
Chapter 10

Evaluation of Learning Algorithms

The majority of this book has focused on algorithm derivation and obtaining models, but we
have yet to address how to evaluate these models. The maximum likelihood formalism for
deriving learning algorithms provides some consistency results, where in the limit of samples
we can discuss the convergence point of an estimator. In practice, however, we would like
to evaluate the algorithms based on a finite sample. Imagine a setting where you learn two
models, say using logistic regression with two di�erent regularization parameters. Which
of these two models is “better"? What does it even mean to say better? Do you want
to say the model is better for this problem (data setting), or across multiple problems?
Are we trying to compare algorithms or models obtained from a specific instance of an
algorithm? How can we be confident that the measured performance accurately reflects the
performance we expect to see on new data? These questions are largely separate from our
previous questions of e�ectively optimizing a specified objective, and rather start to inquire
about the properties of that objective and about empirical properties of learned models.

In this chapter, we provide theoretical and empirical tools to better evaluate the prop-
erties of learning algorithms. We begin with some basic finite-sample theoretical results,
that relate the complexity of the model class to the number of samples required to obtain a
reasonable estimate of expected error (generalization error). This section will also introduce
the ideas of optimizing over a function class, and our goals for obtaining the best model in
terms of generalization error. The area dealing with these types of theoretical characteri-
zations is called statistical learning theory. We will discuss one result using concentration
inequalities and Rademacher complexity to characterize model-class complexity; for further
information, you could consider this tutorial on the topic [6].

Then, we will discuss how to compare algorithms empirically. In most real-world set-
tings, we will choose between algorithms based on their performance on available data. We
want this choice to be reflective of how well those algorithms will perform on new data.
Towards this goal, we will discuss how to split data and how to use statistical significance
tests to provide some level of confidence that one algorithm or model is better than another,
under some specific criteria. We will rarely be able to make strong conclusions based on
experiments, but we can build up some evidence on the algorithm properties.

These tools are arguably the most critical aspects of properly using machine learning
algorithms in practice. One can learn a complex model, but without any understanding of
how it is expected to perform in practice on new data, it is not viable to actual use these
models. Whether an algorithm is used for scientific purposes or deployed in real systems,
have an understanding of its properties both theoretically and empirically is key to obtain
expected outcomes. This chapter only begins to scratch the surface of these tools, with
the goal to pique your interest and direct you towards more material for learning about
evaluation.

137

10.1 A brief introduction to generalization bounds
Our goal throughout this book has been to obtain a function, based on a set of examples,
that predicts accurately: produces low expected error across the space of possible examples.
We cannot, however, measure the expected error. Statistically, we know that with a su�-
cient sample, we can approximate an expectation. Here, we quantify this more carefully for
learned functions.

Our goal more precisely is to select a function from a function class H to minimize a
loss function ¸ : R ◊ R æ [0, Œ) in expectation over all pairs (x, y)

min
fœH

E[¸(f(X), Y)].

For example, in linear regression, H = {f : Rd
æ R | f(x) = x€w, for any w œ Rd

}. This
space of functions H represents all possible linear functions of inputs x œ Rd, to produce a
scalar output. Our goal in linear regression was to minimize a proxy to the true expected
error, i.e., the sample error: 1

n

q
n

i=1 ¸(f(xi), yi). Now a natural question to ask is: does this
sample error provide an accurate estimate of the true expected error? And what does it
tell us about the true generalization performance, i.e., true expected error?

Let us start with a simple example, using linear regression. Assume a bounded function
class H, where H = {f : Rd

æ R | f(x) = x€w, for any w œ Rd such that ÎwÎ2 Æ Bw}

for some finite scalar Bw > 0. Assume the input features come from a bounded space,
such that for all x, ÎxÎ2 Æ Bx for some finite scalar Bx > 0, and further that the outputs
y œ [≠By, By] for some By > 0. Assume we use loss ¸(ŷ, y) = 1

2
(ŷ ≠ y)2, which is (locally)

Lipschitz continuous for our bounded region, with Lipschitz constant c = By + BxBw. This
is because |ŷ| Æ BxBw and

d¸(ŷ, y)

dŷ

---- = |ŷ ≠ y| Æ |ŷ| + |y| Æ By + BxBw.

Further, because y œ [≠By, By], we know the loss is bounded as

¸(ŷ, y) = 1

2
(ŷ ≠ y)2

Æ
1

2
(B2

y + B2

xB2

w).

