
Chapter 4

Basic Principles of Parameter Estimation

In probabilistic modeling, we are typically presented with a set of observations and the
objective is to find a model, or function, f̂ that shows good agreement with the data and
respects certain additional requirements. We shall roughly categorize these requirements
into three groups: (i) the ability to generalize well, (ii) the ability to incorporate prior
knowledge and assumptions into modeling, and (iii) scalability. First, the model should
be able to stand the test of time; that is, its performance on the previously unseen data
should not deteriorate once this new data is presented. Models with such performance are
said to generalize well. Second, f̂ must be able to incorporate information about the model
space F from which it is selected and the process of selecting a model should be able to
accept training “advice” from an analyst. Finally, when large amounts of data are available,
learning algorithms must be able to provide solutions in reasonable time given the resources
such as memory or CPU power. In summary, the choice of a model ultimately depends on
the observations at hand, our experience with modeling real-life phenomena, and the ability
of algorithms to find good solutions given limited resources.

An easy way to think about finding the “best” model is through learning parameters
of a distribution. Suppose we are given a set of observations D = {xi}

n

i=1
, where xi œ R

and have knowledge that F is a family of all univariate Gaussian distributions; e.g., F =
Gaussian(µ, ‡2), with µ œ R and ‡ œ R+. In this case, the problem of finding the best
model (by which we mean function) can be seen as finding the best parameters µú and
‡ú; i.e., the problem can be seen as parameter estimation. We call this process estimation
because the typical assumption is that the data was generated by an unknown model from
F whose parameters we are trying to recover from data.

We will formalize parameter estimation using probabilistic techniques and will subse-
quently find solutions through optimization, occasionally with constrains in the parameter
space. The main assumption throughout this part will be that the set of observations D was
generated (or collected) independently and according to the same distribution p(x). The
statistical framework for model inference is shown in Figure 4.1.

4.1 Maximum a posteriori and maximum likelihood estima-
tion

The idea behind maximum a posteriori (MAP) estimation is to find the most probable
model for the observed data. Given the data set D, we formalize the MAP solution as

fMAP = arg max
fœF

{p(f |D)} ,
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Figure 4.1: Statistical framework for model inference. The estimates of the parameters are
made using a set of observations D as well as experience in the form of model space F ,
prior distribution p(f), or specific starting solutions in the optimization step.

where p(f |D) is called the posterior distribution of the model given the data. In discrete
model spaces, p(f |D) is the probability mass function and the MAP estimate is exactly the
most probable model. Its counterpart in continuous spaces is the model with the largest
value of the posterior density function. Note that we use words model, which is a function,
and its parameters, which are the coe�cients of that function, somewhat interchangeably.
However, we should keep in mind the di�erence, even if only for pedantic reasons.

To calculate the posterior distribution we start by applying the Bayes rule as

p(f |D) = p(D|f) · p(f)
p(D) , (4.1)

where p(D|f) is called the likelihoodfunction, p(f) is the prior distribution of the model, and
p(D) is the marginal distribution of the data. Notice that we use D for the observed data
set, but that we usually think of it as a realization of a multidimensional random variable
D drawn according to some distribution p(D). We can use marginalization to express p(D)
as

p(D) =

Y
__]

__[

q
fœF

p(D|f)p(f) f : discrete

´
F

p(D|f)p(f)df f : continuous

Therefore, the posterior distribution can be fully described using the likelihood and the
prior. The field of research and practice involving ways to determine this distribution and
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optimal models is referred to as inferential statistics. The posterior distribution is sometimes
referred to as inverse probability.

Finding fMAP can be greatly simplified because p(D) in the denominator does not a�ect
maximization. We shall re-write Equation (4.1) as

p(f |D) = p(D|f) · p(f)
p(D)

Ã p(D|f) · p(f),

where Ã is the proportionality symbol. Thus, we can find the MAP solution by solving the
following optimization problem

fMAP = arg max
fœF

{p(D|f)p(f)} .

In some situations we may not have a reason to prefer one model over another and can
think of p(f) as a constant over the model space F . Then, maximum a posteriori estimation
reduces to the maximization of the likelihood function; i.e.,

fML = arg max
fœF

{p(D|f)} .

