
D3N: A multi-layer cache for the rest of us
Emine Ugur Kaynar ?, Mania Abdi �, Mohammad Hossein Hajkazemi �, Ata Turk †

Raja R. Sambasivan §, Larry Rudolph ‡, Peter Desnoyers �, Orran Krieger ?

?Boston University, �Northeastern University,†State Street, §Tufts University, ‡Two Sigma

Current caching methods for improving the performance
of big-data jobs assume high (e.g., full bi-section)
bandwidth; however many enterprise data centers and
co-location facilities have large network imbalances due
to over-subscription and incremental networking upgrades.
We describe D3N, a multi-layer cooperative caching
architecture that mitigates network imbalances by caching
data on the access side of each layer of a hierarchical
network topology, adaptively adjusting cache sizes of each
layer based on observed workload patterns and network
congestion. We have added (and submitted upstream)
a 2-layer D3N cache to the Ceph RADOS Gateway;
read bandwidth achieves the 5GB/s speed of our SSDs,
and we show that it substantially improves big-data job
performance while reducing network traffic.

I. INTRODUCTION

In today’s world, data is king [29]; organizations’
success or failure depends on the amount and variety of
data they collect and the speed of gleaning critical insights
from it. As a result, many datacenters include low-cost,
centralized storage repositories, called data lakes, to store
and share vast datasets. This data may then be analyzed by
big-data frameworks such as Hadoop [28] and Spark [50]),
with data access accelerated by caching [4], [6], [15],
[35] to move frequently-used datasets into RAM or SSD.

With data caching and analysis spread across a
large number of machines, the network connections
between these machines are a critical determinant of
performance. Data access may be significantly constrained
by over-subscribed network links both within and between
clusters— constraints due to both design decisions and
the piecemeal process (which we term organic growth)
by which compute and networking equipment is deployed
in non-hyper-scale datacenters.

In even the best-designed modern datacenters, rack
uplinks—i.e. the connections between top-of-rack switches
and the rest of the datacenter—are over-subscribed, with
e.g. a ratio of 3:1 in Google’s Jupiter [44] interconnect.
This is a natural consequence of today’s technology, where
servers and cost-effective switches often have interfaces of
the same or nearly the same speed. (e.g. 100 Gbit/s uplinks

vs. dual 40 Gbit/s NICs) In this environment the cost, com-
plexity, and even physical volume of cabling required for
full bisection bandwidth (i.e. 1 rack uplink per server NIC)
puts it out of reach of all but the most extreme applications.

This oversubscription is compounded by connectivity
restrictions due to organic growth: in many organizations
and co-location facilities, clusters are deployed one by one
over time, with individual and separate sources of funding.
Shared facilities (e.g. datacenter-wide networking) cannot
be upgraded each time a new increment of equipment
is deployed; at best they are upgraded at regular intervals,
and are thus on average a year or two out of date; at worst
these facilities languish for much longer. As an example,
the authors recently deployed (in a shared institutional
datacenter) a rack of servers with 100 Gbit NICs; however
only two 40 Gbit uplinks were available to the rest of the
network, for an over-subscription of as much as 50:1.

To address these network limitations we present a
multi-layer throughput-oriented “cooperative caching”
architecture, Datacenter-Data-Delivery Network (D3N).
D3N uses high-speed storage (e.g. NVMe flash or
DRAM) to cache datasets on the access side of links in a
hierarchical network, dynamically allocating cache space
across layers based on observed workload patterns and
link speeds, so that cache capacity is preferentially used
for traffic crossing the most over-subscribed links.

A fundamental goal of D3N is to allow simplified
integration into existing data lakes [18], [47] to enable
caching to be transparently introduced into datacenters,
to support efficient caching of objects widely shared
across clusters deployed by different organizations, and
to avoid the complexity of managing a separate caching
service on top of the data lake. Moreover, integration
into the data lake (rather than a separate service) offers
opportunities for continuous enhancement of functionality
and performance as the data lake software evolves, e.g.,
improved meta-data handling or simplifying consistency.

