
preprint version

Scalable Garbage Collection with Guaranteed MMU

William D. Clinger
Northeastern University

����� � ������	�
������
 �����

Felix S. Klock II
Northeastern University
� ��������� � ��������	�
�������
 �����

Abstract
Regional garbage collection offers a useful compromise between
real-time and generational collection. Regional collectors resemble
generational collectors, but are scalable: our main theorem guar-
antees a positive lower bound, independent of mutator and live
storage, for the theoretical worst-case minimum mutator utilization
(MMU). The theorem also establishes upper bounds for worst-case
space usage and collection pauses.

Standard generational collectors are not scalable. Some real-
time collectors are scalable, while others assume a well-behaved
mutator or provide no worst-case guarantees at all.

Regional collectors cannot compete with hard real-time collec-
tors at millisecond resolutions, but offer efficiency comparable to
contemporary generational collectors combined with improved la-
tency and MMU at resolutions on the order of hundreds of millisec-
onds to a few seconds.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection)

General Terms Algorithms, Design, Performance

Keywords scalable, real-time, regional garbage collection

1. Introduction
We have designed and prototyped a new kind of scalable garbage
collector that delivers a provable fixed upper bound for the dura-
tion of collection pauses. This theoretical worst-case bound is com-
pletely independent of the mutator (defined as the non-gc portion
of an application) and the size of its data.

The collector also delivers a provable fixed lower bound for
worst-case minimum mutator utilization (MMU, expressed as the
smallest percentage of the machine cycles that are available to
the mutator during any sufficiently long interval of time) and a
simultaneous worst-case upper bound for space, expressed as a
fixed multiple of the mutator’s peak storage requirement.

These guarantees are achieved by sacrificing throughput on un-
usually gc-intensive programs. For most programs, however, the
loss of throughput is small. Indeed, our prototype’s overall through-
put remains competitive with several generational collectors that
are currently deployed in popular systems.

Section 5 discusses one near-worst-case benchmark. To reduce
this paper to an acceptable length, we defer most discussion of

[Copyright notice will appear here once ’preprint’ option is removed.]

more typical programs, and of throughput generally, to another
paper that will also describe the engineering of our prototype in
greater detail.

Worst-case performance, both theoretical and observed, is the
focus of this paper. Many garbage collectors have been designed
to exploit common cases, with little or no concern for the worst
case. As illustrated by section 5, their worst-case performance
can be quite poor. When designing our new regional collector,
our main goal was to guarantee a minimal level of performance,
independent of problem size and mutator behavior. We exploit
common cases only when we can do so without compromising
latency or asymptotic performance for the worst case.

1.1 Bounded Latency

Generational collectors that rarely stop the mutator while they col-
lect the entire heap have worked well enough for many applica-
tions, but that paradigm breaks down for truly large heaps: even
an occasional full collection can produce alarming or annoying de-
lays (Nettles and O’Toole 1993). This problem is evident on 32-bit
machines, and will only get worse as 64-bit machines become the
norm.

Real-time, incremental, or concurrent collectors can eliminate
those delays, but at significant cost. On stock hardware, most
bounded-latency collectors depend upon a read barrier, which re-
duces throughput (average mutator utilization) even for programs
that create little garbage. Read barriers and other invariants also
increase the complexity of compilers and run-time infrastructure,
while impeding use of libraries that were written and compiled
without knowledge of the garbage collector’s invariants.

Our regional collector is a novel bounded-latency collector
whose invariants resemble the invariants of standard generational
garbage collectors. In particular, our regional collector does not
require a read barrier.

1.2 Scalability

Unlike standard generational collectors, the regional collector is
scalable: Theorem 1 below establishes that the regional collector’s
theoretical worst-case collection latency and MMU are bounded by
nontrivial constants that are independent of the volume of reachable
storage and are also independent of mutator behavior. The theorem
also states that these fixed bounds are achieved in space bounded
by a fixed multiple of the volume of reachable storage.

Although most real-time, incremental, or concurrent collectors
appear to be designed for embedded systems in which they can be
tuned for a particular mutator, some (though not all) hard real-time
collectors are scalable in the same sense as the regional collector.
Even so, we are not aware of any published proofs that establish all
three scalability properties of our main theorem for a hard real-time
collector.

The following theorem characterizes the regional collector’s
worst-case performance.

Scalable Garbage Collection 1 2009/7/24

Theorem 1. There exist positive constants ��� , ��� , ��� , and ��� such
that, for every mutator, no matter what the mutator does:

1. GC pauses are independent of heap size: � � is larger than the
worst-case time between mutator actions.

2. Minimum mutator utilization is bounded below by constants
that are independent of heap size: within every interval of time
longer than

� � � , the MMU is greater than � � .
3. Memory usage is 	�
��� , where � is the peak volume of reach-

able objects: the total memory used by the mutator and collec-
tor is less than ����������� .

We must emphasize that the constants ��� , ��� , ��� , and ��� are com-
pletely independent of the mutator. Their values do depend upon
several parameters of the regional collector, upon details of how the
collector is implemented in software, and upon the hardware used
to execute the mutator and collector. Later sections will discuss the
worst-case constants and report on the performance actually ob-
served for one near-worst-case benchmark.

Major contributions of this paper include:
� a new algorithm for scalable garbage collection
� a proof of its scalability, independent of mutator behavior
� a novel solution to the problem of popular objects
� formulas that describe how theoretical worst-case performance

varies as a function of collector parameters
� empirical measurements of actual performance for one near-

worst-case benchmark

The remainder of this paper describes the processes, data struc-
tures, and algorithms of the regional collector, provides a proof of
our main theorem above, estimates worst-case bounds, and summa-
rizes related and future work.

2. Regional Collection
The regional collector resembles a stop-the-world generational col-
lector with several additional data structures, processes, and invari-
ants.

In place of generations that segregate objects by age, the re-
gional collector maintains a set of relatively small regions, all of
the same size � . There is no strict correlation between an object’s
region and the object’s age. Only one region is collected at a time.
(In most generational collectors, collecting a generation implies the
simultaneous collection of all younger generations.)

The regional collector assumes every object is small enough to
fit within a region. For justification, see sections 3.4 and section 7.

The regional collector maintains a remembered set, a collection
of summary sets, and a snapshot structure. Each component is de-
scribed in detail below, after an overview of the memory manage-
ment processes. In short, the remembered set tracks region-crossing
references, the summary sets summarize portions of the remem-
bered set that will be relevant to upcoming collections, and the
snapshot structure gathers past reachability information to refine
the remembered set.

The interplay between regions, the remembered set and the
summary sets is an important and novel aspect of our design.

2.1 Processes

The regional collector adds three distinct computational processes
to those of the mutator:
� a collection process uses the Cheney (1970) algorithm to move

a region’s reachable storage into some other region(s),
� a summarization process computes summary sets from the re-

membered set, and

� a snapshot-at-the-beginning marking process marks every ob-
ject reachable in a snapshot of the object graph.

The summarization and marking processes run concurrently
or interleaved with the mutator processes. When the collection
process is executing, all other processes are suspended.

The collection and marking processes serve distinct purposes.
The collection process moves objects to prevent fragmentation, and
updates pointers from outside the collected region to point to the
newly relocated objects; it also reclaims unreachable storage.1

The pointers that must be updated during a relocating collection
reside in uncollected regions, in the marking process’s snapshot
structure, and in the mutator stack(s); the latter are discussed in
sections 2.6 and 2.8 respectively.

The summarization process constructs summary sets in prepa-
ration for collections, and is the subject of section 2.3.

The regional collector imposes a fixed constant bound on the
duration of each collection. That means that a popular region,
whose summary set is larger than a fixed threshold, would take too
long to collect. Section 3.3 proves that, with appropriate values for
the collector’s parameters, the percentage of popular regions is so
well bounded that the regional collector can afford to leave popular
regions uncollected. That is one of the critical lemmas that establish
the scalability of regional garbage collection.