We will refer to this solution as the maximum likelihood solution. Formally speaking, the
assumption that p(f) is constant is problematic because a uniform distribution cannot be
always defined (say, over R), though there are some solutions to this issue using improper
priors. Nonetheless, it may be useful to think of the maximum likelihood approach as a
separate technique, rather than a special case of MAP estimation, but keep this connection
in mind.

Observe that MAP and ML approaches report solutions corresponding to the mode of
the posterior distribution and the likelihood function, respectively. We shall later contrast
this estimation technique with the view of the Bayesian statistics in which the goal is to
minimize the posterior risk. Such estimation typically results in calculating conditional
expectations, which can be complex integration problems. From a di�erent point of view,
MAP and ML estimates are called point estimates, as opposed to estimates that report
confidence intervals for a particular group of parameters.

Example 9: Suppose data set D = {2, 5, 9, 5, 4, 8} is an i.i.d. sample from a Poisson
distribution with a fixed but unknown parameter ⁄0. Find a maximum likelihood estimate
of ⁄0.

The probability mass function of a Poisson distribution is expressed as p(x|⁄) = ⁄xe≠⁄/x!,
with some parameter ⁄ œ R+. We will estimate this parameter as

⁄ML = arg max
⁄œ(0,Œ)

{p(D|⁄)} . (4.2)

We can write the likelihood function as

p(D|⁄) = p({xi}
n

i=1
|⁄)

=
nŸ

i=1

p(xi|⁄)

= ⁄
q

n

i=1 xi · e≠n⁄

r
n

i=1 xi!
.
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To find ⁄ that maximizes the likelihood, we will first take a logarithm (a monotonic function)
to simplify the calculation, then find its first derivative with respect to ⁄, and finally equate
it with zero to find the maximum. Specifically, we express the log-likelihood ll(D, ⁄) =
ln p(D|⁄) as

ll(D, ⁄) = ln ⁄
nÿ

i=1

xi ≠ n⁄ ≠

nÿ

i=1

ln (xi!)

and proceed with the first derivative as

ˆll(D, ⁄)
ˆ⁄

= 1
⁄

nÿ

i=1

xi ≠ n

= 0.

By substituting n = 6 and values from D, we can compute the solution as

⁄ML = 1
n

nÿ

i=1

xi

= 5.5,

which is simply a sample mean. The second derivative of the likelihood function is always
negative because ⁄ must be positive; thus, the previous expression indeed maximizes the
likelihood. Note that to properly maximize this loss, we also need to ensure the constraint
⁄ œ (0, Œ) is enforced. Because the solution above is in the constraint set, we know we
have the correct solution to Equation (4.2); however, in other situations, we will have to
explicitly enforce constraints in the optimization, as we will discuss later.

⇤

Example 10: Let D = {2, 5, 9, 5, 4, 8} again be an i.i.d. sample from Poisson(⁄0), but
now we are also given additional information. Suppose the prior knowledge about ⁄0 can
be expressed using a gamma distribution �(x|k, ◊) with parameters k = 3 and ◊ = 1. Find
the maximum a posteriori estimate of ⁄0.

First, we write the probability density function of the gamma family as

�(x|k, ◊) = xk≠1e≠
x

◊

◊k�(k) ,

where x > 0, k > 0, and ◊ > 0. �(k) is the gamma function that generalizes the factorial
function; when k is an integer, we have �(k) = (k≠1)!. The MAP estimate of the parameters
can be found as

⁄MAP = arg max
⁄œ(0,Œ)

{p(D|⁄)p(⁄)} .

As before, we can write the likelihood function as

p(D|⁄) = ⁄
q

n

i=1 xi · e≠n⁄

r
n

i=1 xi!
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and the prior distribution as

p(⁄) = ⁄k≠1e≠
⁄

◊

◊k�(k) .

Now, we can maximize the logarithm of the posterior distribution p(⁄|D) using

ln p(⁄|D) Ã ln p(D|⁄) + ln p(⁄)

= ln ⁄(k ≠ 1 +
nÿ

i=1

xi) ≠ ⁄(n + 1
◊

) ≠

nÿ

i=1

ln xi! ≠ k ln ◊ ≠ ln �(k)

to obtain

⁄MAP = k ≠ 1 +
q

n

i=1 xi

n + 1

◊

= 5

after incorporating all data.
A quick look at ⁄MAP and ⁄ML suggests that as n grows, both numerators and denomi-

nators in the expressions above become increasingly more similar. In fact, it is a well-known
result that, in the limit of infinite samples, both the MAP and ML converge to the same
model, f , as long as the prior does not have zero probability (or density) on f . This result
shows that the MAP estimate approaches the ML solution for large data sets. In other
words, large data diminishes the importance of prior knowledge. This is an important
conclusion because it simplifies mathematical apparatus necessary for practical inference.