For approximate error

‰Err(f) = 1
n

nÿ

i=1

¸(f(xi), yi)

and true error

Err(f) = E[¸(f(X), Y)] =
ˆ

X ◊Y

p(x, y)¸(f(x), y)dxdy

using Equation 10.2 below, we get that with probability 1 ≠ ”, for ” œ (0, 1],

Err(f) Æ ‰Err(f) + 2cBxBw
Ô

n
+ 1

2
(B2

y + B2

xB2

w)

Û
ln(1/”)

2n
. (10.1)

With increasing samples n, the second two terms disappear and the sample error ap-
proaches the true expected error. This bound show the rate at which this discrepancy dis-
appears. For a higher confidence—small ” making ln(1/”) larger—more samples are need

138

for the third term to be small. This third term is obtained using concentration inequalities,
which enable us to state the rate at which a sample mean gets close to its expected value.
For possibly large values of features or learned weights, the second term can be big and can
again require the more samples. The second term reflects the properties of our function
class: a simpler class, with small bounded weights, can have a more accurate estimate of
the loss on a smaller number of samples. More generally, this complexity measure is called
the Rademacher complexity.1 For the linear functions above, with bounded ¸2 norms for x,
w, the Rademacher complexity is bounded as Rn(H) Æ BxBy/

Ô
n (see [9, Equation 3]).

In the next few sections, we provide a generalization result for more general functions,
as well as required background to determine that result.

10.1.1 Concentration inequalities
We will examine the use of concentration inequalities with one common example: Ho-
e�ding’s inequality. For the generalization bound below, a generalization is used, called
McDiarmid’s inequality.

For i.i.d. random variables X1, . . . , Xn, such that 0 Æ Xi Æ 1, let X̄ = 1

n

q
n

i=1 Xi be
the sample average. Then Hoe�ding’s inequality states that for any ‘

Pr(X̄ ≠ E[X̄] Ø ‘) Æ exp(≠2n‘2).

We start by setting this probability value to ”, so that we can say with probability ”,
Pr(X̄ ≠ E[X̄] Ø function(”)). We can solve for ‘ in terms of ”, to get

” = exp(≠2n‘2) =∆ ‘ = ±

Û
ln(1/”)

2n
.

We can either set ‘ to
Ò

ln(1/”)

2n
or ≠

Ò
ln(1/”)

2n
, to bound X̄ to be near E[X̄] from both above

and below. We get that with probability 1 ≠ ”,
---X̄ ≠ E[X̄]

--- Æ |‘| =
Ò

ln(1/”)

2n
.

This concentration inequality makes few assumptions about the random variables, and
does not require any distributional assumptions. Consequently, the rate of convergence to
the true mean is only 1/

Ô
n. Faster rates can be obtained with more assumptions.

10.1.2 Complexity of a function class
Rademacher complexity of a function class characterizes the overfitting ability of functions,
on a particular sample. Function class that are typically more complex are more likely
to be able to fit random noise, and so have higher Rademacher complexity. The empirical
Rademacher complexity, for a sample {z1, . . . , zn} —where typically we consider zi = (xi, yi)
— is defined as2

R̂n(H) = E
C

max
fœH

1
n

nÿ

i=1

‡if(xi)
D

1
If you have heard of VC dimension, we will discuss the connection between Rademacher and VC dimen-

sion below. They both play a role in identifying the complexity of a function class.
2
Here we are being a bit loose and using maximum instead of supremum, to avoid burdening the reader

with new terminology. We usually deal with function classes H where using the supremum is equivalent

to using the maximum. The supremum is used when a set does not contain a maximal point (e.g., [0, 1)),

where the supremum provides the closest upper bound (e.g., 1 for [0, 1)).

139

where the expectation is over i.i.d. random variables ‡1, . . . , ‡n chosen uniformly from
{≠1, 1}. This choice reflects how well the function class can correlate with this random noise.
Consider for example if f(x) predicts 1 or -1, as in binary classification. If there exists a
function in the class of functions that can perfectly match the sign of the randomly sampled
‡i, then that function produces the highest value

q
n

i=1 ‡if(xi). The empirical Rademacher
complexity for a function class is high, if for any randomly sampled ‡i, there exists such
a function within the function class (can be a di�erent function for each ‡1, . . . , ‡n). The
Rademacher complexity is the expected empirical Rademacher complexity, over all possibly
samples of n instances.

For function classes with high Rademacher complexity, error on the training set is un-
likely to be reflective of the generalization error, until there is a su�cient number of samples.
This is reflected in the generalization bound in Section 10.1.3.

Connection to VC dimension: The complexity of a function class can also be char-
acterized by the VC dimension. The idea of VC dimension to characterize the number of
points that can be separated (or shattered) by a function class. Simple functions have low
VC dimension, because they are not complex enough to separate many points. More com-
plex functions, that enable complex boundaries, have higher VC dimension. For example,
for functions of the form f((x1, x2)) = sign(x1w1 + x2w2 + w0), the VC dimension is 3;
more generally, for x œ Rd, the VC dimension is d + 1. VC dimension is a similar idea to
Rademacher complexity, but it is restricted to binary classifiers. For this reason, we directly
discuss the Rademacher complexity, which for binary classifiers can be bounded in terms of
the VC dimension. By Sauer’s Lemma, we can typically bound the Rademacher complexity
of a hypothesis class by

Ò
2VC-dimension ln n

n
.

