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0.1 Introduction

The ongoing shift from 32-bit to 64-bit processor environments forces
garbage collectors to cope with the larger heaps made possible by the
increased address space. On 32-bit machines, generational collectors
that occasionally pause to collect the entire heap work well enough
for many applications, but that paradigm does not scale up because
collection pauses that take time proportional to the total heap size can
cause alarming or annoying delays [18], even if they occur rarely.

Real-time, incremental, and concurrent collectors eliminate such
delays but introduce complex invariants to the memory management
system. Maintenance of these invariants during execution reduces ap-
plication throughput. Also, supporting these invariants increases the
complexity of compilers, run-time infrastructure, and low-level libraries
(e.g. client modules written in C and linked via a foreign function in-
terface).

In non-real-time operating environments, real-time garbage collec-
tion is overkill. It would be better to preserve the throughput of gen-
erational collectors while eliminating the long delays associated with
major collections. Implementors would also appreciate a system with
hard bounds on pause times, but simpler than contemporary real-time
memory managers.

Will Clinger (my thesis advisor) and I have designed, and I am
implementing, a regional garbage collector that collects bounded sub-
sets of the heap during every collection, thus disentangling the worst-
case mutator pause time from the total heap size. The design isolates
collection-related work not directly associated with moving objects; a
separate processor core can perform such work without direct interac-
tion with the mutator thread.

The three primary goals of the design are:
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1. Constant worst-case bounds for the CPU time required by each
collection, and worst-case lower-bounds for minimum mutator
utilization (for granularity greater than the worst case CPU time
bound for each collection).

2. Asymptotic worst-case bounds for memory usage, within a small
constant factor of the total volume of live storage.

3. Typical throughput competitive with conventional generational
garbage collection technology.

A secondary goal is to minimize the changes required to the lan-
guage implementation’s compiler or its foreign function interface. The
collector does require a new write barrier, replacing the barrier in place
to support generational collection; supporting this is a small additional
cost for run-time efficiency and implementation development effort.

My thesis is: Our regional garbage collector achieves worst case
bounds on mutator pause times and minimum mutator utilization, and
if its concurrent tasks are run with sufficiently high priority, it pro-
vides competitive throughput while maintaining a worst case bound
on overall memory usage.

In the remainder of this proposal I assume the reader has familiarity
with basic garbage collection technology and terminology; Appendix A
provides an overview of the referenced concepts.

0.2 Regional Collector Design

The design of the regional collector has many sources of inspiration.
In some respects it is a simplification of the original algorithm for
generational garbage collection [17], which was designed to satisfy real-
time constraints on pause times. In other respects it is a simplified
revision of the garbage-first collection research of [13], but with changes
to support hard bounds on both memory usage and pause times.

Heap Structure

Our regional collector partitions the heap into regions of bounded size.
We assume that object sizes are also bounded, so that every object fits
into a region.1

These regions resemble the generations of contemporary genera-
tional collectors. But in a conventional generational collector, any col-
lection of an old generation can only occur along with collection of
all younger generations. To ensure completeness, the eldest generation

1Bounding the individual object size is not a fundamental limitation; the as-

sumption merely simplifies the presentation.
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must occasionally be selected for collection, which results in a collection
pause of duration proportional to the volume of live storage.

In our design the regions are not ordered by age, and each region
can be collected independently of the other regions. This removes the
most obvious cause of pauses proportional to the number of live objects.

While the regions are not themselves ordered by age, the regional
collector does adopt one important feature of a generational collector:
it has a dedicated portion of the heap known as the nursery. All
objects are initially allocated to the nursery; when the nursery space
is exhausted, the collector evacuates all live objects from the nursery.
Sometimes the collector performs this evacuation by simply copying
objects from the nursery into the free space within a region; this is
known as a minor collection. Other times the collector collects a region
along with the nursery; this is known as a major collection.