To get some intuition for this result, we will show that the MAP and ML estimates
converge to the same solution for the above example with a Poisson distribution. Let sn =q

n

i=1 xi, which is a sample from the random variable Sn =
q

n

i=1 Xi. If limnæŒ sn/n2 = 0
(i.e., sn does not grow faster than n2), then

|⁄MAP ≠ ⁄ML| =
----
k ≠ 1 + sn

n + 1/◊

≠
sn

n

----

=
----

k ≠ 1
n + 1/◊

≠
sn

n(n + 1/◊)

----

Æ
|k ≠ 1|

n + 1/◊

+ sn

n(n + 1/◊) ≠≠≠æ
næŒ

0

Note that if limnæŒ sn/n2
”= 0, then both estimators go to Œ; however, such a sequence of

values has an essentially zero probability of occurring. Consistency theorems for ML and
MAP estimation state that convergence to the true parameters occurs “almost surely” or
“with probability 1” to indicate that these unbounded sequences constitute a set of measure-
zero, under certain reasonable conditions. More details can be found in Larry Wasserman’s
book “All of Statistics” (Theorem 9.13).

⇤

Example 11: Let D = {xi}
n

i=1
be an i.i.d. sample from a univariate Gaussian distribution.

Find the maximum likelihood estimates of the parameters.
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We start by forming the log-likelihood function

ln p(D|µ, ‡) = ln
nŸ

i=1

p(xi|µ, ‡)

= n ln 1
Ô

2fi
+ n ln 1

‡
≠

q
n

i=1 (xi ≠ µ)2

2‡2
.

We now compute the partial derivatives of the log-likelihood with respect to all parameters
as

ˆ

ˆµ
ln p(D|µ, ‡) =

q
n

i=1 (xi ≠ µ)
‡2

and

ˆ

ˆ‡
ln p(D|µ, ‡) = ≠

n

‡
+

q
n

i=1 (xi ≠ µ)2

‡3
.

From here, we can proceed to derive that

µML = 1
n

nÿ

i=1

xi

and

‡2

ML = 1
n

nÿ

i=1

(xi ≠ µML)2 .

⇤

4.2 Maximum likelihood for conditional distributions
We can also formulate maximum likelihood problems for conditional distributions. Recall
that a conditional distribution has the form p(y|x), for two random variables Y and X,
where above we considered the marginal distribution p(x) or p(y). For the distributions
above, we asked: what is the distribution over this variable? For a conditional distribution,
we are instead asking: given some auxiliary information, now what is the distribution over
this variable? When the auxiliary information changes, so will the distribution over the
variable. For example, we may want to condition a distribution over sales of a particular
product (Y ) given the current month (X). We expect the distribution over Y to be di�erent,
depending on the month.

Conditional distributions can be from any of the distribution families discussed above,
and we can similarly formulate parameter estimation problems. The parameters, however,
are usually tied to the given variable X. We provide a simple example to demonstrate
this below. Much of the parameter estimation formulations we consider later will be for
conditional distributions, because in machine learning we typically have a large number
of auxiliary variables (features) and are trying to predict (or learn the distribution over)
targets.

Example 12: Assume we are given two random variables X and Y and that you believe
p(y|x) = N (µ = x, ‡2) for some unknown ‡. Our goal is to estimate this unknown parameter
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‡. Notice that the distribution over Y varies, depending on which X value is observed or
given.

We again start by forming the log-likelihood function, now for a set pairs D = {(xi, yi)}n

i=1
,

and apply the chain rule, p(xi, yi) = p(yi|xi)p(xi), to solve this problem.

ln p(D|‡) = ln
nŸ

i=1

p(xi, yi|‡)

= ln
nŸ

i=1

p(yi|xi, ‡)p(xi)

= n ln 1
Ô

2fi
+ n ln 1

‡
≠

q
n

i=1 (yi ≠ xi)2

2‡2
+

nÿ

i=1

ln p(xi).