The main purpose of the marking process is to limit unreachable
storage to a bounded fraction of peak live storage; it accomplishes
that by removing unreachable references from the remembered
set. The marking process also calculates the volume of reachable
storage at the time of its initiation; without that information, the
collector might not be able to guarantee worst-case bounds for its
storage requirements.

2.2 Remembered Set

We bound the pause time by collecting one region independently of
all others. To enable this, the mutator and collector collaboratively
maintain a remembered set, which contains every location (or ob-
ject) that points from one region to a different region. A similar
structure is a standard component of generational collectors.

The mutator can create such region-crossing pointers by alloca-
tion or assignment. The collector can create region-crossing point-
ers by relocating an object from one region to another.

The remembered set is affected by two distinct kinds of impre-
cision:
� The remembered set may contain entries for locations or objects

that are no longer reachable by the mutator.
� The remembered set may contain entries for locations or objects

that are still reachable, but no longer contain a pointer that
points from one region to a different region.

The regional collector represents its remembered set using a
data structure that records at most one entry for each location in the
heap (e.g. a hash table or fine-grain card table suffices). The size
of the remembered set’s representation is therefore bounded by the
size of the heap, even though the remembered set is imprecise.

2.3 Summary Sets

A typical generational collector will scan most (or all) of the re-
membered set during collections of the younger portions of the
heap. In the worst case the remembered set can grow proportional
to the heap; hence this technique would not satisfy our pause time
bounds, and is not an option for the regional collector.

1 The collection process is the only process permitted to move objects. The
summarization and marking processes do not change the correspondence
between addresses and objects; hence neither interferes with the other’s
view of the heap (nor the mutator’s view), even if run concurrently.

Scalable Garbage Collection 2 2009/7/24

To collect a region independently of other regions, the collector
must know all locations in uncollected regions that may hold point-
ers into the collected region. This set of locations is the summary
set for the collected region.

If an imprecise remembered set were organized as a set of
summary sets, one for each region, then the collector would not be
scalable: in the worst case, the storage occupied by those summary
sets would be proportional to the number of regions times the
size of the heap. Since regions are of fixed constant size, the
summary sets could occupy storage proportional to the square of
the heap size. That is why the regional collector uses a remembered
set representation that records pointers that come out of a region
instead of pointers that go into the region.

There are two distinct issues to address regarding the use and
construction of summary sets.

First, the regional collector must compute a region’s summary
set before it can collect the region. But a naı̈ve construction could
take both time and space proportional to the size of the heap, which
would violate our bounds.

Second, in the worst case, a summary set for a region may
consist of all locations in the heap. That means that a popular
region, defined as a region whose summary set is larger than a fixed
threshold, would take too long to collect.

To address these two issues, and thus keep time and space under
control, the summarization process
� amortizes the cost in time by incrementally computing multiple

summary sets for a fixed fraction ����� � of the heap’s regions,
but

� abandons the computation of any summary set whose size ex-
ceeds a fixed wave-off threshold (expressed as a multiple � of
the region size �).

Waving off summarization raises the question: when do popular
regions get collected? Our answer, inspired by Detlefs et al. (2004),
is simple: such regions are not collected.2 Instead we bound the
percentage of popular regions to ensure that the regional collector
can afford to leave popular regions uncollected. See sections 3.2
and 3.3.

2.4 Nursery

Like most generational collectors, the regional collector allocates
all objects within a relatively small nursery. The nursery has little
impact on worst-case performance, so our proofs ignore it. For
most programs, however, the nursery greatly improves the observed
MMU and overall efficiency of the regional collector.

Since the nursery is collected as part of every collection, loca-
tions within the nursery that point outside the nursery do not need
to be added to the remembered set.

Pointers from a region into the nursery can be created only by
assignments. Those pointers are recorded in a special summary set,
which is updated by processing of write barrier logs. If the size of
that summary set exceeds a fixed threshold, then the regional col-
lector forces a minor collection that empties the nursery, promoting
survivors into a region.

2.5 Grouping Regions

Figure 1 depicts how regions are partitioned into five groups:�
ready, unfilled, filled, popular, summarizing � . In the figure,

each small rectangle is a fixed-size region, the tiny ovals are objects
allocated within a region, and the triangular “hats” atop some of the

2 Our strategy is subtly different from Detlefs et al. (2004); Garbage-First
migrates popular objects to a dedicated space; that still requires time pro-
portional to the heap size in the worst case. We do not migrate the popular
objects at all.

r eady

popular

unf i l led

f i l led

summar iz ing

Figure 1. Grouping and transition of regions

regions are summary sets. The dotted hats are under construction,
while the filled hats are completely constructed.

The thinnest arcs in the figure, connecting small ovals, represent
migration of individual objects during a major collection; that is the
only time at which objects move from one region to another. Arcs
of medium thickness represent transitions of a single region from
one group to another, and the thickest arcs represent transitions of
many regions at once.

At all times, one of the unfilled regions is the current to-space;
it may contain some objects, but all other regions in the unfilled
group are empty.

Four of the arcs form a cycle that describes the usual transitions
of a region:

(ready, unfilled) On each major collection, one region (the from-
space) is selected from the ready group. All of its reachable
objects are forwarded to unfilled region(s) via Cheney’s algo-
rithm (the thinnest arcs). After object forwarding is complete,
the now empty region is reclassified as unfilled.

(unfilled, filled) When the collector fills the current to-space re-
gion to capacity, it is reclassified as filled, and another unfilled
region is picked to be the new to-space.

(filled, summarizing) The summarization process starts its cycle
by reclassifying a subset of regions en masse as summarizing,
preparing them for future collection.

(summarizing, ready) At the end of a summarization cycle the
summarized regions become ready for collection.

The remaining three arcs in the diagram describe transitions for
popular regions:

(summarizing, popular) As the summarization process passes
over the remembered set, it may discover that a summary set
for a particular region is too large: i.e., the region has too many
incoming references to be updated within the pause time bound.
The sumarization process will then remove that region from the
summarizing group, and deem that region popular.

(ready, popular) Mutator activity can increase the number of in-
coming references to a ready region, to the point where it has
too many incoming references to be updated within the pause
time bound. Such regions are likewise removed from the ready
group and become popular.

(popular, summarizing) Our collector does not assume that pop-
ular regions will remain popular forever. At the start of a sum-
marization cycle, popular regions can be shifted into the sum-
marizing group, where their fitness for collection will be re-
evaluated by the summarization process.

Scalable Garbage Collection 3 2009/7/24

2.6 Snapshots

The remembered set is imprecise. To bound its imprecision, a
periodic snapshot-at-the-beginning (Yuasa 1990) marking process
incrementally constructs a snapshot of the heap at a particular point
in time. The resulting snapshot classifies every object as either
unreachable or live/unallocated at the time of the snapshot.

The marking process incrementally traces the snapshot’s object
graph; objects allocated after the instant the snapshot was initiated
are considered live by the snapshot and are not traced by the
marking process. Objects relocated by the Cheney algorithm retain
their current unreachable/live classification in the snapshot.

When the marking process completes snapshot construction, it
removes dead locations from the remembered set. This increases
remembered set precision, reducing the amount of floating garbage;
in particular, it ensures that cyclic garbage across different regions
is eventually removed from the remembered set.

The developing snapshot has a frontier of objects remaining to
be processed, called the mark stack. The regional collector treats
the portion of the mark stack holding objects in the collected region
as an additional source of roots. In order to ensure that collection
pauses only take time proportional to the size of a region, each
regions’ substacks are threaded through the single mark stack,
and the collector scans only the portion of the stack relevant to a
particular region.

2.7 Write Barrier

Assignments and other mutations that store into pointer fields of
objects must go through a write barrier that updates the remem-
bered set to account for the assignment.

The regional collector uses a variant of a Yuasa-style logging
write barrier (Yuasa 1990). Our write barrier logs three things: (1)
the location on the left hand side of the assignment, (2) its previous
contents, and (3) its new contents.

The first is for remembered set and summary set maintenance.
The second is for snapshot maintenance (the marker). The third
identifies which summary set (if any) needs maintenance for the
log entry.