Remembered Set Structure

To support the independent collection of regions, our design adopts a
remembered set structure storing all objects that have region-crossing
references, rather than restricting its attention to a subset of such refer-
ences (as is typically done in a generational collector where only point-
ers from old to young objects need to be updated via a remembered
set).

In our design, each region is associated with a remembered set that
stores all objects in that region that contain references to objects in
other regions. We refer to such sets as points-outof remembered sets,
in part to distinguish this representation from that used in the garbage-
first collector and elsewhere. We use points-outof remembered sets to
enforce a strict asymptotic bound on the amount of memory devoted
to such sets: Since each remembered set for a region stores only objects
from that region, the memory representation of the set can be bounded
by the size of the region itself.

Points-Into Summaries

Collecting a region r requires identifying all objects in other regions
that have references to objects in r, so those references can be treated
as roots and updated as r’s objects are forwarded.

The remembered set structure contains the information necessary
for this task, since it collects all objects with region-crossing references.
But scanning all of the remembered sets for regions other than r during
the collection of r would violate our goals, because that would generally
require time proportional to the size of the heap.

To counter this problem, the regional collector prepares for a collec-
tion of a region r by constructing a points-into summary of all objects
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outside of r that have references to objects in r. Then, during the col-
lection of r itself, the collector scans the summary to find the additional
roots.

Uncontrolled use of the points-into summary would provide no
bound on the collector’s pause time, because if there are many ref-
erences into the region r, then a complete summary could grow as
large as the rest of the heap. One cannot bound the amount of time
it would take to forward a popular object, update all of its referers,
and reclaim the old storage for the popular object, because there is no
constant bound on the number of references in the heap to such an
object. This is an instance of a more general phenomenon: a copying
collection of a region containing many semi-popular objects cannot be
performed in bounded time.

Our response to this problem is simple: we do not collect such
regions, nor do we build a complete summary for such regions. Instead,
we put an upper bound on the size of a points-into summary for r, and
if we reach that bound, we temporarily remove r from consideration for
collection. Thus, we have both a time bound on how long it takes to
process a summary and a space bound on how much storage is required
for the summaries, since each region’s summary occupies at most some
fixed number of words.

Incremental Concurrent Summarization

It is expensive to build a single points-into summary, since in the worst
case such a construction requires a scan of the entire heap.

By constructing multiple summaries for many regions simultane-
ously over the course of several collections, the total cost of building
the summary can be amortized and treated as a constant overhead
added to each collection pause, thus preserving a worst case constant
bound on collection pause time.

The task of building these summaries is a computation that can be
run concurrently with the mutator, since it only involves scanning the
remembered sets and objects on the heap.

Incremental summary construction does need to work in concert
with the collector. When forwarding an object in r that has been
included in a summary for some other region r′, the collector is respon-
sible for updating the summary of r′ accordingly.

Collection Policy

Incremental summary construction requires early commitment to which
region(s) will be collected next, but otherwise the collection policy for
the regional collector is unconstrained. The remembered set structure
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does not impose any particular ordering on what order regions are
collected.

We have adopted a policy that collects regions in approximately
round robin order. This policy makes the regional collector behave like
Larceny’s renewal-older-first collector: it first attempts to collect the
objects that were least recently allocated or considered for collection.
In the absence of other information about object lifetimes, round-robin
is probably optimal [11].

However, the flexibility of which regions are considered for collection
could make the regional collector an attractive basis for research in
alternative collection policies.

Incremental Concurrent Marking

As described so far, the collector would be incapable of collecting
garbage structures whose object graph forms a cycle across regions.

To address this, we have incorporated an incremental concurrent
marking process that periodically marks a snapshot of the object graph.
The process builds the snapshot by tracing through the object graph
as it appeared at that time. This is commonly known as a snapshot-
at-the-beginning (SATB) process [22]. Any objects allocated at that
time that are not included in the snapshot must be unreachable, and
therefore can be removed from the remembered sets.