Observe that the middle line above incorporates that xi is independent of ‡, and that the
last line uses µ = xi for each normal distribution p(yi|xi, ‡). We now compute the derivative
of the log-likelihood with respect to the parameter ‡ as

ˆ

ˆ‡
ln p(D|‡) = ≠

n

‡
+

q
n

i=1 (yi ≠ xi)2

‡3
,

where ˆ

ˆ‡

q
n

i=1 ln p(xi) = 0 because ‡ does not parameterize p(xi). Therefore, to obtain the
optimal ‡, we do not need to know or specify the distribution over the random variable X.
By setting the derivative to zero, to obtain a stationary point, we obtain

‡2

ML = 1
n

nÿ

i=1

(yi ≠ xi)2.

⇤

4.2.1 The relationship with Kullback-Leibler divergence
We now investigate the relationship between maximum likelihood estimation and Kullback-
Leibler divergence. Kullback-Leibler divergence between two probability distributions p(x)
and q(x) is defined on X = R as

DKL(p||q) =
ˆ

Œ

≠Œ

p(x) log p(x)
q(x)dx.

In information theory, Kullback-Leibler divergence has a natural interpretation of the inef-
ficiency of signal compression when the code is constructed using a suboptimal distribution
q(x) instead of the correct (but unknown) distribution p(x) according to which the data has
been generated. However, more often than not, Kullback-Leibler divergence is simply con-
sidered to be a measure of divergence between two probability distributions. Although this
divergence is not a metric (it is not symmetric and does not satisfy the triangle inequality)
it has important theoretical properties in that (i) it is always non-negative and (ii) it is
equal to zero if and only if p(x) = q(x).

Consider now a divergence between an estimated probability distribution p(x|◊) and an
underlying (true) distribution p(x|◊0) according to which the data set D = {xi}

n

i=1
was
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generated. The Kullback-Leibler divergence between p(x|◊) and p(x|◊0) is

DKL(p(x|◊0)||p(x|◊)) =
ˆ

Œ

≠Œ

p(x|◊0) log p(x|◊0)
p(x|◊) dx

=
ˆ

Œ

≠Œ

p(x|◊0) log 1
p(x|◊)dx ≠

ˆ
Œ

≠Œ

p(x|◊0) log 1
p(x|◊0)dx.

The second term in the above equation is simply the (di�erential) entropy of the true
distribution and is not influenced by our choice of the model ◊. The first term, on the other
hand, can be expressed as

ˆ
Œ

≠Œ

p(x|◊0) log 1
p(x|◊)dx = ≠E[log p(X|◊)]

Therefore, maximizing E[log p(X|◊)] minimizes the Kullback-Leibler divergence between
p(x|◊) and p(x|◊0). Using the strong law of large numbers, we know that

1
n

nÿ

i=1

log p(xi|◊) a.s.
æ E[log p(X|◊)]

when n æ Œ. Thus, when the data set is su�ciently large, maximizing the likelihood func-
tion minimizes the Kullback-Leibler divergence and leads to the conclusion that p(x|◊ML) =
p(x|◊0), if the underlying assumptions are satisfied. Under reasonable conditions, we can
infer from it that ◊ML = ◊0. This will hold for families of distributions for which a set of
parameters uniquely determines the probability distribution; e.g., it will not generally hold
for mixtures of distributions but we will discuss this situation later. The relationship be-
tween maximum likelihood estimation and minimizing Kullback-Leibler divergence is only
one of the many connections between statistics and information theory.

4.3 Bayesian estimation
Maximum a posteriori and maximum likelihood approaches report the solution that corre-
sponds to the mode of the posterior distribution and the likelihood function, respectively.
This approach, however, does not e�ectively address the possibility of skewed distributions,
multimodal distributions or simply large regions with similar values of p(f |D). Bayesian
estimation addresses those concerns.