2.8 Mutator Stacks

The regional collector assumes mutator stacks are constructed
from heap-allocated objects of bounded size, as though all stack
frames were allocated on the heap (Appel 1992). Although mixed
stack/heap, incremental stack/heap, Hieb-Dybvig-Bruggeman, and
Cheney-on-the-MTA strategies are often used (Clinger et al. 1999;
Hieb et al. 1990), their bounded stack caches can be regarded as
special parts of the nursery. That allows a regional collector to deal
with them as though the mutator uses a pure heap strategy.

3. Collection Policies
This section describes the policies the collector follows to achieve
scalability, even in the worst case.

Some of the policies are parameterized by numerical parame-
ters: � � (described in Section 2.3), � � (3.2), � � (3.2), � (3.3), �
(3.3), � soft and � hard (3.6). See section 5 for typical values. These
parameters provide implementors with valuable flexibility, but we
assume that the values of these parameters will be fixed by the im-
plementors of a regional collector, and will not be tailored for par-
ticular mutators.

3.1 Minor, Major, Full, and Mark Cycles

The nursery is collected every time a region is collected, but the
nursery may also be collected without collecting a region. A collec-
tion that collects only the nursery is a minor collection. A collection
that collects both the nursery and a region is a major collection.

The interval between successive collections, whether minor or
major, is a minor cycle. The interval between major collections is a
major cycle.

The interval between successive initiations of the summariza-
tion process is a summarization cycle.

Regions are ordered arbitrarily, and collected in roughly round-
robin fashion (see Figure 1), skipping popular and empty (unfilled)
regions. When all non-popular, non-empty regions have been col-
lected, a new full cycle begins.

The snapshot-at-the-beginning marking process is initiated at
the start of a new full cycle. The interval between successive initi-
ations of the marking process is a mark cycle.

Our proofs assume that mark and full cycles coincide, because
worst-case mutators require relatively frequent marking (to limit
the size of the remembered set and to reduce floating garbage). On
normal programs, however, the mark cycle may safely be several
times as long as a full cycle.

Usually there are � � summarization cycles per full cycle, but
that can drop to � � � � � ; see Section 3.3.

The number of major collections per full cycle is bounded by the
number of regions � � � , where � is the total size of all regions.

The number of minor collections per major cycle is mostly de-
termined by the promotion rate and by two parameters that express
the desired (soft) ratio and a mandatory hard bound on � divided
by the peak live storage.

3.2 Summarization Details

If the number of summary sets computed exceeds a fixed fraction
���
 � � � ��� of the heap’s regions, then the summarization process
can be suspended until one of the regions associated with the newly
computed summary sets is scheduled for the next collection.

If on the other hand the summarization process has to wave off
the construction of too many summary sets, then the summarization
process makes another pass over the remembered set, computing
summary sets for a different group of regions. The maximum num-
ber of passes that might be needed before ���
 � � � ��� of the heap’s
regions have been summarized is a parameter � � whose value de-
pends upon parameters � , � � , and � � ; see section 3.3.

Mutator actions can change which regions are classified as pop-
ular; popular regions can become unpopular, and vice versa. To
prevent this from happening at a faster rate than the collection
and summarization processes can handle, the mutator’s allocation
and assignment activity must be linked to collection and summa-
rization progress (measured by the number of regions collected
and progress made toward computation of summary sets).3 As ex-
plained in 4.2, this extremely rare contention between the summa-
rization process and the mutator determines the theoretical worst-
case MMU of the collector.

When a region is collected, its surviving objects move and
its other objects disappear. Entries for reclaimed objects must be
removed from all existing summary sets, and entries for surviving
objects must be updated to reflect the new addresses. A good
representation for summary sets allows this updating to be done
in time proportional to the size of the collected region.

3.3 Popular Regions

Suppose there are � ��� regions, each of size � , so the total storage
occupied by all regions is � .

Definition 2. A region is popular if its summary set would exceed �
times the size of the region itself, where � is the collector’s wave-off
threshold.

3 This leads to a curious property: in a regional collector, allocation-free
code fragments containing assignment operations can cause a collection
(and thus object relocation).

Scalable Garbage Collection 4 2009/7/24

It is impossible for all regions to be more popular than average.
That observation generalizes to the following lemma.

Lemma 3. If ��� � , then the fraction of regions that are popular
is no greater than � � � .

Proof. If there were more than � � � popular regions, then the total
size of the summary sets for all popular regions would be greater
than

�
�

�
� � ��� �

That is impossible: there are only � words in all regions combined,
so how could more than � words be pointing into the popular
regions?

Example: If ��� �
, then at most ��� � of the regions are popular,

and not collecting those popular regions will add at most 50% to the
size of the heap.

Corollary 4. Suppose marking cycles coincide with full cycles,
and a new full cycle is about to start. Let � old be the volume of
reachable storage, as computed by the marking process, at the start
of the previous full cycle, and let � be an upper bound on the
storage allocated during the previous full cycle. If ��� � , then
the fraction of regions that are popular is no greater than

� old ���
�

Mutator activity can make previously popular regions unpop-
ular, and can make previously unpopular regions popular, but the
number of new pointers into a region is bounded by the number of
words allocated plus the number of distinct locations assigned. Fur-
thermore the fraction of popular regions can approach � � � only if
there are very few pointers into the unpopular regions. That means
the mutator would have to do a lot of work before it could prevent a
second or third pass of the summarization process from succeeding,
provided of course that the collector’s parameters are well-chosen.

Recall that the summarization process attempts to create sum-
mary sets for � � � � of the regions in each pass, and that it keeps
making those passes until it has created summary sets for � �
 � � � ���
of the regions.

Lemma 5. Suppose � , � � , and � � are greater than 1, and � � is a
positive integer. Suppose also that

��� � � � �
	 �
� � � � ��	 ����

and the mutator is limited to � � words allocated plus distinct
locations assigned while the summarization process is performing
up to � � passes. Then � � passes suffice.

Proof. We calculate the smallest number of allocations and assign-
ments � � that would be required to leave at least � regions popular
at the end of the summarization cycle. If � is less than or equal to
the bound given by lemma 3, then no allocations/assignments are
needed. Otherwise the smallest number of allocations/assignments
occurs when the bound given by lemma 3 is met at both the be-
ginning and end of the summarization cycle.4 If that bound is met
at the beginning of the cycle, then all non-popular regions have no
pointers into them, and it takes � � allocations/assignments to cre-
ate another popular region.

4 In other words, starting with fewer popular regions increases the mutator
activity required to end the cycle with large � ; we are deriving the minimum
number of actions required.

The summarization process will compute usable summaries for
at least � �
 � � � � � of all � � � regions if

�
� � � �

�
�

� � �
� �

�
� 	 �

�
�
� 	 � �

� �

Equivalently

� � � � �
� � 	 �

� 	 �
� � � ��� �

� � � � � 	 �
� � � � ��	 �

That lemma, when combined with an upper bound for the dura-
tion of a collection, basically determines the theoretical worst-case
MMU. See section 4.2.

For simplicity, we will henceforth assume that � � � � � is an
integer.

The following lemma bounds the number of regions that will
not be collected during a full cycle.

Lemma 6. Within any full cycle, the fraction of regions whose
summary sets are not computed by the summarization process is
no greater than

��	 �
� � � �

Proof. Each summarization cycle makes up to � � passes, summa-
rizing � � � � of the regions in each pass over the remembered set,
to obtain at least � �
 � � � ��� usable summary sets. In the worst case,
there are � � � � � summarization cycles in a full cycle. The largest
possible fraction of unusable summary sets is therefore

� �
� �
� � �
� � 	 �

� � � � � � �
	 �
� � � �

Each major collection consumes one summary set. The worst-
case MMU is calculated by assuming each summary cycle yields
only

�
� � � ��� �

�
usable summaries. The worst-case MMU is therefore unaffected by
starting each summarization cycle when the number of summary
sets has been reduced to the value used to calculate the worst-case
MMU.