Thus, cyclic garbage structures will eventually be collected after the
objects making up the structures have been removed from the remem-
bered sets. The remembered sets act as a channel of communication
between the SATB process and the collector itself.

Our decision to employ a SATB process was inspired by the garbage-
first collector, which uses the object graph developed by the SATB to
guide a greedy search for garbage-rich regions. The SATB can clearly
be offloaded to a concurrent process, which furthers our goal of high
throughput when spare processing cores are available.

We initially thought that the SATB could be a very low priority
process in the regional collector, because we thought its main purpose
would be to remove cyclic garbage. However, our initial experiments
indicate that significantly lowering the priority of the SATB process
leads to excessive float. Further investigation is warranted.

Worst Case Bounds

The regional collector has been designed to enforce worst case bounds
on the space usage and the maximum pause time. The actual bounds
are defined in terms of user-controllable parameters. R is the maximum
number of words allowed in each region. P is the popularity parameter;
each points-into summary contains at most PR words — typically P =
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2. F is the mark refinement parameter; for every F words allocated,
the SATB marker should track 1 word of storage.

In the worst case a full region of size R words would use R words to
represent its objects, approximately R words in its remembered set, PR
words in its points-into summary, and R words in its mark stack. Since
each component is bounded by O(R), the amount of space to represent
a region and time to collect it is bounded. However, (3 + P )R is an
approximate worst-case bound on the space used to represent a single
region.

In particular, we do not need to maintain a summary for every re-
gion at all times; the summaries are constructed on a just-in-time basis.
Maintaining summaries for a subset of the regions reduces the total
heap representation size, leading to tighter worst-case space bounds as
well as much better space usage in the typical case.

Common Case Behavior

The worst case behavior of the regional collector provides hard bounds
on pause times and space usage. We expect the collector to outperform
the hard bounds on typical programs.

We expect that a typical region is going to have a small mark
stack and points-into summary, and a reasonably sized remembered
set. Then space usage falls far below the worst case bound. Experi-
ments so far with our prototype support this claim.

Likewise we have hard bounds on the pause times and minimum mu-
tator utilization that might not compete with the hard bounds provided
by a real-time collector, but we expect the actual mutator utilization
on typical benchmarks to exceed the guaranteed minimum mutator
utilization.

Of course, I need to gather more data to fully support both of these
claims.

0.3 Current Status

Theoretical Model

I have previously developed an abstract model of heap-partitioning
garbage collector, using a space-accounting operational semantics to
prove hard bounds on asymptotic space usage. The model does not
currently include a notion of time or effort expended during a com-
putation step, so it cannot be used directly to argue for bounds on
pause time or minimum mutator utilization. I believe this would be a
straight-forward extension to the model.
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Experimental Prototype

To test the design of the regional collector empirically, I have imple-
mented an experimental prototype. The current prototype differs from
the design described above in several important ways:

• The prototype is entirely sequential.

• Snapshot-at-the-beginning marking is performed as a stop-and-
mark computation whenever the number of words allocated since
the last marking exceeds a threshold proportional to the number
of words last marked.

• The write barrier code to update the mark snapshot is emitted
in-line but the information it provides is ignored, as the marking
is not yet concurrent nor incremental.

• Points-into summarization is performed by a stop-and-summarize
computation before every collection of a region. It also computes
only one points-into summary (for the region about to be col-
lected).

Sequential implementation simplified the prototype and made it
easier to estimate the eventual overheads of the marking and summa-
rization threads.

I have previously implemented a prototype that used a concurrent
thread to perform snapshot-at-the-beginning marking with a full im-
plementation of the Yuasa-style write barrier; therefore I am familiar
with the issues involved with completing that portion of the implemen-
tation.

The primary purpose of this prototype was to estimate the constant
factors of our design, and to confirm that the worst-case bounds do not
come at the price of unacceptable time or space overheads.