The main idea in Bayesian statistics is minimization of the posterior risk

R =
ˆ

F

¸(f, f̂) · p(f |D)df,

where f̂ is our estimate and ¸(f, f̂) is some loss function between two models. When
¸(f, f̂) = (f ≠ f̂)2 (ignore the abuse of notation), we can minimize the posterior risk as
follows

ˆ

ˆf̂
R = 2f̂ ≠ 2

ˆ
F

f · p(f |D)df

= 0
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from which it can be derived that the minimizer of the posterior risk is the posterior mean
function; i.e.,

fB =
ˆ

F

f · p(f |D)df

= E[F |D],

where F is a random variable representing the model. We shall refer to fB as the Bayes
estimator. It is important to mention that computing the posterior mean usually involves
solving complex integrals. In some situations, these integrals can be solved analytically; in
others, numerical integration is necessary.

Example 13: Let D = {2, 5, 9, 5, 4, 8} yet again be an i.i.d. sample from Poisson(⁄0).
Suppose the prior knowledge about the parameter of the distribution can be expressed
using a gamma distribution with parameters k = 3 and ◊ = 1. Find the Bayesian estimate
of ⁄0.

We want to find E[�|D]. Let us first write the posterior distribution as

p(⁄|D) = p(D|⁄)p(⁄)
p(D)

= p(D|⁄)p(⁄)´
Œ

0
p(D|⁄)p(⁄)d⁄

,

where, as shown in previous examples, we have that

p(D|⁄) = ⁄
q

n

i=1 xi · e≠n⁄

r
n

i=1 xi!

and

p(⁄) = ⁄k≠1e≠
⁄

◊

◊k�(k) .

Before calculating p(D), let us first note that
ˆ

Œ

0

x–≠1e≠—xdx = �(–)
—–

.

Now, we can derive that

p(D) =
ˆ

Œ

0

p(D|⁄)p(⁄)d⁄

=
ˆ

Œ

0

⁄
q

n

i=1 xi · e≠n⁄

r
n

i=1 xi!
·

⁄k≠1e≠
⁄

◊

◊k�(k) d⁄

= �(k +
q

n

i=1 xi)
◊k�(k)

r
n

i=1 xi!(n + 1

◊
)
q

n

i=1 xi+k
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and subsequently that

p(⁄|D) = p(D|⁄)p(⁄)
p(D)

= ⁄
q

n

i=1 xi · e≠n⁄

r
n

i=1 xi!
·

⁄k≠1e≠
⁄

◊

◊k�(k) ·
◊k�(k)

r
n

i=1 xi!(n + 1

◊
)
q

n

i=1 xi+k

�(k +
q

n

i=1 xi)

=
⁄k≠1+

q
n

i=1 xi · e≠⁄(n+1/◊)
· (n + 1

◊
)
q

n

i=1 xi+k

�(k +
q

n

i=1 xi)
.

Finally,

E[�|D] =
ˆ

Œ

0

⁄p(⁄|D)d⁄

= k +
q

n

i=1 xi

n + 1

◊

= 5.14

which is nearly the same solution as the MAP estimate found in Example 9. ⇤
It is evident from the previous example that selection of the prior distribution has

important implications on calculation of the posterior mean. We have not picked the gamma
distribution by chance; that is, when the likelihood was multiplied by the prior, the resulting
distribution remained in the same class of functions as the prior. We shall refer to such prior
distributions as conjugate priors. Conjugate priors are also simplifying the mathematics; in
fact, this is a major reason for their consideration. Interestingly, in addition to the Poisson
distribution, the gamma distribution is a conjugate prior to the exponential distribution as
well as the gamma distribution itself.

4.4 Parameter estimation for mixtures of distributions
We now investigate parameter estimation for mixture models, which is most commonly
carried out using the expectation-maximization (EM) algorithm. As before, we are given
a set of i.i.d. observations D = {xi}

n

i=1
, with the goal of estimating the parameters of the

mixture distribution

p(x|◊) =
mÿ

j=1

wjp(x|◊j),

where all coe�cients wj are nonnegative and sum to one. In the equation above, we used
◊ = (w1, w2, . . . , wm, ◊1, ◊2, . . . , ◊m) to combine all parameters. For now, we shall assume
that m is given and will address simultaneous estimation of ◊ and m later.

Let us attempt to find the maximum likelihood solution first. By plugging the formula
for p(x|◊) into the likelihood function we obtain
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p(D|◊) =
nŸ

i=1

p(xi|◊)

=
nŸ

i=1

Q

a
mÿ

j=1

wjp(xi|◊j)

R

b , (4.3)

which, unfortunately, is di�cult to maximize using di�erential calculus (why?).1 We there-
fore need a di�erent approach.