10.1.3 Generalization bounds
The generalization bound for a class of models can be obtained by combining the con-
centration inequalities to bound deviation from the mean for fewer samples, and using the
Rademacher complexity to bound the di�erence between the sample error and true expected
error across all functions in the function class. We additionally need to restrict the set of
losses. We assume that the losses are Lipschitz with constant c, meaning that they do not
change too quickly in a region, with c indicating the rate of change. Further, we also assume
that the loss is bounded by b, i.e., attains values in [≠b, b]. As above, if {z1, . . . , zn} is i.i.d.,
then with probability 1 ≠ ”, for every f œ H,

E[¸(f(X), Y)] Æ
1
n

nÿ

i=1

¸(f(xi), yi) + 2cRn(H) + b

Û
ln(1/”)

2n
(10.2)

For a more precise theorem statement and a proof, see [2, Theorem 7] and [9, Theorem 1].

10.2 Comparison of Learning Algorithms
To empirically evaluate algorithms, we can consider a setting with one or more algorithms
on one or more datasets. Depending on the setting, di�erent evaluations will be employed.
For a nice overview of evaluation for machine learning algorithms, see [8].

140

For now, let us start with a simple case, where we compare two algorithms and use
the binomial test. Suppose we have a set of learning problems D1, D2, . . . ,Dm and wish
to compare learning algorithms a1 and a2. We can carry out such a comparison using
a counting test as follows: for each data set both algorithms are evaluated in terms of
the chosen performance measure and the algorithm with a higher performance accuracy is
awarded a win, while the other one is given a loss (in case of exactly the same performance,
we can provide a win/loss randomly).

D1 D2 D3 D4 Dm≠1 Dm

a1 1 0 1 1 · · · 0 1
a2 0 1 0 0 1 0

Table 10.1: A counting test where learning algorithms a1 and a2 are compared on a set of
m independent data sets. An algorithm with a better performance on a particular data set
collects a win (1), whereas the other algorithm collects a loss (0).

We are now interested in providing statistical evidence that say algorithm a1 is better
than algorithm a2. Suppose a1 has k wins out of m and algorithm a2 has m ≠ k wins, as
shown in Table 10.1. We would like to evaluate the null hypothesis H0 that algorithms a1

and a2 have the same performance by providing an alternative hypothesis H1 that algorithm
a1 is better than a2. In short,

H0: quality(a1) = quality(a2)
H1: quality(a1) > quality(a2)

If the null hypothesis is true, the win/loss on each data set will be equally likely and
determined by minor variation. Therefore, the probability of a win on any data set will be
roughly equal to p = 1/2. We can now express the probability that algorithm a1 collected k
wins or more under the null hypothesis using binomial distribution

P =
mÿ

i=k

A
m

i

B

pi(1 ≠ p)m≠i

and refer to it as the P-value. This value is the probability of k wins, plus the probability of
k+1 wins, up to the probability of m wins, under the null hypothesis. A typical approach in
these cases is to establish a significance value, say, – = 0.05 and reject the null hypothesis if
P Æ –. If the P-value is greater than – we say that there is insu�cient evidence for rejecting
H0. For su�ciently low P-values, we may conclude that there is su�cient evidence that
algorithm a1 is better than algorithm a2.

The choice of the significance threshold – is somewhat arbitrary. Typically, 5% is a
reasonable value, but lower values indicate that the particular situation of k wins out of
m was so unlikely, that we can consider the evidence for rejecting H0 very strong. Being
able to reject the null hypothesis provides some confidence that the result did not occur by
chance.

More generally, we can consider other statistical significance tests based on the distri-
butions of the performance measures. In the above example, a binomial distribution was
appropriate. If instead we considered the actual errors on the datasets, then we have pairs

141

of real values. In this case, a common choice is the paired t-test, if both errors appear
to be distributed normally and if they have similar variance. The paired t-test takes in
the sampled di�erences between the algorithms (line 3 in Table 10.2), d1, . . . , dm. Because
again our null hypothesis is that the algorithms perform equally, under the null hypothesis
the mean of these di�erences is 0. If the di�erences are normally distributed, then for the
sample average d̄ = 1

m

q
m

i=1 di and sample standard deviation Sd =
Ò

1

m≠1

q
m

i=1(di ≠ d̄)2,
the random variable t = d̄≠0

Sd/
Ô

m
is distributed according to the Student’s t-distribution.

The Student’s t-distribution is approximately like a normal distribution, with a degrees-of-
freedom parameter m ≠ 1 that makes the distribution look more like a normal distribution
as m becomes larger.