Performance Results

I compared the performance of the prototype with Larceny’s default
generational collector and with Larceny’s nongenerational stop-and-
copy collector; see Appendix B.

Evaluation of Performance Results

Pause Times

The top chart in Figure B.1 (on page 19) indicates that our prototype
of the regional collector achieves bounded pause times for all of the
benchmarks; the regional collector never has a collection pause longer
than 100ms.
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The charts in Figures B.2 through B.11 (on pages 21 through 30)
indicate that the vast majority of collection pauses for the regional
collector take far less time than 100ms.

Memory Usage

When we designed the regional collector, we took care to bound the
memory used to represent the remembered set, which displays as solid
black in the middle chart of Figure B.1.

Elapsed Time

The bottom chart of Figure B.1 breaks the elapsed time into four com-
ponents: mutator (striped), collection pauses (black), marking pro-
cess (finely cross-hatched), and summarization process (coarsely cross-
hatched).

The marking and summarization processes will eventually run con-
currently with the mutator and with each other. If these concurrent
threads were free, then the relative throughput of the collectors would
be inversely proportional to the tops of the black bars, and the regional
collector would have throughput competitive with a conventional gen-
erational collector.

Concurrent threads are not free. In the worst case of a single-
processor machine, the time spent in concurrent threads adds directly
to the total elapsed time, in which case the relative throughput of the
collectors would correspond to the very tops of the stacked bars. On
a single-processor machine, our prototype of the regional collector has
poor throughput: worse than a conventional generational collector on
all but the mperm benchmarks, and merely competitive on those.

The earley, gcbench, and sboyer benchmarks show that our pro-
totype is spending much time building points-into summaries. I believe
that incremental construction of multiple points-into summaries will
reduce this time substantially.

0.4 Remaining Problems

There are issues to resolve with the concrete implementation and design
details before we will have a system acceptable for non-experimental
use.

Summary Representation When the collector forwards an object
that has been included in a summary for some other region r′,
the collector will be responsible for updating that summary ac-
cordingly; this remains to be implemented.
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Incremental Tasks The prototype does not yet incrementally con-
struct the snapshot of the live heap state, nor does it incremen-
tally construct the points-into summaries. Until these are imple-
mented, we cannot get accurate estimates of actual elapsed pause
times.

Concurrent Tasks The prototype does not yet concurrently construct
the snapshot of the live heap state, nor does it concurrently con-
struct the points-into summaries; these are crucial goals for the
implementation.

64-bit experimental platform The prototype is developed atop a
32-bit version of Larceny; to experiment with truly enormous
heaps will require porting the design to a language environment
that supports a 64-bit address space.

Live Storage Estimation We desire the regional collector to adhere
to a load factor relating the total heap size to the current volume
of live storage; we want the freedom to add extra free allocation
space to the heap when the volume of live storage increases. The
problem is that the regional collector never actually knows what
the current volume of live storage is; accurately but conservatively
estimating this is future work.

Heap Contraction The current prototype expands the number of re-
gions as the heap grows, but does not reduce the number of re-
gions when the volume of live storage drops. Supporting this
requires some reconsideration of the collection policy; the pro-
totype itself has most of the infrastructure necessary to support
such a change.

Reserve Regions The description above glossed over how the col-
lector handles a region r when so many objects within r and the
nursery are live that you cannot store all of the forwarded objects
in a single region. Currently such extra objects are forwarded to
a special reserve region. I am experimenting with policies for
eliminating or reclaiming reserve regions.

Popular Objects/Regions The current design skips over the col-
lection of regions with too many incoming references, delaying
their consideration until the next collection cycle. This increases
the worst-case storage from N to N + N/P ; with P = 2, the
storage increase is 50%. An alternative design could reclaim
storage within popular regions and forward objects into popu-
lar regions via free-lists and an additional low-priority marking
process. Whether this extension is worthwhile will depend on
how often popular regions occur in practice; the floating garbage
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resulting from low priority marking seems like it is going to be a
bigger problem to tackle.