4.4.1 Basic iterative estimation for mixtures of distributions
Before introducing the EM algorithm, let us for a moment present two hypothetical scenarios
that will help us to understand the algorithm and the principles behind it. First, suppose
that information is available as to which mixing component generated which data point.
That is, suppose that D = {(xi, yi)}n

i=1
is an i.i.d. sample from some distribution p(x, y),

where y œ Y = {1, 2, . . . , m} specifies the mixing component. How would the maximization
be performed then? Let us write the likelihood function as

p(D|◊) =
nŸ

i=1

p(xi, yi|◊)

=
nŸ

i=1

p(xi|yi, ◊)p(yi|◊)

=
nŸ

i=1

wyi
p(xi|◊yi

), (4.4)

where wj = pY (j) = P (Y = j). The log-likelihood is

log p(D|◊) =
nÿ

i=1

(log wyi
+ log p(xi|◊yi

))

=
mÿ

j=1

nj log wj +
nÿ

i=1

log p(xi|◊yi
),

where nj is the number of data points in D generated by the j-th mixing component.
It is useful to observe here that when y = (y1, y2, . . . , yn) is known, the internal summa-

tion operator in Equation (4.3) disappears. More importantly here, it follows that Equation
(4.4) can be maximized in a relatively straightforward manner by separating the estimation
of w from ◊j ’s. Let us show how. To find w = (w1, w2, . . . , wm) we can simply find the
maximum likelihood estimates for each wj using the subset of data points coming from
distribution j. However, we will make it slightly more complicated and solve a constrained
optimization problem, using the method of Lagrange multipliers. Because we know that the

1
Notice that although the likelihood function p(D|◊) has O(m

n
) terms, it can be calculated in O(mn)

time as a log-likelihood. Thus, calculating the likelihood, when the parameters are known, is tractable.
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weights sum to one and that each weight is nonnegative, we must simultaneously deal with
equality and inequality constraints. To start we shall first form the Lagrangian function as

L(w, –, µ) =
mÿ

j=1

nj log wj + –

Q

a
mÿ

j=1

wj ≠ 1

R

b +
mÿ

j=1

µjwj

where – ”= 0 and µ Ø 0 are Lagrange multipliers. Then, by setting

ˆ

ˆwk

L(w, –, µ) = 0 ’k œ Y

ˆ

ˆ–
L(w, –, µ) = 0

wkµk = 0 ’k œ Y (the Karush-Kuhn-Tucker conditions)

we derive that wk = ≠
nk

–
and – = ≠n.2 Thus,

wk = 1
n

nÿ

i=1

1(yi = k),

where 1(·) is the indicator function defined in Equation (1.6). To find all ◊j ’s, we cannot
proceed without being more concrete about distributions p(x|◊j). To do that, we shall
assume that each p(x|◊j) is an exponential distribution with a parameter ⁄j ; i.e., p(x|◊j) =
⁄je≠⁄jx, where ⁄j > 0. We now proceed by setting

ˆ

ˆ⁄k

nÿ

i=1

log p(xi|⁄yi
) = 0,

for each k œ Y.3 We obtain that

⁄k = nkq
n

i=1 1(yi = k) · xi

,

which is simply the inverse mean over those data points generated by the k-th mixture
component. In summary, we observe that if the mixing component designations y are
known, the parameter estimation is greatly simplified. This was achieved by decoupling the
estimation of mixing proportions and all parameters of the mixing distributions.

In the second hypothetical scenario, suppose that parameters ◊ are known, and that
we would like to estimate the best configuration of the mixture designations y (one may
be tempted to call them “class labels”). This task looks like clustering in which cluster
memberships need to be determined based on the known set of mixing distributions and
mixing probabilities. To do this we can calculate the posterior distribution of Y as

2
More technically, all µk = 0 when nk > 0 and if nk = 0 we can derive that µk = n. Since it must hold

that µk Ø 0, we have a valid solution.
3
In this case, the Karush-Kuhn-Tucker conditions µk⁄k = 0 ensure that each µk = 0 because ⁄k > 0. By

recognizing it, we therefore opted to not write the full Lagrangian and solve it formally. Instead we decided

to solve an unconstrained problem and verify in the end that the solutions are in the constraint set.
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p(y|D, ◊) =
nŸ

i=1

p(yi|xi, ◊)