Corollary 7. The space occupied by summary sets is never more
than

� � �
� � �

Proof. During any summarization cycle, the space occupied by the
summary sets being computed is bounded by � � � � . Hence the
total space occupied by all summary sets is bounded by� �

� � � � � �
��� � � � � ��� �

� � �
� � � � � � � � � � � �
	 �

� � � � ��	 � � �

� � � �
� � �

Scalable Garbage Collection 5 2009/7/24

3.4 Fragmentation

As was mentioned in section 2 and justified in section 7, the re-
gional collector assumes objects are limited to some size ��� � .
The Cheney algorithm ensures that worst-case fragmentation in
collected regions is less than � � � . Our calculations assume that
ratio is negligible.

3.5 Work-Based Accounting

The regional collector performs work in proportion to a slightly
peculiar accounting of mutator work. The peculiarities reflect our
focus on worst cases, which occur when the rate of promotion out
of the nursery is nearly 100% and the mutator spends almost all of
its time allocating storage and performing assignments.

The mutator’s work is measured by the volume of storage that
survives to be promoted out of the nursery and the number of
assignments that go through the write barrier. If we ignore the
nursery (which has little effect on the worst case) then promoted
objects are, in effect, newly allocated within some region.

The collector’s work is measured by the number of regions
collected. A full cycle concludes when all nonempty, non-popular
regions have been collected, so the number of regions collected also
measures time relative to the current full cycle. That notion of time
drives the scheduling of marking and summarization processes.

The marking and summarization processes are counted as over-
head, not work. Our calculations assume their cost is evenly dis-
tributed (at the fairly coarse resolution of one major cycle) over the
interval they are active, using mutator work as the measure of time.
That makes sense for worst cases, and overstates the collector’s rel-
ative overhead when the mutator does things besides allocation and
assignments (because counting those other things as work would
increase the mutator utilization).

3.6 Matching Collection Work to Allocation

At the beginning of a full cycle, the regional collector calculates
the amount of storage the mutator will allocate (that is, promote
into regions) during the full cycle.

Almost any policy that makes the mutator’s work proportional
to the collector’s work would suffice for the proof of our main the-
orem, but the specific values of worst-case constants are sensitive
to details of the policy. Furthermore, several different policies may
have essentially the same worst-case performance but radically dif-
ferent overall performance on normal programs.

We are still experimenting with different policies. The policy
stated below is overly conservative, but allows simple proofs of this
section’s lemmas because � is a monotonically increasing function
of the peak live storage, and does not otherwise depend upon the
current state of the collector.

Outside of this section, nothing depends upon the specific policy
stated below. The proof of our main theorem relies only upon its
properties as encapsulated by lemmas 9 and 10.

The following policy computes a hard lower bound for the
amount of free space that will become available as regions are
collected during this full cycle, and divides that free space equally
between this full cycle and the next. If promoting that volume of
storage might exceed the desired bound on heap size, then the
promotion budget for this full cycle is reduced accordingly.

Policy 8. The promotion to be performed during the coming full
cycle is

� ������� � �	

 �
	�
 � � hard 	 ��� � old �
 � soft 	 � � � old �
where

�
 is any fixed upper bound for the fraction of nonempty regions
that go uncollected within a full cycle. (Lemma 6 calculates a
specific value for
 .)� � old is the peak live storage, computed as the maximum value
of � old (see below).� � old is the volume of reachable storage at the beginning of the
previous full cycle, as measured by the marking process during
that cycle; if this is the first full cycle, then � old is the size of
the initial heap plus some headroom.� � soft is the desired ratio of � to peak live storage.� � hard � ���
 � 	�
 � is a fixed hard bound on the ratio of � to
peak live storage at the beginning of a full cycle.

The two lemmas below express the only properties that � must
have.

Lemma 9. If the collector parameters are consistent, then � is in
� old � .
The following lemma states the regional collector’s most critical

invariant, and establishes that this invariant is preserved by every
full cycle.

The critical insight of its proof is that the Cheney collection pro-
cess reclaims all storage that was unreachable as of the beginning
of the previous full cycle, except for the bounded fraction of objects
that lie in uncollected regions. Furthermore there is no fragmenta-
tion among the survivors of collected regions, so the total storage
in all regions at the end of a full cycle, excluding free space recov-
ered by the cycle, is the sum of the total storage occupied by the
survivors, the regions that aren’t collected, and the storage that was
promoted into regions during the cycle.

Lemma 10. Let ��� be the volume of storage in all regions, includ-
ing live storage and garbage but not free space, at the beginning of
a full cycle. Then � � � � � � hard � old.

Proof. The lemma is true at the beginning of the first full cycle.
At the beginning of the second full cycle, � � consists of

� storage that was reachable at the beginning of the first full cycle
(bounded by � old)� storage in uncollected regions (bounded by
 �)� storage promoted into regions during the previous full cycle
(bounded by �)

At the beginning of subsequent full cycles, � � consists of

� storage that was reachable at the beginning of the full cycle
before the previous full cycle and is still reachable (bounded by

� old)� storage in uncollected regions (bounded by
 �)� storage promoted into regions during the previous full cycle
(bounded by �)� storage promoted into regions during the cycle before the pre-
vious full cycle (bounded by � , because � is nondecreasing)

Therefore

��� � � old ��
 � � � ���� � old ��
 � �

 �
	�
 � � hard 	 � � � old� � old ��
 � hard � old �

 �
	�
 � � hard 	 � � � old� � hard � old

Scalable Garbage Collection 6 2009/7/24

4. Worst-case Bounds
The subsections below sketch proofs for the three parts of our main
theorem, which was stated in section 1.2.

We use asymptotic calculations because we cannot know the
hardware- and software-dependent relative cost of basic operations
such as allocations, write barriers, marking or tracing a word of
memory, and so on. Constant factors are important, however, so we
make a weak attempt to estimate some constants by assuming that
all basic operations have the same cost per word. That is roughly
true, but only for appropriate values of “roughly”. The constant
factors calculated for space may be more trustworthy than those
calculated for time.

4.1 GC Pauses

It’s easy to calculate an upper bound for the duration of major
collections. The size of the region to be collected is a constant � .
The size of its summary set is bounded by � � . The summary and
mark-stack state to be updated is bounded by 	�
� � . A Cheney
collection of the region therefore takes time 	�
� � � � � � 	�
� � .
4.2 Worst-case MMU

For any resolution ��� , the minimum mutator utilization is the
infimum, over some set of intervals of length ��� , of the mutator’s
CPU time during that interval divided by ��� (Cheng and Blelloch
2001). The MMU is therefore a function from resolutions to the
interval � � ��� .

The obvious question is: What set of intervals are we talk-
ing about? In most cases, an MMU is defined over the intervals
recorded during some specific execution of some specific bench-
mark on some specific machine. We’ll call that an observed MMU.

Our main theorem uses a very different notion of MMU, which
can be regarded as the infimum of observed MMUs over all possi-
ble executions of all possible benchmarks. We have been referring
to that notion as the theoretical worst-case MMU.

The theoretical worst-case MMU is the notion that matters when
we talk about worst-case guarantees or scalable algorithms.

The theoretical worst-case MMU is easily bounded above using
observed MMUs; for example, an observed MMU of zero implies a
theoretical worst-case MMU of zero. On the other hand, we cannot
use observed MMUs to prove that a regional collector’s theoretical
worst-case MMU is bounded below by a non-zero constant. Our
only hope is to prove something like our main theorem.

Some programs reach a storage equilibrium, which allows us
to define the inverse load factor � as the ratio of heap size to
reachable heap storage. Although some collectors can do better
on some programs, it appears that, for any garbage collector, the
theoretical worst-case ratio of allocation to marking is less than or
equal to � 	 � , from which it follows that there must be resolutions
at which the worst-case MMU is less than or equal to

� 	 �

 � 	 � � � � � ��	 �

�
For a stop-and-collect collector, the worst-case MMU is zero for
intervals shorter than the duration of the worst-case collection. For
collectors that occasionally perform a full collection, taking time
proportional to the reachable storage, the theoretical worst-case
MMU is therefore zero at all resolutions. If there is some finite
bound on the worst-case gc pause, however, then the theoretical
worst-case MMU may be positive for sufficiently large resolutions.