0.5 Related Work

Generational garbage collection

Historically the idea of generational collection was introduced by Lieber-
man and Hewitt [17]. A simplification of that design was first imple-
mented by Ungar [21]. Most generational collectors implemented today
are modeled after Ungar’s, but our regional collector’s design is more
similar to that of Lieberman and Hewitt.

Heap partitioning

Our regional collector is centered around the idea of partitioning the
heap and collecting the parts independently, which dates at least back
to Bishop [5]; his work targets Lisp machines and requires hardware
support.

The Garbage-First collector of [13] inspired many aspects of our
regional collector. The garbage-first collector does not have worst-case
bounds on space usage or pause times.

The Mature Object Space (a.k.a. Train) algorithm of [16] uses a
fixed policy for choosing which regions to collect. To ensure complete-
ness, their policy migrates objects across regions until a complete cycle
is isolated to its own train and then collected. This gradual migration
can lead to significant problems with floating garbage. We use a con-
current marker to provide collection completeness and nondirectional
remembered sets to allow more flexible policies.

The Beltway collector of [6] uses a heap partitioning infrastructure
to enable flexible selection of policies expressive enough to emulate the
behavior of semi-space, generational, renewal-older-first, and deferred-
older-first collectors. They demonstrate more flexible policy parame-
terization can improve significantly upon a fixed generational collection
policy. Unfortunately, in the Beltway system one must choose between
incremental or complete collection. Our design achieves both.

The MarkCopy collector of [20] partitions the heap into fixed sized
windows. During a collection pause, it constructs precise points-into
remembered sets via a whole-heap marking pass. The authors claim the
system could support real-time constraints via extensions that perform
the copying and the marking incrementally, but only implemented and
benchmarked incremental copying.
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Bounding collection pauses

There is a broad body of research on bounding the pause times intro-
duced by garbage collection, including [3, 9, 1, 22, 8, 4, 18, 15]. Several
attempts to reduce pause-times run afoul of the problem that bound-
ing an individual pause is not enough; one must also ensure that the
mutator can accomplish an appropriate amount of work in between the
pauses, keeping the processor utilization high.

Blelloch and Cheng [7, 10] describe a real-time concurrent copying
collector with proven bounds on pause times and space usage, and
also introduce the notion of minimum mutator utilization as a metric
for evaluating how much progress the mutator can make concurrently
with collection. They report that supporting parallelism adds 39%
overhead to the collection time and supporting real-time constraints
adds an additional 12% overhead.

Metronome [2] is a hard real-time collector. It is mostly non-
moving, but will copy objects to reduce fragmentation. Metronome
requires a read-barrier, but they managed to reduce the read barrier
overhead to an impressive average of 4%.

In contrast, our design does not make any real-time guarantees, is
mostly copying, and has no read barrier. Our collector is a different
point in the design space; it should offer better throughput for typical
programs at the cost of worse constants for the worst case.

Concurrent collection

There are many treatments of concurrent collectors dating back to
[14], which specifically points out how difficult they are to implement
correctly. In our collector, reclamation of dead object state is not
performed concurrently. We believe this makes our design significantly
easier to understand and implement, because it is not fully concurrent.

Our design summarizes the portion of the remembered set relevant
to scheduled collections by running a summarization thread concur-
rently with the mutator. This feature of our design was inspired by the
performance of Detlefs’ concurrent refinement of the remembered set
to reduce time spent scanning objects during collection pause [12].

Our design makes use of concurrent processes to remove some scan-
ning and tracing work from the critical path of the collector; this re-
quires a write barrier, which we piggy-back onto the barrier we have
in place to support generational collection. This is similar to how [19],
building on the work of [8], merges the overhead of maintaining concur-
rency related invariants with the overhead of maintaining generational
invariants.
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0.6 Proposed Schedule

May 2008
Finish implementation. In particular: incremental
summarization and marking; concurrent marking;
concurrent summarization.

