Notice that the Bernoulli distribution from the previous section
is itself a member of exponential family. Nevertheless, considering its case separately shows
di�erent ways in which our conclusions can be reached.

8.4 Multinomial logistic regression

Now let us consider discriminative multiclass classification, where X = Rd and Y =
{1, 2, . . . , k}. This setting arises naturally in machine learning, where there is often more
than two categories. For example, if we want to predict the blood type (A, B, AB and O) of
an individual, then we have four classes. Here we discuss multiclass classification where we
only want to label a datapoint with one class out of k. In other settings, one might want to
label a datapoint with multiple classes; this is briefly mentioned at the end of this section.

We can nicely generalize to this setting using the idea of multinomials and the cor-
responding link function, as with the other generalized linear models. The multinomial
distribution is a member of the exponential family. We can write

p(y|x) = 1
y1! . . . yk!p(y1 = 1|x)y1 . . . , p(yk = 1|x)yk (8.18)

where the usual numerator n! = 1 because n =
q

k

j=1 yj = 1 since we can only have one
class value. As with logistic regression, we can parametrize

p(yj = 1|x) = ‡(x€wj) = (1 + exp(≠x€w))≠1.

However, we must also ensure that
q

k

j=1 p(yj = 1|x) = 1. To do so, we “pivot” around the
final class, p(yk = 1|x) = 1≠

q
k≠1

j=1
p(yj = 1|x) and only explicitly learn w1, . . . , wk≠1. Note

124

that these models are not learned independently, because they are tied by the probability
for the last class. The parameters can be represented as a matrix W œ Rd◊k where W =
[w1, . . . , wk] is composed of k weight vectors with wk = 0. We will see why we fix wk = 0.

The transfer (inverse of the link) for this setting is the softmax transfer

softmax(x€W) =
C

exp(x€w1)
q

k

j=1 exp(x€wj)
, . . . ,

exp(x€wk)
q

k

j=1 exp(x€wj)

D

=
C

exp(x€w1)
1€ exp(x€W) , . . . ,

exp(x€wk)
1€ exp(x€W)

D

and the prediction is softmax(x) = ŷ œ [0, 1]k, which gives the probability in each entry of
being labeled as that class, where ŷ€1 = 1 signifying that the probabilities sum to 1. Note
that this model encompasses the binary setting for logistic regression, because ‡(x€w) =
(1 + exp(≠x€w))≠1 = exp(x

€
w)

1+exp(x€w)
. The weights for multinomial logistic regression with two

classes are then W = [w, 0] giving

p(y = 0|x) = exp(x€w)
1€ exp(x€W)

= exp(x€w)
exp(x€w) + exp(x€0)

= exp(x€w)
exp(x€w) + 1

= ‡(x€w).

Similarly, for k > 2, by fixing wk = 0, the other weights w1, . . . , wk≠1 are learned to ensure
that p(y = k|x) = exp(x

€
wk)

1€ exp(x€W)
= 1

1+
q

k≠1
j=1 exp(x€wj)

and that
q

k

j=1 p(y = j|x) = 1.

With the parameters of the model parameterized by W and the softmax transfer, we
can determine the maximum likelihood formulation. By plugging in the parameterization
into Equation (8.18), taking the negative log of that likelihood and dropping constants, we
arrive at the following loss for samples (x1, y1), . . . , (xn, yn)

min
WœRd◊k:W:k=0

nÿ

i=1

log
1
1€ exp(x€

i W)
2

≠ x€

i Wyi

with gradient

Ò

nÿ

i=1

1
log

1
1€ exp(x€

i W)
2

≠ x€

i Wyi

2
=

nÿ

i=1

exp(x€

i
W)€x€

i

1€ exp(x€

i
W)

≠ xiy€

i .

As before, we do not have a closed form solution for this gradient, and will use iterative
methods to solve for W. Note that here, unlike previous methods, we have a constraint on
part of the variable. However, this was solely written this way for convenience. We do not
optimize W:k, as it is fixed at zero; one can rewrite this minimization and gradient to only
apply to the W:(1:k≠1). This corresponds to initializing W:k = 0, and then only using the
first k ≠ 1 columns of the gradient in the update to W:(1:k≠1).

125

The final prediction softmax(x€W) œ [0, 1] gives the probabilities of being in a class.
As with logistic regression, to pick one class, the highest probability value is chosen. For
example, with k = 4, we might predict [0.1 0.2 0.6 0.1] and so decide to classify the point
into class 3.

Remark about overlapping classes: If you want to predict multiple classes for a data-
point x, then a common strategy is to learn separate binary predictors for each class. Each
predictor is queried separately, and a datapoint will label each class as 0 or 1, with poten-
tially more than one class having a 1. Above, we examined the case where the datapoint
was exclusively in one of the provided classes, by setting n = 1 in the multinomial.

126