Our main theorem claims this is true for a regional collector
at resolutions greater than

� � � , where � � is a bound on the worst-
case duration of a gc pause. At that resolution and above, the worst
case occurs when two worst-case gc pauses surround a mutator
interval in which the mutator performs a worst-case (small) amount
of work. The two gc pauses take 	�
� � time, so we need to show

that the mutator will perform �
� � work between every two major
collections.

The regional collector performs

 � � � � major collections per

full cycle, and the scheduling of those collections is driven by mu-
tator work. Between two successive major collections, the mutator
performs �
 � � � � � work, where � , the promotion per full cycle
as defined in section 3.6, is in

� old � and therefore in �
 � � .
If the regional collector had no overhead outside of major col-

lections, the paragraph above would establish that the theoretical
worst-case MMU at that resolution is bounded below by a constant.
Since the regional collector does have overhead from the mark-
ing and summarization processes, we have yet to establish that (1)
the overhead per major cycle of those processes is 	�
� � and (2)
their overhead is distributed fairly evenly within the interval; that
is, there are no subintervals of duration

� � � or longer that have an
overly high concentration of overhead or overly low fraction of mu-
tator work.

The marking process’s overhead per full cycle is 	�
 � � , and
standard scheduling algorithms suffice to ensure that its overhead
per major cycle is 	�
� � , with that overhead being quite evenly
distributed when observed at the coarse resolution of

� ��� .
The summarization process, as described in sections 2.3 and 3.3,

is more complicated. The summarization process performs up to � �
passes over the remembered set per summarization cycle. Each pass
takes 	�
 � � time to scan the remembered set, while creating

	 � �
� �

�
� � � �

entries in the summary sets. There are between � � and � � � � � sum-
marization cycles per full cycle, distributed as evenly as those tight
constant bounds allow. In conclusion, the summarization process
has 	�
 � � overhead per full cycle and 	�
� � overhead per major
cycle.

That would complete the proof of part 2, except for one nasty
detail mentioned in section 2.3 and lemma 5: The mutator’s work
during summarization is limited to � � , where � is the constant
defined in lemma 5.

That doesn’t interfere with the proof of part 2, because the
mutator is still performing

 � � work per summarization cycle,
but it does lower mutator utilization. If we assume that all basic
operations have about the same cost per word, then the theoretical
worst-case MMU at sufficiently large resolutions is a constant of
which we have some actual knowledge.

Lemma 11. When regarded as a function of the collector’s pa-
rameters, the regional collector’s theoretical worst-case MMU is
roughly proportional to

� � � � � 	 ��	 � � � �

 � � ����
 � � � � � 	 � � � � � � � �

Proof. The worst-case MMU is proportional to the worst-case mu-
tator work accomplished during a major cycle, divided by the
worst-case cost of the marking and summarization processes during
a major cycle plus the worst-case cost of the two major collections
that surround the mutator work. We assume that work and costs
are spread evenly across the relevant cycles; any bounded degree of
unevenness can be absorbed by the constant of proportionality.

The number of regions collected during a worst-case summa-
rization cycle is � � �

� � � �
�
�

� The worst-case mutator work per major cycle is � � �
�

.� The worst-case cost of summarization per major cycle is

� � � � � �
� �

�
� � ���
 � � � � �

� � � � �

Scalable Garbage Collection 7 2009/7/24

divided by

�
.� The worst-case cost of the marking process during a major cycle

is � � � ��� , which is � divided by the worst-case number of
major collections during a full cycle (as given by lemma 6).� The worst-case cost of a major collection is � � � � .

The theoretical worst-case MMU is therefore roughly proportional
to

� � � �����	
 � � � � � � � � � �
 � � � � � ��� � ��� � � � � � ���� � � � � ��	 ��	 � � � �

 � � � ��
 � � � � � 	 � � � � � � � �

That calculation was pretty silly, but gives us quantitative in-
sight into how much we can improve the theoretical worst-case
MMU by choosing good values for the collector’s parameters or
by designing a more efficient summarization process.

4.3 Worst-case Space

The regional collector allocates a new region only when the current
set of regions does not have enough free space to accomodate all of
the objects that need to be promoted out of the nursery. Lemmas 9
and 10 therefore establish that � , the total storage occupied by all
regions, is in

� old � (where � old is a lower bound for the peak
live storage).

The remembered set is 	�
 � � . The set of previously computed
summary sets that have not yet been consumed by a major collec-
tion is 	�
 � � . The set of summary sets currently under construction
is 	�
 � � . The mark bitmap is 	�
 � � . Each mark stack (one per re-
gion) is 	�
� � , so the total size for all mark stacks is 	�
 � � .

The total space required by the regional collector is therefore
� old � . The specific constants of proportionality depend upon
collector parameters � hard, � , � � , and � � as well as details of the
collector’s data structures; for example, the size of the mark bitmap
might be � , � � 	 , � ��� , � ��� , � � � 	 , or � ����� depending on object
alignment, granularity of marking, and number of bits per mark.
With plausible assumptions about data structures, the theoretical
worst-case space is about� ���

� �
� � �
� � � � hard �

�	 � �
where � is the peak reachable storage.

No program can reach theoretical worst-case bounds for all
of the collector’s data structures simultaneously. For example, the
mark stack’s worst case is achieved when the heap is filled by
a single linked structure of objects with only two fields. That
means half the pointers are perfectly distributed among regions,
which halves the worst-case number of popular regions; it also
removes the factor of � hard, because all objects that get pushed
onto the mark stack are reachable. On gc-intensive benchmarks,
our prototype uses about the same amount of storage as stop-and-
copy or generational collectors.

4.4 Floating Garbage

Floating garbage is storage that is reachable from the remembered
set but is not reachable from mutator structures (and will not be
marked by the next snapshot-at-the-beginning marking process).

In the calculations above, the peak reachable storage � does
not include floating garbage, but the theoretical worst-case bounds
do include floating garbage. In this section, we calculate a bound
for how much of the worst-case space can be occupied by floating
garbage.

When bounding the space used by collectors that never perform
a full collection, the hard part is to find an upper bound for floating
garbage. The regional collector is especially interesting because
� When a region is collected, its objects that were unreachable as

of the beginning of the most recently completed marking cycle
will be reclaimed.

� The regional collector does not guarantee that all unreachable
objects will eventually be collected.

� The regional collector does guarantee that the total volume
of unreachable objects is always bounded by a small constant
times the total volume of reachable objects.

Suppose some object � , residing in some region 	 , becomes
unreachable. If there are no references to � from outside 	 , then
� will be reclaimed the next time 	 is collected.

If there are references to � from outside 	 , then those references
will be removed from the remembered set at the end of the first
marking cycle that begins after � becomes unreachable (because all
references to an unreachable object are from unreachable objects).
Then � will be reclaimed by the first collection of 	 that follows the
completion of that marking cycle.

On the other hand, there is no guarantee that 	 will ever be col-
lected. 	 will remain forever uncollected if and only if the summa-
rization process deems 	 popular on every attempt to construct 	 ’s
summary set.

Lemma 3 proves that the total volume of popular regions is no
greater than � � � . Lemma 10 proves that � � � hard � , where
� is the peak live storage. Hence the total volume of perpetually
uncollected garbage is no greater than � hard � � times the peak live
storage.

4.5 Collector Parameters

Most of the collector’s parameters can be changed at the beginning
of any full cycle. If the parameters change at the beginning of a full
cycle, then it will take at most two more full cycles for the collector
to perform within the theoretical worst-case bounds for the new
parameters.

5. Near-Worst-Case Benchmarks
We have implemented a prototype of the regional collector, and will
provide a more detailed report on its engineering and performance
in some other paper. For this paper, we compare its performance
to that of several other collectors on a very simple but extremely
gc-intensive benchmark (Clinger 2009).