June 2008
July 2008
August 2008
September 2008 Revise remembered set representation (time permitting).
October 2008

Gather benchmark results on time and memory usage,
and write thesis.

November 2008
December 2008
January 2009
February 2009

Defend ThesisMarch 2009
April 2009

0.7 Conclusion

I have outlined the design of the regional collector developed by Will
Clinger and myself. I have argued that the design has bounds on space
usage and pause times, and I have presented some results about the
prototype implementation, as well as outlined how I plan to proceed
to finish the implementation.

My thesis is: Our regional garbage collector achieves worst case
bounds on mutator pause times and minimum mutator utilization, and
if its concurrent tasks are run with sufficiently high priority, it pro-
vides competitive throughput while maintaining a worst case bound
on overall memory usage.
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Garbage Collection Basics

One way to document the design of an automatic memory manager
is to describe how it supports and interacts with the main program,
called the mutator. Most of the mutator’s state is made up object
structures that are allocated in a portion of memory called the heap.
During the course of a computation, the mutator issues requests for
new objects to the run-time environment. The memory manager re-
sponds by identifying an unused area of the heap capable of holding
on object of the requested size and returning its address. This action
could be trivial if the heap has free space available, but if the free
space is exhausted, the memory manager invokes the garbage collector
to identify heap memory that is no longer usable by the mutator and
thus can be reclaimed.

A tracing garbage collector (or often just garbage collector) identi-
fies storage to reclaim by starting from a fixed set of the object refer-
ences provided by the mutator, known as the root set, and transitively
following the references to determine what objects the mutator could
possibly reach. The objects reachable in this manner are the live ob-
jects; a sound mutator must only access objects that it can reach via
some path of references from one of its roots. A simple tracing collec-
tor traverses all of live objects starting from the root set; thus a simple
tracing collector can pause the mutator for a duration proportional to
the volume of live storage.

The object graph is an abstraction of the memory store as a di-
rected graph where objects are vertices and the references between
objects are edges. A copying collector is a tracing collector that copies
(or forwards) objects into fresh memory as it traces them, preserving
the object graph structure by updating the references within copied
objects to refer to the other copies as well. (Having the freedom to
manipulate the representation of the object graph in this manner can
reduce fragmentation and improve locality.)

A generational collector is a tracing collector that partitions the
heap in some manner so that younger objects are classified separately

13



14 APPENDIX A. GARBAGE COLLECTION BASICS

from older objects. The collector attempts to reduce the overhead of
tracing by tracing only the young objects during most collections. In
some generational collectors, the youngest generation is known as the
nursery. Most objects are initially allocated in the nursery; when it
fills up, minor collection evacuates all live objects out of the nursery
into an older generation. (If the older generation runs out of room, a
rare major collection traces through both the old and young objects.)

Any collector that reclaims storage from a part of the heap by trac-
ing only objects within that part of the heap must ensure that there is
no way to reach the reclaimed objects via some untraced path through
the unprocessed portion of the heap. This assurance is typically pro-
vided by maintaining a remembered set : a set of objects that have
references into the collected subset. Including the remembered set as
part of the root set ensures that any reachable object in the collected
subset will not be reclaimed. Thus a generational collector must main-
tain a remembered set to track the older objects that have references
to young objects.

When a collector maintains a precise remembered set, it is respon-
sible for ensuring that any object in the remembered set actually does
contain a reference that will need to be included during some future
collection. Thus with precise remembered sets there is a double im-
plication, in that an object is in the remembered set if and only if it
contains a reference that crosses the heap partitioning. Many genera-
tional collectors only guarantee that they maintain imprecise remem-
bered sets, where any object with a reference that crosses the heap
partitioning must be in the remembered set, but there is no constraint
on how many extra objects with no such references can occur in the
remembered sets.