=
nŸ

i=1

wyi
p(xi|◊yi

)
q

m

j=1 wjp(xi|◊j) (4.5)

using the Bayes rule. We can now find the best configuration of y out of mn possibilities.
Obviously, because of the i.i.d. assumption each element yi can be estimated separately and,
thus, this estimation can be completed in O(mn) time. The MAP estimate for yi can be
found as

ŷi = arg max
kœY

I
wkp(xi|◊k)

q
m

j=1 wjp(xi|◊j)

J

for each i œ {1, 2, . . . , n}.
In reality, neither “class labels” y nor the parameters ◊ are known. Fortunately, we have

just seen that the optimization step is relatively straightforward if one of them is known.
Therefore, the intuition behind our algorithm is to form an iterative procedure by assuming
that either y or ◊ is known and calculate the other. For example, we can initially pick some
value for ◊, say ◊(0), and then estimate y by computing p(y|D, ◊(0)) as in Equation (4.5).
We can refer to this estimate as y(0). Using y(0) we can now refine the estimate of ◊ to ◊(1)

using Equation (4.4). We can then iterate these two steps until convergence. In the case of
mixture of exponential distributions, we arrive at the following algorithm:

1. Initialize ⁄(0)

k
and w(0)

k
for ’k œ Y

2. Calculate y(0)

i
= arg max

kœY

I
w

(0)
k

p(xi|⁄
(0)
k

)q
m

j=1 w
(0)
j

p(xi|⁄
(0)
j

)

J

for ’i œ {1, 2, . . . , n}

3. Set t = 0

4. Repeat until convergence

(a) w(t+1)

k
= 1

n

q
n

i=1 1(y(t)

i
= k)

(b) ⁄(t+1)

k
=

q
n

i=1 1(y
(t)
i

=k)q
n

i=1 1(y
(t)
i

=k)·xi

(c) y(t+1)

i
= arg max

kœY

I
w

(t+1)
k

p(xi|⁄
(t+1)
k

)q
m

j=1 w
(t+1)
j

p(xi|⁄
(t+1)
j

)

J

(d) t = t + 1

5. Report ⁄(t)

k
and w(t)

k
for ’k œ Y

This procedure is close but not quite yet the EM algorithm; rather, it is a version of it
referred to as classification EM algorithm (CEM). In the next section we will introduce the
EM algorithm.
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4.4.2 The expectation-maximization algorithm
The previous procedure was designed to iteratively estimate class memberships and param-
eters of the distribution. In reality, it is not necessary to compute y; after all, we only need
to estimate ◊. To accomplish this, at each step t, we can compute p(y|D, ◊(t)) to maximize
the expected log-likelihood of both D and y.

E[log p(D, Y |◊)|D, ◊(t)] =
ÿ

y

log p(D, y|◊)p(y|D, ◊(t)), (4.6)

which can be carried out by integrating the log-likelihood function of D and y over the
posterior distribution for y in which the current values of the parameters ◊(t) are assumed
to be known. We can now formulate the expression for the parameters in step t + 1 as

◊(t+1) = arg max
◊

Ó
E[log p(D, Y |◊)|D, ◊(t)]

Ô
. (4.7)

The formula above is all that is necessary to create the update rule for the EM algorithm.
Note, however, that inside of it we always have to re-compute E[log p(D, Y |◊)|D, ◊(t)] func-
tion because the parameters ◊(t) have been updated from the previous step. We then can
perform maximization. Hence the name “expectation-maximization”, although it is per-
fectly valid to think of the EM algorithm as an iterative maximization of expectation from
Equation (4.6); i.e., “expectation maximization”.

We now proceed as follows

E[log p(D, Y |◊)|D, ◊(t)] =
mÿ

y1=1

· · ·

mÿ

yn=1

log p(D, y|◊)p(y|D, ◊(t))

=
mÿ

y1=1

· · ·

mÿ

yn=1

nÿ

i=1

log p(xi, yi|◊)
nŸ

l=1

p(yl|xl, ◊(t))

=
mÿ

y1=1

· · ·

mÿ

yn=1

nÿ

i=1

log (wyi
p(xi|◊yi

))
nŸ

l=1

p(yl|xl, ◊(t)).