The benchmark repeatedly allocates a list of one million ele-
ments, and then stores the list into a circular buffer of size
 . The
number of popular objects (used as list elements) is a separate pa-
rameter
 ; with
 � , the list elements are small integers, which
are usually represented by non-pointers that the garbage collector
does not have to trace.

To illustrate scalability and the effect of popular objects, we ran
three versions of the benchmark:
� with
 � � and
 ��
� with
 � � and
 ��
� with
 � � and
 � �

All three versions allocate exactly the same amount of storage,
but the peak storage with
�� � is about one fifth of the peak
storage with
 � � . The third version, with popular objects, is
the most challenging benchmark we have been able to devise for
the regional collector. The queue-like object lifetimes of all three
versions make them near-worst-case benchmarks for generational

Scalable Garbage Collection 8 2009/7/24

system version technology elapsed gc time max gc pause max variation max RSIZE
(sec) (sec) (sec) (sec) (MB)

Larceny prototype regional 192 170 .07 .60 386
Gambit v4.4.3 stop© 63 44 .52 493
Ypsilon 0.9.6-update3 mostly concurrent 265 � 53 .64 ? 711
Sun JVM 1.5.0 generational 175 ? .78 333
Larceny prototype generational 109 88 .80 .88 555
Sun JVM 1.5.0 parallel 275 ? .91 511
Larceny prototype stop© 76 55 .90 .94 518
Chicken 4.0.0 Cheney-on-the-MTA 87 36 1. 490
PLT v4.1.4 generational 227 211 1. 617
Ikarus 0.0.3 generational 264 242 2.25 1055
Sun JVM 1.5.0 incremental mark/sweep 409 ? 3.41 530

Figure 2. GC-intensive performance with about 160 MB of live storage.

system version technology elapsed gc time max gc pause max variation max RSIZE
(sec) (sec) (sec) (sec) (MB)

Larceny prototype regional 212 187 .11 .7 1808
Ypsilon 0.9.6-update3 mostly concurrent 24971 � 24818 2.4 ? 2067
Gambit v4.4.3 stop© 68 47 2.5 2363
Chicken 4.0.0 Cheney-on-the-MTA 118 62 4. 1955
Sun JVM 1.5.0 parallel 311 ? 4.2 1973
Larceny prototype generational 149 128 4.2 4.3 2073
Larceny prototype stop© 119 95 4.5 4.5 2058
Sun JVM 1.5.0 generational 212 ? 4.9 1497
PLT v4.1.4 generational 286 273 5. 2109
Ikarus 0.0.3 generational 419 371 11.6 2575
Sun JVM 1.5.0 incremental mark/sweep 457 ? 15.8 2083

Figure 3. GC-intensive performance with about 800 MB of live storage.

system version technology elapsed gc time max gc pause max variation max RSIZE
(sec) (sec) (sec) (sec) (MB)

Larceny prototype regional 618 592 .35 2.9 1865
Gambit v4.4.3 stop© 72 51 2.7 2363
Ypsilon 0.9.6-update3 mostly concurrent 28366 � 28212 2.89 ? 1772
Sun JVM 1.5.0 parallel 314 ? 4.1 1918
Larceny prototype generational 162 141 4.5 4.6 2064
Larceny prototype stop© 120 96 4.8 4.8 2060
Chicken 4.0.0 Cheney-on-the-MTA 127 69 5. 1955
Sun JVM 1.5.0 generational 216 ? 5.0 1497
PLT v4.1.4 generational 339 320 5. 2089
Ikarus 0.0.3 generational 427 409 10.7 2588
Sun JVM 1.5.0 incremental mark/sweep 479 ? 18.1 2083

Figure 4. GC-intensive performance with 800 MB live storage and 50 popular objects.

collectors in general, and their simplicity and regularity make the
results easy to interpret.

To eliminate pair-specific optimizations that might give Larceny
(and some other systems) an unfair advantage, the lists are con-
structed from two-element vectors. Hence the representation of
each list in Scheme is likely to resemble the representation used
by Java and similar languages. In Larceny and in Sun’s JVM, each
element of the list occupies four 32-bit words (16 bytes), and each
list occupies 16 megabytes.

The benchmarks allocate one thousand of those lists, which is
enough for the timing to be dominated by the steady state but small
enough for convenient benchmarking.

We benchmarked a prototype fork of Larceny with three dif-
ferent collectors. The regional collector was configured with a 1-
megabyte nursery, 8-megabyte regions (�), a waveoff threshold of

� � � , and parameters � � � 	 , � � � 	 , and � � � � ; these pa-
rameters have worked well for a wide range of benchmarks, and
were not optimized for the particular benchmarks reported here. To
make the generational collector more comparable to the regional
collector, it was benchmarked with a nursery size of 1 MB instead
of the usual 4 MB.

For perspective, we benchmarked several other systems as well.
We ran all benchmarks on a MacBook Pro equipped with a 2.4 GHz
Intel Core 2 Duo (with two processor cores) and 4 GB of 667 MHz
DDR2 SDRAM. Only three of the collectors made use of the sec-
ond processor core: Ypsilon, Sun’s JVM with the parallel collec-
tor, and Sun’s JVM with the incremental mark/sweep collector. For
those three systems, the total cpu time was greater than the elapsed
times reported in this paper.

Scalable Garbage Collection 9 2009/7/24

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000

m
in

im
um

 m
ut

at
or

 u
til

iz
at

io
n

(%
)

interval in milliseconds

observed MMU for queue:10

regional
default generational

stop-and-copy

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000

m
in

im
um

 m
ut

at
or

 u
til

iz
at

io
n

(%
)

interval in milliseconds

observed MMU for queue:50

regional
default generational

stop-and-copy

Figure 5. Observed MMU for
�� � and
 � � .
Figures 2, 3, and 4 report the elapsed time (in seconds), the

total gc time (in seconds), the duration of the longest pause to
collect garbage (in seconds), the maximum variation (calculated by
subtracting the average time to create a million-element list from
the longest time to create one of those lists), and the maximum
RSIZE (in megabytes) reported by ����� .

For most collectors, the maximum variation provides a good es-
timate of the longest pause for garbage collection. For the regional
collector, however, most of the maximum variation is caused by un-
even scheduling of the marking and summarization processes. With
no popular objects, the regional collector’s total gc time includes
51 to 54 seconds of marking and about 1 second of summarization.
With 50 popular objects, the marking time increased to 104 seconds
and the summarization time to 152 seconds. It should be possible
to decrease the maximum variation of the regional collector by im-
proving the efficiency of its marking and summarization processes
and/or the regularity of their scheduling.

Figure 5 shows the MMU (minimum mutator utilization as a
function of time resolution) for the three collectors implemented
by our prototype fork of Larceny.

Although none of the other collectors were instrumented for
MMU, their MMU would be zero at resolutions up to the longest gc
pause, and their MMU at every resolution would be less than their
average mutator utilization (which can be estimated by subtracting
the total gc time from the elapsed time and dividing by the elapsed
time).

As can be seen from figures 2 and 3, simple garbage col-
lectors often have good worst-case performance. Gambit’s non-
generational stop© collector has the best throughput on this
particular benchmark, followed by Larceny’s stop© collector
and Chicken’s Cheney-on-the-MTA (which is a relatively simple
generational collector).

Of the benchmarked collectors, Sun’s incremental mark/sweep
collector most resembles a soft real-time collector; it combines low
throughput with inconsistent mutator utilization. Ypsilon performs
poorly on the larger benchmarks, apparently because it needs more
than 2067 megabytes of RAM, which is the largest heap it supports;
Ypsilon’s representation of a Scheme vector may also consume
more space than in other systems.

The regional collector’s throughput and gc pause times are de-
graded by popular objects, but its gc pause times remain the best
of any collector tested, while using less memory than any system
except for Sun’s default generational collector.