Collectors that use a conservative approximation of the object graph
may treat some unreachable object structures as if they were live. This
floating garbage, or float, is not be reclaimed until the collector refines
its approximation of the object graph. Some amount of float is usually
acceptable in an efficient collector, as the point of collecting only a part
of the heap is to avoid the cost of analyzing the whole heap structure
to determine the exact set of live objects. But if the amount of float
grows unreasonably large, then performance can suffer: the memory
usage becomes unacceptably high, and a copying collector wastes time
copying and maintaining the useless data of the float objects.

In many collectors, particularly generational collectors, the mutator
must notify the collector when it makes modifications to the memory
store, so the collector can maintain internal meta-information about
object referencing relationships in the store. Such notification is usually
performed by a snippet of code that is automatically emitted by the
compiler alongside every operation that modifies a memory cell in the
store; this snippet is referred to as a write barrier. The main purpose of
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the write barrier in a generational collector is to ensure that references
from old to young objects introduced by mutation operations are saved
in the appropriate remembered set; references from young to old objects
need not be saved in a generational collector and are typically filtered
out by the write barrier.

In an incremental collector, the work of collection is divided into
small chunks, so that control is passed to the collector for only a fixed
amount of time before it is returned to the mutator. The problem
is that bounding an individual pause time is not enough; one must
also ensure that the mutator can accomplish an appropriate amount
of work in between the pauses, keeping the processor utilization high.
The mutator utilization of a collector is the fraction of time in which
the mutator does useful work in a given period; thus the minimum
mutator utilization is a measure of how little work the mutator is able
to get done due to interruptions by the collector.

A concurrent collector runs some or all of the collection-related
tasks in parallel with the mutator. The core difficulty of concurrent
collection is that the mutator’s and collector’s views of the heap must
be kept coherent as the concurrent tasks proceed. Supporting object
forwarding concurrently with the mutator is possible but involves the
maintenance of complex invariants.

The work performed by a computing system can be measured in
a variety of ways, such as wall-clock elapsed time, or number of pro-
cessor cycles. For most of our abstract discussions, we measure work
performed by the mutator and garbage collector by the memory opera-
tions they perform: memory reads, memory writes, mutator allocation
requests, and collector memory allocation and freeing. Therefore, we
often present elapsed mutator time as a count of memory writes and
allocation requests the mutator can make before control shifts to the
collector, and collection pause times as the number of memory opera-
tions that the collector must perform before it can pass control back to
the mutator. As long as the total memory usage remains reasonably
bounded1, this is not an absurd simplification, especially considering
the ever widening CPU/memory gap. We present wall-clock times in
our performance results, however.

1The bound on total memory usage is relevant for simplifying our reasoning

about elapsed time; it allows us to assume that memory operations do not cause

significantly more OS-level page faults than would have occurred with some other

collector
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Benchmark Results

I compared the performance of the prototype with Larceny’s default
generational collector and with Larceny’s nongenerational stop-and-
copy collector. I ran the regional collector with a mark-and-refine factor
F = 3, a region size of 5 megabytes and a 1-megabyte nursery.

We ran these benchmarks on an otherwise unloaded Macintosh Mini
with an Intel Core Duo processor (running at about 1.8 GHz) and 2
gigabytes of RAM. All collectors were asked to limit their memory
usage to no more than 3 times their best estimate of the peak live
storage, but estimating the peak live storage is difficult for the regional
collector because it never performs a full collection.