We can now ask about the probability of this random variable T , relative to the com-
puted statistic. If we only care about knowing if algorithm 1 is better than algorithm 2,
we conduct a one-tailed test. If the probability that T is larger than t, i.e., p = Pr(T > t),
is small, then we obtain some evidence that algorithm 1 is better than algorithm 2. To
test if algorithm 1 is better than algorithm 2, we can swap the order of the di�erence; if
p = Pr(T > ≠t) is small, then we obtain some evidence that algorithm 2 is better than
algorithm 1. These are both one-tailed tests, reflecting the probabilities at one end of the
tails of the distribution. A two-tailed test instead asks if the two algorithms are di�erent;
in this case, one would use p = Pr(T > |t|).

D1 D2 D3 D4 Dm≠1 Dm

a1 0.11 0.08 0.15 0.12 · · · 0.07 0.09
a2 0.10 0.09 0.11 0.12 · · · 0.10 0.09
d 0.01 -0.01 0.04 0.0 · · · -0.03 0.0

Table 10.2: A table of errors for two learning algorithms a1 and a2 are compared on a set
of m independent data sets. The last row contains the di�erences, which are used for the
paired t-test.

If the paired samples are not normally distributed, other tests are more suitable. Further,
there are some tests that do not make distributional assumptions, and rather are non-
parametric. For a summary of which test to use in di�erent settings, see [8, Section 6.3]

10.3 Obtaining samples of error
A key step in comparing algorithms is to obtain valid measures of performance for the
comparison. So far, we have assumed that these are given. One approach to obtain unbiased
samples of the error is to keep a hold-out test set. Imagine m samples are set in reserve,
on which the algorithms are not trained and which we cannot look at until we are ready to
evaluate. We can train two models on the training set, and then obtain m paired samples
of error. We can then use the paired t-test to make claims about if the two models are
statistically significantly di�erent for the problem.

However, there are two key disadvantages to using a hold-out test set. First, usually
we want to use all the data for training. Unless there is more data than can be used,
keeping a hold-out test set is typically not practical. Even in this age of huge datasets,

142

we still typically want to learn on as much (quality) data as possible. Second, once this
hold-out test set has been used for evaluation, we cannot use it again because it will not
provide an unbiased estimate of the expected error. For example, after getting performance
of your models on that test set, one could go back and adjust meta-parameters such as the
regularization parameters. However, once you have done this, the test-set has influenced
the learned models and is likely to produce an optimistic estimate of performance on new
data. Therefore, this hold-out test-set can only be used once.

An alternative approach to obtain estimates of error is to use resampling techniques
from the whole dataset. Two common resampling techniques are k-fold cross-validation and
bootstrap resampling. In the first, the data is partitioned into k disjoint sets (folds). The
model is trained on k ≠ 1 of the folds, and tested on the other fold; this is repeated k times
where each fold acts as the test fold. This approach simulates the common learning setting
where the training and test sets are disjoint. The resulting k performance estimates are
mostly independent, with some dependency introduced due to dependencies between the
training sets across the k runs. There is some additional bias introduced from the fact that
we do not run the model on the entire training set, but rather get an estimate of the error
for the algorithm trained on n≠(n/k). For any final models that will be put into production
after performing these evaluations, we will likely train on the entire set of n instances.

The bootstrap resample treats the data uses the idea behind bootstrapping: the data
constitutes a reasonable model of the data. By sampling from the data, it is like sampling
from the distribution that generated the data. To generate training/test splits, the data
is sampled with replacement to create the training set, and the remaining unused samples
used for test. If k resamples are obtained, we again get k performance measures and can
obtain a sample average of performance across di�erent splits and use statistical significance
test.

To better understand the properties of these two approaches, see the thorough and
accessible explanation in [7, Chapter 5].

10.4 Performance measures for Classification Models
In classification, there are a variety of performance measures to reflect the relative impor-
tance of incorrect predictions for either class. For example, it can be more detrimental to
predict a patient is not sick if they are actually sick (False Negative), resulting in a decision
not to run further diagnostics and so causing serious complications from not treating the
illness. When training and evaluating classification algorithms, these preferences need to
be encoded. Table 10.3 summarizes some of the terminology for discussing performance of
classification models.

143

Name Symbol Definition

Classification error error error = fp+fn

tp+fp+tn+fn

Classification accuracy accuracy accuracy = 1 ≠ error

True positive rate tpr tpr = tp

tp+fn

False negative rate fnr fnr = fn

tp+fn

True negative rate tnr tnr = tn

tn+fp

False positive rate fpr fpr = fp

tn+fp

Precision pr pr = tp

tp+fp

Recall rc rc = tp

tp+fn

Table 10.3: Some classification measures.

144