The regional collector’s scalability can be seen by comparing
its pause times and MMU for
 � � and
 � � . The maximum

pause time increases only slightly, from .07 to .11 seconds. For all
other systems whose pause times were measured with sub-second
precision, the pause time increased by a factor of about 5 (because
multiplying the peak live storage by 5 also multiplies the time for
a full collection by 5). The regional collector’s MMU is almost the
same for
 � � as for
 � � ; for all other collectors, the MMU
degrades substantially as the peak live storage increases.

6. Related Work
6.1 Generational garbage collection

Generational collection was introduced by (Lieberman and Hewitt
1983). A simplification of that design was first implemented by
(Ungar 1984). Most modern generational collectors are modeled
after Ungar’s, but our regional collector’s design is more similar to
that of Lieberman and Hewitt.

6.2 Heap partitioning

Our regional collector is centered around the idea of partitioning the
heap and collecting the parts independently. (Bishop 1977) allows
single areas to be collected independently; his work targets Lisp
machines and requires hardware support.

The Garbage-First collector of (Detlefs et al. 2004) inspired
many aspects of our regional collector. Unlike the garbage-first col-
lector, which uses a points-into remembered set representation with
no size bound, we use a points-outof remembered set representation
and points-into summaries which are bounded in size. The garbage-
first collector does not have worst-case bounds on space usage,
pause times, or MMU. According to Sun, the garbage-first collec-
tor’s gc pause times are “sometimes better and sometimes worse
than” the incremental mark/sweep collector’s (Sun Microsystems
2009).

The Mature Object Space (a.k.a. Train) algorithm of (Hudson
and Moss 1992) uses a fixed policy for choosing which regions
to collect. To ensure completeness, their policy migrates objects
across regions until a complete cycle is isolated to its own train
and then collected. This gradual migration can lead to significant
problems with floating garbage. Our marking process eliminates
floating garbage in collected regions, while our handling of popular
regions provides an elegant and novel solution that bounds the
worst-case storage requirements.

The Beltway collector of (Blackburn et al. 2002) uses heap parti-
tioning and clever infrastructure to enable flexible selection of col-
lection policies via command line options. Their policy selection is
expressive enough to emulate the behavior of semi-space, genera-

Scalable Garbage Collection 10 2009/7/24

tional, renewal-older-first, and deferred-older-first collectors. They
demonstrate that having a more flexible policy parameterization
can introduce improvements of 5%, 10%, and up to 35% over a
fixed generational collection policy. Unfortunately, in the Beltway
system one must choose between incremental or complete collec-
tion. The Beltway collector does not provide worst-case guarantees
independent of mutator behavior.

The MarkCopy collector of (Sachindran and Moss 2003) breaks
the heap down into fixed sized windows. During a collection pause,
it builds up a remembered set for each window and then collects
each window in turn. An extension interleaves the mutator process
with individual window copy collection; one could see our design
as taking the next step of moving the marking process and remem-
bered set construction off of the critical path of the collector.

The Parallel Incremental Compaction algorithm of (Ben-Yitzhak
et al. 2002) also has similarities to our approach. They select an area
of the heap to collect, and then concurrently build a summary for
that area. However, they construct their points-into set by tracing
the whole heap, rather than maintaining points-outof remembered
sets. Their goals are also different from ours; their technique adds
incremental compaction to a mark-sweep collector, while we pro-
vide utilization and space guarantees in a copying collector.

6.3 Older-first garbage collection

Our design employs a round-robin policy for selecting the region
to collect next, focusing the collector on regions that have been
left alone the longest. Thus our regional collector, like older-first
collectors (Stefanović et al. 2002; Hansen and Clinger 2002), tends
to give objects more time to die before attempting to collect them.

6.4 Bounding collection pauses

There is a broad body of research on bounding the pause times
introduced by garbage collection, including (Baker 1978; Brooks
1984; Appel et al. 1988; Yuasa 1990; Boehm et al. 1991; Baker
1992; Nettles and O’Toole 1993; Henriksson 1998; Larose and
Feeley 1998). In particular, (Blelloch and Cheng 1999) provides
proven bounds on pause-times and space-usage.

Several attempts to bring the pause-times down to precisions
suitable for real-time applications run afoul of the problem that
bounding an individual pause is not enough; one must also ensure
that the mutator can accomplish an appropriate amount of work in
between the pauses, keeping the processor utilization high. (Cheng
and Blelloch 2001) introduces the MMU metric to address this
issue. That paper presents an observed MMU for a parallel real-
time collector, not a theoretical worst-case MMU.

6.5 Collection scheduling

Metronome (Bacon et al. 2003b) is a hard real-time collector. It
can use either time- or work-based collection scheduling, and is
mostly non-moving, but will copy objects to reduce fragmenta-
tion. Metronome also requires a read barrier, although the aver-
age overhead of the read barrier is only 4%. More significantly,
Metronome’s guaranteed bounds on utilization and space usage de-
pend upon the accuracy of application-specific parameters; (Ba-
con et al. 2003a) extends this set of parameters to provide tighter
bounds on collection time and space overhead.

Similarly, (Robertz and Henriksson 2003) depends on a sup-
plied schedule to provide real-time collector performance. Unlike
Metronome, it schedules work according to collection cycle times
rather than finer grained quanta; like Metronome, it provides a
proven bound on space usage (that depends on the accurary of
application-specific parameters).

In contrast to those designs, our regional collector provides
worst-case guarantees independent of mutator behavior, but cannot
provide millisecond-resolution guarantees. Our regional collector

is mostly copying, has no read barrier, and uses work-based ac-
counting to drive the collection policy.

6.6 Incremental and concurrent collection

There are many treatments of concurrent collectors dating back
to (Dijkstra et al. 1978). In our collector, reclamation of dead
object state is not performed concurrently with the mutator, but the
activity of the summarization and marking processes could be.

Our summarization process was inspired by the performance
of Detlefs’ implementation of a concurrent thread that refines data
within the remembered set to reduce the effort spent towards scan-
ning older objects for roots during a collection pause (Detlefs et al.
2002).

The summarization and marking processes require a write bar-
rier, which we piggy-back onto the barrier in place to support gen-
erational collection. This is similar to how (Printezis and Detlefs
2000), building on the work of (Boehm et al. 1991), merges the
overhead of maintaining concurrency related invariants with the
overhead of maintaining generational invariants.

7. Future Work
Our current prototype interleaves the marking and summarization
processes with the mutator, scheduling at the granularity of minor
cycles and the processing of write barrier logs. Both the marking
and summarization processes could be concurrent with the muta-
tor, which would improve throughput on programs that do not fully
utilize all processor cores. The marking process was actually im-
plemented as a concurrent thread by one of our earlier prototypes,
but the current single-threaded prototype makes it easier to measure
every process’s effect on throughput.

The collections performed by the regional collector can them-
selves be parallelized, but that is essentially independent of the de-
sign.

We assume that object sizes are bounded, so every object will
fit into a region. Because we have implemented our prototype in
Larceny, we can change both the compiler and the run-time repre-
sentations of objects, choosing representations that break extremely
large objects into pieces of bounded size.

The regional collector’s nursery provides most of the bene-
fits associated with generational garbage collection. Although the
regional collector sacrifices some throughput on extremely gc-
intensive programs, its performance on more normal programs can
and does approach that of contemporary generational collectors.
We will offer a more complete report on our prototype’s observed
performance in a separate paper.

8. Conclusions
We have described and prototyped a regional collector, which is a
new kind of generational garbage collector.

We have proved that the regional collector is scalable: It guar-
antees worst-case bounds for gc latency, minimum mutator utiliza-
tion, and space usage, independent of the peak live storage and mu-
tator behavior.

Such guarantees remain rare. Although our proof is not the first
of its kind, it may be the first to guarantee worst-case bounds for
MMU as well as latency and space.5

The regional collector incorporates novel and elegant solutions
to the problems presented by popular objects and floating garbage.

5 For example, Cheng and Blelloch proved that a certain hard real-time
collector has nontrivial worst-case bounds for both gc latency and space,
but they had not yet invented the concept of MMU (Blelloch and Cheng
1999).