After several simplification steps, that we omit for space reasons, the expectation of the
likelihood can be written as

E[log p(D, Y |◊)|D, ◊(t)] =
nÿ

i=1

mÿ

j=1

log (wjp(xi|◊j)) pYi
(j|xi, ◊(t)),

from which we can see that w and {◊j}
m

j=1
can be separately found. In the final two steps,

we will first derive the update rule for the mixing probabilities and then by assuming the
mixing distributions are exponential, derive the update rules for their parameters.

To maximize E[log p(D, Y |◊)|D, ◊(t)] with respect to w, we observe that this is an in-
stance of constrained optimization because it must hold that

q
m

j=1 wj = 1 and wj Ø 0. We
will use the method of Lagrange multipliers; thus, for each k œ Y we need to solve

ˆ

ˆwk

Q

a
mÿ

j=1

log wj

nÿ

i=1

pYi
(j|xi, ◊(t)) + –

Q

a
mÿ

j=1

wj ≠ 1

R

b

R

b = 0,
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where – is the Lagrange multiplier.4 It is relatively straightforward to show that

w(t+1)

k
= 1

n

nÿ

i=1

pYi
(k|xi, ◊(t)). (4.8)

Similarly, to find the solution for the parameters of the mixture distributions, we obtain
that

⁄(t+1)

k
=

q
n

i=1 pYi
(k|xi, ◊(t))

q
n

i=1 xipYi
(k|xi, ◊(t))

(4.9)

for k œ Y. As shown in Equation (4.5), we have

pYi
(k|xi, ◊(t)) = w(t)

k
p(xi|⁄

(t)

k
)

q
m

j=1 w(t)

j
p(xi|⁄

(t)

j
)
, (4.10)

which means that all values of p(y|D, ◊(t)) can be computed and stored as an n ◊ m ma-
trix. In summary, for the mixture of m exponential distributions, we summarize the EM
algorithm by combining Equations (4.8-4.10) as follows:

1. Initialize ⁄(0)

k
and w(0)

k
for ’k œ Y

2. Set t = 0

3. Repeat until convergence

(a) pYi
(k|xi, ◊(t)) = w

(t)
k

p(xi|⁄
(t)
k

)q
m

j=1 w
(t)
j

p(xi|⁄
(t)
j

)
for ’(i, k)

(b) w(t+1)

k
= 1

n

q
n

i=1 pYi
(k|xi, ◊(t))

(c) ⁄(t+1)

k
=

q
n

i=1 pYi
(k|xi,◊

(t)
)q

n

i=1 xipYi
(k|xi,◊

(t))

(d) t = t + 1

4. Report ⁄(t)

k
and w(t)

k
for ’k œ Y

The convergence can be assessed by computing the likelihood function from Equation (4.3)
and terminating the updates once the changes are small enough. We also note that simi-
lar update rules can be obtained for di�erent probability distributions; however, separate
derivatives have to be found. In summary, in each step t, the EM algorithm performs the
following steps:

1. E-step: Compute p(y|D, ◊(t))

2. M-step: Compute ◊(t+1)

4
We here ignore the inequality constraints as we saw in the previous section that the µ parameters do

not a�ect the outcome of optimization.
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Notice the di�erence between the CEM and the EM algorithms. Although the algorithms are
similar in nature, the CEM algorithm “predicts” the class memberships and from them infers
the model parameters. On the other hand, the EM algorithm calculates the probabilities
of class memberships and uses these probabilities to directly infer the new parameters of
the model. By not having to make decisions on the class memberships, the EM algorithm
walks di�erently through the parameter space and generally reaches better decisions, albeit
slower than the CEM algorithm.

4.4.3 Identifiability
When estimating the parameters of a mixture, it is possible that for some parametric families
one obtains multiple solutions. In other words,

p(x|◊) =
mÿ

j=1

wjp(x|◊j)

=
m

Õÿ

j=1

wÕ

jp(x|◊Õ

j)

= p(x|◊Õ)

The parameters are identifiable if

mÿ

j=1

wjp(x|◊j) =
m

Õÿ

j=1

wÕ

jp(x|◊Õ

j),

implies that m = mÕ for each j œ {1, 2, . . . , m} there exists some l œ {1, 2, . . . , m} such that
wj = wÕ

l
and ◊j = ◊Õ

l
.
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