To facilitate integration into a data lake, D3N today
makes all policy decisions based purely on information
local to cache servers and is designed to only rely on inter-
faces typically available in data lakes. We have developed
an implementation in Ceph [47], an object-based storage
system [18] commonly used to implement data lakes. Using
high-speed SSD for caching, we modify the Ceph RADOS
gateway (RGW), which provides Ceph-backed Swift [8]978-1-7281-0858-2/19/$31.00 ©2019 IEEE

and S3-compatible [5] interfaces, protocols supported by
most big data frameworks. D3N has required no changes to
the interfaces of any Ceph services, involves no additional
meta-data services (e.g, to locate cached blocks), and all
policies are implemented based purely on local information.

The most similar previous work is Alluxio [4], a
caching service that can be deployed above existing data
lakes and is accessed via a client library rather than
a network protocol. In addition to the fundamentally
different design goals, D3N differs from Alluxio in
borrowing heavily from the rich research in cooperative
caching [7], [17], [17], [19], [32], [49] systems which
explore how to create larger shared aggregate caches
using local caches; Alluxio policies for distribution and
cache replacement are dictated purely by the dataset user.

The main contributions of our work are:
1) We demonstrate that an effective cooperative cache can

be integrated into a production data lake in a practical
fashion without requiring changes to client or server
interfaces and without introducing additional meta-data
services. D3N (with static cache partitioning1) is
currently being productized and integrated into
upstream Ceph by an industry development team.

2) We demonstrate that an implementation can be highly
efficient. We show with micro-benchmarks that our
implementation introduced into the production Ceph
code base can support per-cache read speeds of 5 GB/s,
fully exploiting the SSDs and NICs in our system. We
also demonstrate with large scale datacenter traces that
D3N achieves significant performance improvements
for realistic workloads—up to a 3x reduction in
runtime vs. uncached when bandwidth-constrained.

3) We present and evaluate a novel adaptive cache
partitioning algorithm using observed throughput and
access patterns to optimize cache capacity division
between rack-local and cluster-wide data, showing gains
of up to 30% vs. fixed allocation in adapting to different
access patterns and in responding to network contention.

II. MOTIVATION

In Figure 1 we see a simplified view of the datacenter
topology motivating D3N: racks of servers (dark blue)
connected by top-of-rack (ToR) switches, an over-
subscribed inter-rack network within clusters, and a further
over-subscribed datacenter network between clusters and
an enterprise data lake. Clusters may be deployed at
different times, with different network technologies, and
may be owned or deployed by different entities: sub-units
of a corporation, research groups in a university, or entire
companies in a co-location facility.

Individual clusters are frequently installed or upgraded
in a single deployment, allowing ToR and inter-rack

1The adaptive partitioning algorithm is still experimental research.

An
al

yt
ic

s
C

lu
st

er

ToR ToR ...

Compute Cluster n

ToR ToR...

Compute Cluster 1

Cluster Network 1 Cluster Network n...
ToR ToR ...

Data Lake

Data Lake Network

Cache Cache M
or
e
ov
er
su
bs
cr
ip
tio
n

Data-Center Network

Fig. 1: A typical private datacenter. Servers installed
within racks are connected by a hierarchical, over-subscribed
data-center network. The layers correspond to ToR, cluster,
and datacenter-network-wide switches. Sets of racks and their
networking elements form compute clusters with the data lake
in a separate cluster.

bandwidth to be sized appropriately. In contrast, differing
upgrade schedules and split ownership typically prevent
inter-cluster networks from being upgraded at the same
time, resulting in significant bandwidth mismatches across
compute clusters.

In Figure 1 one of the clusters is a data lake, storing
datasets used for analysis by multiple compute clusters.
In an enterprise this may be akin to the classic data
warehouse; in a scientific environment, a repository for
shared data sets. Such data lakes are typically implemented
by object stores, such as Ceph [47] or AWS S3 [5],
which satisfy the key requirements of high capacity,
economical storage for unstructured, read-mostly data,
with fine-grained access control to provide varied level
of access to datasets owned by different entities.