Scalable Garbage Collection 11 2009/7/24

We have prototyped the regional collector, using a near-worst-
case benchmark to illustrate its performance.

References
Andrew W. Appel. Compiling with Continuations, chapter 16, pages 205–

214. Cambridge University Press, 1992.

Andrew W. Appel, John R. Ellis, and Kai Li. Real-time concurrent col-
lection on stock multiprocessors. ACM SIGPLAN Notices, 23(7):11–20,
1988.

David F. Bacon, Perry Cheng, and V.T. Rajan. Controlling fragmentation
and space consumption in the Metronome, a real-time garbage collector
for Java. In ACM SIGPLAN 2003 Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES’2003), pages 81–92, San
Diego, CA, June 2003a. ACM Press.

David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage collecor
with low overhead and consistent utilization. In Conference Record of
the Thirtieth Annual ACM Symposium on Principles of Programming
Languages, ACM SIGPLAN Notices, New Orleans, LA, January 2003b.
ACM Press.

Henry G. Baker. List processing in real-time on a serial computer. Commu-
nications of the ACM, 21(4):280–94, 1978. Also AI Laboratory Working
Paper 139, 1977.

Henry G. Baker. The Treadmill, real-time garbage collection without
motion sickness. ACM SIGPLAN Notices, 27(3):66–70, March 1992.

Ori Ben-Yitzhak, Irit Goft, Elliot Kolodner, Kean Kuiper, and Victor
Leikehman. An algorithm for parallel incremental compaction. In David
Detlefs, editor, ISMM’02 Proceedings of the Third International Sympo-
sium on Memory Management, ACM SIGPLAN Notices, pages 100–
105, Berlin, June 2002. ACM Press.

Peter B. Bishop. Computer Systems with a Very Large Address Space and
Garbage Collection. PhD thesis, MIT Laboratory for Computer Science,
May 1977. Technical report MIT/LCS/TR–178.

Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley, and J. Eliot B.
Moss. Beltway: Getting around garbage collection gridlock. In Proceed-
ings of SIGPLAN 2002 Conference on Programming Languages Design
and Implementation, ACM SIGPLAN Notices, pages 153–164, Berlin,
June 2002. ACM Press. ISBN 1-58113-463-0.

Guy E. Blelloch and Perry Cheng. On bounding time and space for
multiprocessor garbage collection. In Proceedings of SIGPLAN 1999
Conference on Programming Languages Design and Implementation,
ACM SIGPLAN Notices, pages 104–117, Atlanta, May 1999. ACM
Press.

Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly parallel
garbage collection. ACM SIGPLAN Notices, 26(6):157–164, 1991.

Rodney A. Brooks. Trading data space for reduced time and code space in
real-time garbage collection on stock hardware. In Guy L. Steele, editor,
Conference Record of the 1984 ACM Symposium on Lisp and Functional
Programming, pages 256–262, Austin, TX, August 1984. ACM Press.

C. J. Cheney. A non-recursive list compacting algorithm. Communications
of the ACM, 13(11):677–8, November 1970.

Perry Cheng and Guy Blelloch. A parallel, real-time garbage collector. In
Proceedings of SIGPLAN 2001 Conference on Programming Languages
Design and Implementation, ACM SIGPLAN Notices, pages 125–136,
Snowbird, Utah, June 2001. ACM Press.

William D. Clinger. Queue benchmark for estimating worst-case gc pause
times. Website, 2009. ���������	����
�
�
�����������������������������������
�������� ������!�"�#����$�%�&�'�'�(�� .

William D. Clinger, Anne H. Hartheimer, and Eric M. Ost. Implementa-
tion strategies for first-class continuations. Higher-Order and Symbolic
Computation, 12(1):7–45, April 1999.

David Detlefs, William D. Clinger, Matthias Jacob, and Ross Knippel. Con-
current remembered set refinement in generational garbage collection.
In Usenix Java Virtual Machine Research and Technology Symposium
(JVM ’02), San Francisco, CA, August 2002.

David Detlefs, Christine Flood, Steven Heller, and Tony Printezis. Garbage-
first garbage collection. In Amer Diwan, editor, ISMM’04 Proceedings

of the Fourth International Symposium on Memory Management, Van-
couver, October 2004. ACM Press.

Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: An exercise in cooper-
ation. Communications of the ACM, 21(11):965–975, November 1978.

Lars Thomas Hansen and William D. Clinger. An experimental study
of renewal-older-first garbage collection. In Proceedings of the 2002
ACM SIGPLAN International Conference on Functional Programming
(ICFP02), volume 37(9) of ACM SIGPLAN Notices, pages 247–258,
Pittsburgh, PA, 2002. ACM Press.

Roger Henriksson. Scheduling Garbage Collection in Embedded Systems.
PhD thesis, Lund Institute of Technology, July 1998.

R. Hieb, R. K. Dybvig, and C. Bruggeman. Representing control in the
presence of first-class continuations. ACM SIGPLAN Notices, 25(6):66–
77, 1990.

Richard L. Hudson and J. Eliot B. Moss. Incremental garbage collection for
mature objects. In Yves Bekkers and Jacques Cohen, editors, Proceed-
ings of International Workshop on Memory Management, volume 637 of
Lecture Notes in Computer Science, University of Massachusetts, USA,
16–18 September 1992. Springer-Verlag.

Martin Larose and Marc Feeley. A compacting incremental collector and
its performance in a production quality compiler. In Richard Jones,
editor, ISMM’98 Proceedings of the First International Symposium on
Memory Management, volume 34(3) of ACM SIGPLAN Notices, pages
1–9, Vancouver, October 1998. ACM Press. ISBN 1-58113-114-3.

Henry Lieberman and Carl Hewitt. A real-time garbage collector based on
the lifetimes of objects. Commun. ACM, 26(6):419–429, 1983. ISSN
0001-0782.

Scott M. Nettles and James W. O’Toole. Real-time replication-based
garbage collection. In Proceedings of SIGPLAN’93 Conference on
Programming Languages Design and Implementation, volume 28(6) of
ACM SIGPLAN Notices, Carnegie Mellon University, USA, June 1993.
ACM Press.

Tony Printezis and David Detlefs. A generational mostly-concurrent
garbage collector. In Tony Hosking, editor, ISMM 2000 Proceedings
of the Second International Symposium on Memory Management, vol-
ume 36(1) of ACM SIGPLAN Notices, Minneapolis, MN, October 2000.
ACM Press. ISBN 1-58113-263-8.

Sven Gestegard Robertz and Roger Henriksson. Time-triggered garbage
collection: robust and adaptive real-time gc scheduling for embedded
systems. In ACM SIGPLAN 2003 Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES’2003), pages 93–102, San
Diego, CA, June 2003. ACM Press.

Narendran Sachindran and Eliot Moss. MarkCopy: Fast copying GC
with less space overhead. In OOPSLA’03 ACM Conference on Object-
Oriented Systems, Languages and Applications, ACM SIGPLAN No-
tices, Anaheim, CA, November 2003. ACM Press.

Darko Stefanović, Matthew Hertz, Stephen M. Blackburn, Kathryn S.
Mckinley, J. Eliot, and B. Moss. Older-first garbage collection in prac-
tice: Evaluation in a java virtual machine. In In Memory System Perfor-
mance, pages 25–36. ACM Press, 2002.

Sun Microsystems. Java HotSpot garbage collection. Website,
2009. ���������	����)�!�*�!+���#�������������)�!�*�!�����������#���,������-.�#�������������#�������
-����-./�0�������"��1��)��#� .

David M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. ACM SIGPLAN No-
tices, 19(5):157–167, April 1984. Also published as ACM Soft-
ware Engineering Notes 9, 3 (May 1984) — Proceedings of the
ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-
tical Software Development Environments, 157–167, April 1984.

Taichi Yuasa. Real-time garbage collection on general-purpose machines.
Journal of Systems and Software, 11(3):181–198, 1990.

Scalable Garbage Collection 12 2009/7/24