B.1 Description of Benchmarks

We ran the three collector configurations on ten gc-intensive bench-
marks. earley is Marc Feeley’s implementation of the Earley algo-
rithm for context-free parsing, generating all parse trees for a short
input, iterated 20 times. gcbench is a synthetic benchmark originally
written in Java by John Ellis, Pete Kovac, and Hans Boehm, scaled to
touch 128 megabytes of storage, iterated 5 times. nboyer is a scalable
version of Bob Boyer’s theorem proving benchmark with some bug fixes
and performance improvements. We ran nboyer with the values of 5
and 6 for its scaling parameter, each iterated 5 times. sboyer is a vari-
ation of nboyer with shared consing as implemented by Henry Baker,
run with a scaling parameter of 6 and iterated 5 times. mperm9:10 (and
mperm9:20) repeatedly generate all permutations of 9 items, with much
shared structure, without generating any garbage, storing the results
into a queue. At the end of each of 200 (or 400) iterations, the oldest
1/10 (or 1/20) of the permutations are shifted out of the queue and
become garbage.1 twobit is a portable version of the Twobit Scheme

1Since all object lifetimes are queue-like, non-generational collectors should per-

form better on these benchmarks than younger-first generational collectors. Older-

17
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compiler and Larceny’s SPARC assembler, written by Will Clinger and
Lars Hansen, run on the source code for the twobit benchmark itself
and iterated 5 times; of the benchmarks shown in this paper, twobit is
the most typical and least challenging program. gcold:0 is a synthetic
garbage collection benchmark written by David Detlefs and translated
to Scheme by Will Clinger and Lars Hansen, with its parameters set
to minimize the time spent in the mutator. gcold:1000 is the same
benchmark but with its parameters set so that the mutator generates
many cross-references between objects.

The figures presented here show the results for a single run of each
benchmark, but all major features of the figure are consistent across
multiple runs of the benchmarks.

B.2 Overall Performance Results

On each benchmark, we gathered three kinds of data about the four
collectors:

• The top chart shows the duration of the longest collection pause.
For all but the stop-and-copy collector, it can be assumed that
most collections took less time than is shown by the top chart.

• The middle chart shows the maximum memory usage of each
collector, separated into the memory occupied by remembered
sets (black) and all other memory (striped).

• The bottom chart shows the total elapsed time to run the bench-
mark, broken down into time spent in the mutator (striped), in
collection pauses (black), in the marking process (finely cross-
hatched), and in the summarization process (coarsely cross-hatched);
the latter two categories only apply to regional collectors. All
times shown in the bottom chart are normalized relative to the
elapsed time required by Larceny’s default generational collector
on the benchmark.

B.3 Pause Time Distributions

Figures B.2 through B.11 (on pages 21 through 30) provide histograms
of the number of pauses in various ranges of times for the three collec-
tors under comparison. The counts of regional collector’s pauses are
rendered as finely cross-hatched bars, the default generational collec-
tor’s pauses as black bars, and the stop-and-copy collector’s pauses as

first collectors should perform better still, but our regional collector’s nursery makes

it a hybrid of younger-first and older-first, limiting its performance on the mperm

benchmarks.
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Figure B.1: Performance Results
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striped bars. The top chart of each figure shows the number of pauses
due to either minor collections of the nursery alone or major collections
of the nursery and some other portion of the heap. The bottom chart of
each figure shows only the number of pauses due to major collections.
(The stop-and-copy collector does not have a fixed-size nursery; all of
its collections are major collections.) Both the top and bottom charts
are rendered with a log-scale y-axis.

The main conclusion I draw from the top charts of Figure B.2
through Figure B.11 is that in both the regional collector and the de-
fault generational collector an overwhelming percentage of the collec-
tion pauses are (very fast) minor collections. These results match our
expectations for the design.

A common trend in the bottom charts is that the regional collector’s
bars tend to be tall bars clustered on the left side of each chart, while
the default generational collector’s bars tend to be shorter bars clus-
tered on the right side of each chart. The height of the bars indicates
that the regional collector performs many more major collections than
the default generational collector. The clustering on the left side in-
dicates that each major collection performed by the regional collector
takes significantly less time than each of the major collections per-
formed by the default generational collector. These results also match
our expectations for the design.
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Figure B.9: Pause Time Distributions for twobit
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