We focus on data access for analysis by jobs (e.g.
big-data frameworks) running on analysis clusters;
comprised of single, partial, or multiple of the physical
clusters depicted in Figure 1. Analysis frameworks may
run directly on cluster servers, or on virtual machines [9]
or containers [45] allowing migration within or across
compute clusters. We specifically focus on workloads
which directly access data via connectors such as S3A [42]
for Hadoop, which provides HDFS-compatible access
to S3 and compatible object stores. In such cases local
storage is typically used for ephemeral data, with the data
lake for long term storage of inputs and outputs.

A simple numerical model can be used to show the value
of D3N’s multi-level cache in such a bandwidth constrained
environments. With D3N, we would place a cache server in
each rack, and share the SSD (1 TB in this case) between
L1 cache dedicated to caching rack-local accesses and L2
cache dedicated to caching remote accesses. The model is:

r =
1

1−m1
rL1

+ 1−m1−m2
rL2

+ m2
rDL

m1 = MRC(FL1 ·C)

m2 = MRC((1−FL1)C ·N)

(1)

0 1 2 3 4 5 6
Cache Size (TB)

0.0

0.2

0.4

0.6

0.8

1.0

M
is

s
R

a
ti

o

Facebook
Industry Partner

Fig. 2: Miss ratio curves of Facebook & industry trace.

0.00.20.40.60.81.0
Fraction of Cache Dedicated to L1

0
1
2
3
4
5

Th
ro

ug
hp

ut
 (G

B/
se

c)

Facebook Trace

N=2
N=4
N=8

(a) Facebook trace.

0.00.20.40.60.81.0
Fraction of Cache Dedicated to L1

0
2
4
6
8

10
12

Th
ro

ug
hp

ut
 (G

B/
se

c)
Industry Partner Trace

N=2
N=4
N=8

(b) Industrial partner trace.

Fig. 3: Modeled throughput of storage cluster for varied
numbers of caching nodes (N), ratio of L1 and L2 cache. 1 TB
cache per node, 40 Gbit cache / 20 Gbit for storage traffic
inter-rack / 10 Gbit to data lake.

where rL1, rL2, rDL are L1 hit, L2 hit and L2 miss band-
widths, FL1 is the fraction of cache devoted to L1, C and
N are the capacity of a single cache and number of caches,
and MRC is the Miss Ratio Curve (MRC) for the workload.

Figure 3 shows the storage throughput for a two
level cache for 2, 4, and 8 cache nodes, as we vary the
L1 fraction of the cache from 100% (fully-local) to a
minimum of 1

N (due to unified caching). We set rL1 rL2 and
rDL assuming a datacenter with 40 Gbit ToR switches, 40
servers per rack and 100 Gbit uplinks, resulting in a 16:1
oversubscription2 The MRCs (Figure 2) are calculated from
Facebook and an industry partner traces (see Section V-A).

Our simple numeric model underestimates the value of
the two-level cache in that it assumes that the bandwidth
between L2 caches is not contended, and that there is
no locality in requests from the same rack or cluster.
Even with these pessimistic assumptions we see that the
multi-level approach offers better performance than either
a pure L1 or pure L2 approach for 4 cache servers or
more. The industry trace, with its 90% reuse rate at eight
cache nodes shows a 40% improvement over a pure L1
cache and a 25% improvement over a pure L2 cache.

III. D3N ARCHITECTURE

D3N is a caching architecture for large immutable
objects accessed from multiple client machines. It caches
data on the access side of potential network bottlenecks,
e.g. for data analytics over source data residing in a
large remote object store with S3-like [5] semantics. We

2 We set rL1 to 40 Gbit, rL2 to 20 Gbit and rDL to 10 Gbit/s; with
a 16:1 oversubscription it seems optimistic to assume 20 Gbit of the
100 Gbit uplink is available for storage traffic, and 10 Gbit/s is roughly
the bandwidth we have seen from our 90 spindle Ceph cluster.

assume that objects are large and accessed in their entirety,
possibly across multiple clients, making throughput the
dominant performance metric.

D3N was designed to be a transparent extension of the
data lake, with design goals including:
• Scalability: Cache bandwidth and storage should

scale naturally with the number of clients.
• Adaptability: Data placement, eviction, etc. should

be determined without user input, based on measured
run-time behavior.

• Transparency: D3N should offer the same network
interface (S3) as the unmodified system, allowing
access from unmodified clients

• Resiliency: Failures and recovery or resource
addition should be handled automatically, minimizing
disruption to clients.

These requirements shape the D3N architecture: a
multi-level cooperative cache, where levels correspond to
wider domains of cooperation. Cache servers are deployed
alongside clients on a per-rack basis, with a discovery
service used by clients to locate their “nearest” cache;
as the number of racks accessing the cache increases, the
number of cache servers naturally scales. The layer where
data is cached adapts automatically to the access patterns
of the applications and the bandwidth available between
cache servers. For simplicity and resiliency, as well as
for integration in existing storage solutions, all caching
and routing decision are based on local information rather
than central coordination.

A. D3N Components and Organization

D3N has 3 components: cache servers, to which client
requests are directed; a lookup service, used by clients
to locate their “local” cache, and a heartbeat service to
track the set of active caches. Cache servers act as proxies
for the back-end, storing data locally for reuse. The
preferred storage media for these servers is high-speed
SSD, providing a combination of high capacity and
sufficient bandwidth to saturate network links; however
other media (RAM, NVM) may be used. Clients access
the lookup service (implemented as a DNS server) via
IP anycast [1], and query it both periodically and upon
request timeout to handle events such as recovery of
failed caches, client VM migration, or other events which
might affect optimal client-to-cache pairing.

The heartbeat protocol is used by the lookup service
to find active caches, as well as by the cache servers
themselves to determine how data is to be distributed. (If
desired, the heartbeat protocol may be replaced by another
coordination service, such as Zookeeper [31].)

These components may be seen in Figure 4. Here D3N
is deployed across a set of racks (or cluster), caching data
from a remote data lake. We assume that the resources
within these racks may be optimized for their tasks,

Datacenter switches

Aggregation switches Aggregation switches

Cluster
switches

Cluster
switches

Cluster
switches

Cluster
switches

M
or

e
ov

er
su

bs
cr

ip
tio

n

L 1

L 2

L N
Legend:

Cache
server

Anycast
lookup server

Top-of-rack
switch

Data lake

Rack

Replicated
heartbeat

Fig. 4: D3N architecture. Cache services (light purple) serve requests from nearby servers (blue); data blocks are distributed
across pools of caches via consistent hashing. Lookup servers (black) identify L1 caches to clients.

incorporating sufficient caching and network resources
to support the expected demand from the client machines
in the cluster. Conversely, we assume that bandwidth may
be limited between this installation and the data lake, or
that the data lake itself may have intrinsic performance
limits (due to e.g. disk bandwidth), and that addressing
these limits may be outside the control of the parties
responsible for installing this cluster.

To scale caching resources with demand we deploy
one or more cache servers in each rack; we have found
one per rack of 1U servers to be adequate for Java-based
analytics workloads, but more may be needed for more
I/O-intensive applications. Each cache server acts as an
L1 cache for its local clients, caching requested data,
while successive cache layers are formed by aggregating
resources across multiple caches. This aggregation requires
additional hops across the intra-cluster network to resolve
local L1 misses; however the result is a reduction in load
on the external network and data lake.

Since the target applications often split large objects
into sub-ranges across multiple clients (e.g. mappers),
we cache objects in relatively small chunks, 4 MiB in
our implementation. Each chunk has a “home location”
within the L2 cache, and L1 misses are forwarded to the
chunk home location. Only in the event of a miss at the
home location is a request forwarded to the data lake, the
results of which are cached at both the home (i.e. L2) and
client-serving (L1) locations. The L1 and L2 caches are
unified: L1 requests for a chunk received at that chunk’s
home location result in a single cached copy of the data.

As seen in Figure 4, a further level of aggregation
may be used to create an L3 cache, and it is possible
(although unlikely to be practical) to extend this to higher
layers. We focus on L1 and L2 in this work, and leave the
details of extension to L3 to future work. With a 2-level
cache the home location of a chunk is determined via
consistent hashing [34]; a reasonable approach when all
cache servers are within a single cluster.

Cache replacement is non-trivial in a multi-layer cache

where layers compete for the same pool of resources. D3N
dynamically adapts the fraction of cache devoted to L1 vs.
L2 at each D3N server, with a per-layer eviction algorithm
(e.g. LRU) used within each pool; chunks shared between
L1 and L2 are purged when they have been evicted from
both. In particular, at each layer D3N tracks both miss
overhead and the Miss Ratio Curve (MRC), using (in our
implementation) a shadow LRU list for MRC tracking.
This information allows periodic adjustment of cache
allocation: the MRCs may be used to predict the change
in L1 and L2 hit rates if capacity is moved from L1 to
L2 or vice versa, and mean response times for L1 and
L2 misses used to estimate impact of such a change.
This approach adapts the size of L1 and L2 based on the
application working set and network bottlenecks.

On a Read Operation clients send requests to the
closest L1 service as identified by the lookup service. For
blocks which hit in this cache, data is returned directly.
For each block which misses, consistent hashing is used
to locate its home cache service in higher layer, and a
request is forwarded to that service.

For Write Operations D3N supports write-through,
write-back and write-around, which applications can
control on a per-object basis.

B. Edge Conditions and Failure Modes

Upload visibility: Objects in D3N are immutable and
should only be made visible to read operations once data is
fully uploaded. (For write-through this means writes have
been acknowledged by the storage back-end; for write-back
that they are written to their home cache location.) We defer
writing the object “header” (roughly an inode) to back-end
storage (for all modes) until after data writes complete, and
always read it from that location, ensuring read visibility
follows the same rules as in the unmodified system.

VM Migration: During a VM migration, D3N should
keep active TCP sessions connected between clients and the
previous L1 until the request has completed. For this reason,
we do not use anycast to address the L1 directly, but instead

Fig. 5: Deployment of Unmodified RGW and D3N Architecture
in the Datacenter. (a) Load balancing for scale-out RGW
deployment. (b) D3N deployment with two-level caching.

use anycast to get to the lookup service, that provides the IP
address of the L1. When a VM is migrated it will continue
to communicate to the previous L1 until its use of the
DNS mapping has expired and it opens a new connection.

Failures:: When a cache server fails, the lookup
service will direct new requests to one of the remaining
servers. In-process requests will be retried by the client,
and thus directed to one of the remaining servers.

C. Limitations

Local cache management: Since caching decisions
are performed locally within the cache pools in each layer,
D3N can make globally suboptimal caching decisions. For
example, a few popular blocks can be replicated across
all the L1 caches flooding the capacity and preventing
caching of slightly less popular blocks.

Lack of fairness: Compute clusters participating in
D3N share resources such as rack space, storage, power,
and network bandwidth with D3N. Even though D3N
tries to provide a common good by eliminating network
bottlenecks, the individual benefits each cluster gets
from D3N may be different and disproportionate to the
resources they provide.

IV. IMPLEMENTATION WITHIN CEPH

Our prototype implements two levels of cache and
consists of modifications to the Ceph RADOS Gateway [47]
(RGW), allowing use by any framework which supports
the S3 or Swift object interfaces (e.g. Hadoop, Spark,
Storm, and Flink). The implementation added or modified
2,500 lines of code, or about 3% of the 68,000-line RGW
code base. It implements a L1 and L2 cache, storing cached
data in 4 MB blocks as individual files on an SSD-backed
file system. The decision to base all caching and routing

decisions on local information has allowed us to integrate
D3N into RGW without changing any interfaces or clients.

A. Ceph RGW background
Ceph is a replicated, mutable object store, accessible via

the RADOS protocol, and a suite of services implemented
on top. The RADOS gateway (RGW) is one such service,
providing S3/Swift compatible object storage interfaces,
using multiple RADOS objects—much like a file system
uses disk blocks—to store a single RGW object and its
header. RGW is highly scalable, since it is in effect a
stateless translator from S3/Swift to RADOS requests,
and due to its S3-compatible interface it may be accessed
directly by most big-data applications.

A typical Ceph/RGW deployment is shown in
Figure 5(a). Client requests (e.g. using the S3A HDFS-
compatible connector) are load-balanced across multiple
RGW instances. Each S3/Swift object is divided into
fixed-sized blocks (4 MB by default) which are stored
as individual RADOS objects; in the typical configuration
each block is replicated on three independent hosts, chosen
by the CRUSH algorithm [48]. RGW has a window of 4
outstanding requests per connection, limiting single-stream
throughput to no more than four times that of a single
device (e.g. disk, in capacity-optimized deployments),
but with sufficient connections will spread load across
all devices in the cluster.

B. D-RGW: our D3N prototype
Our prototype, D-RGW, implements two levels of cache

within RGW (see Figure 5(b)). All client requests are
routed to a rack-local D-RGW L1 cache, where each block
in a request is identified by its object ID and offset, and
stored as a file on a local file system backed by striped
SSDs. Cache hits are read from files; misses are redirected
to another D-RGW for L2 lookup via S3/Swift range
requests. The L1 and L2 caches are unified: one copy of a
block is stored, although layer membership is tracked for
eviction purposes. Several alternatives for local file I/O
were evaluated—memory mapping, GNU POSIX aio, and
native kernel asynchronous I/O (libaio)—and POSIX aio
was used due to its performance in our tested configuration.
Native file system I/O was fast enough to saturate our
40 Gbit network; thus SPDK [46] etc. were not considered.

Reads: Clients direct read operations to their rack-local
D-RGW, which divides each request into (typically 4 MB)
blocks. As described in the previous section, each block
in local cache is returned immediately; other blocks are re-
quested from their “home location” computed via consistent
hashing [34]. The request is forwarded via a range request,
or if the “home location” is local (i.e. a L2 miss) a block
request is sent to Ceph. As responses are received (from L2
or Ceph) data is written to cache and returned to the client
in parallel. All steps are asynchronous except for the client
HTTP response, where blocks must be ordered sequentially.

Writes: Since RGW objects are immutable, and cannot
be modified or appended to once created, write handling is
greatly simplified. Upon receiving a write object request,
RGW (and thus D-RGW) generates an object ID and
divides the object into blocks.

Write-around mode is identical to unmodified RGW:
blocks are written asynchronously to the Ceph back-end,
and an additional header write updates the mapping from
RGW object to blocks stored as RADOS objects; no
blocks are cached. Write-through caches data at the points
it would be cached by reading: L1 writes blocks locally,
to the Ceph back-end, and to their L2 home location.
The header is updated when all writes to the back-end
complete, and the write is then acknowledged to the
client. Write-back caches blocks in L2 (last layer), and
as soon as all data blocks are cached in L2, updated
header is written to the Ceph back-end and the write
is acknowledged to the client. Dirty blocks in cache are
flushed periodically, or under certain circumstances such
as eviction of a block or a user flush command. In both
write-through and write-back, failure during write may
result in blocks prior to the point of failure being cached;
however, since header has not been committed, these stale
blocks will be inaccessible and eventually evicted.

C. Dynamic Cache Size Management

D3N dynamically partitions the cache space into layers
to minimize mean request latency. If L1 is too small, its
miss rate will be high and there will be lots of remote
access to some L2 and if L1 is too large, L2 will be too
small and its miss rate will be large causing even longer
latencies due to fetches to the data lake. Algorithms 1
and 2 depicts our algorithm where we based the predictions
of miss rates as a function of layer size on observed access
patterns and measured miss latencies in the near past.

To approximate the miss rates, a shadow LRU cache SL,
is maintained for both layers. Shadow caches have been
explored in other works [15], [33], [37]. Each shadow
cache is of full size, St and only stores the keys but not
the data. There is a hit counter, HCl , associated with each
shadow cache. For an access to block b to some layer,
the associated shadow cache is accessed. If b is found
in location i, then the hit counter for location HCl [i], is
increased and the blocks rearranged to maintain the LRU
ordering. If the layer has size s, then the sum of all HC[i]
for i > s is the miss rate for that layer.

Periodically we use the re-use distance histogram and
mean miss latency measurements

−→
L = (L1,L2) to adapt

the cache capacity allocation. We first considered a simple
additive increase/decrease mechanism; however due to
the wide range of possible allocations (St ≈ 106 in our
prototype) the response time of such an algorithm is very

Algorithm 1 Re-use distance measurement
1: b: requested block
2: `: layer (1 or 2)
3: St : total cache size (in blocks)
4: SL`: shadow LRU list (length St)
5: HC`: re-use distance histogram
6: −→s = (s1,s2): cache distribution, s1 + s2 = St

. Measure re-use distance for access to block b, layer `
7: procedure MEASURE(b, `)
8: if b ∈ SL` then
9: find i s.t. SL`(i) = b . LRU position

10: HC`(i)++
11: reorder SL` LRU due to access to b

slow. Instead we search a fairly wide range3 of possible
allocations (±q, where q called adaptation limit, which
has been set empirically to 0.05St in our prototype) and
select the best from this range.

More specifically, Algorithm 2 shows how starting at
an allocation −→s = (s1,s2), we find a new assignment −→s ′
with a predicted miss rate −→m = (m1,m2) which minimizes
expected latency m1L1 + m2L2. We first (lines 6, 7)
calculate the miss ratio curve MR` for each layer, allowing
us to predict the miss rate at that layer for varying cache
sizes. We then search a range of possible cache allocations
−→s ′, centered at −→s , selecting the allocation −→s ′ which
minimizes the expected request latency. After adapting the
cache sizes (if −→s ′ 6=−→s), we scale the distance histogram
HC` so that it represents a moving average4 of re-use
distance frequency, balancing accuracy (from accumulating
data over multiple periods) with rapid adaptation (due
to the rapid decay constant).

Algorithm 2 Cache distribution adaptation
1: b, `, St , −→s , HC`: As in Algorithm 1
2: MR`: miss rate (i.e. miss ratio curve)
3: L`: measured miss latency
4: q: adaptation limit (maximum assignment change in blocks)
5: i: cache server location

. Calculate updated L1L2 cache distribution −→s new
6: procedure ADAPT
7: for ` in 1, 2 do
8: MR`(i) = ∑

St
k=i HC`(k) . Calculate miss ratio curve

9: Cmin = inf
10: snew = /0

11: for −→s ′ in (s1−q,s2 +q) . . . (s1 +q,s2−q) do
12: −→m = (MR1(s1),MR2(s2) . Predicted miss rate
13: C = m1L1 +m2L2 . Expected latency
14: if C <Cmin then
15: Cmin =C
16: snew = s′

Memory Overhead and Algorithm Complexities:
The overhead of the D3N adaptation algorithm includes
(1) memory used for the shadow LRU lists SL` and re-use

3We limit the space searched, and thus the absolute magnitude of
any correction, in order to bound the eviction overhead after a large
change in allocation.

4 Since the incoming counts are not scaled, the expectation of HC`

is actually 2× the mean for a single collection period, a constant factor
which does not affect the location of the optimal point.

TABLE I: Configurations of nodes in the cluster.
Compute Node Storage Node Cache Node

CPU 1x Intel E5-2650 2x Intel E5-2650v2 2x Intel E5-2699v3
Ram 64 GB 128 GB 128 GB
Disk 2x 1.8 TB HDDs 9x 3.6 TB HDDs 2x Intel P3600 1.6 TB

5400 RPM 7200 RPM NVMe SSDs (RAID0)
Network 10Gb/s 10Gb/s 2x40Gb/s

distance histograms HC`, (2) computation to track re-use
distance statistics (Algorithm 1) and (3) computation to
find an optimal capacity allocation (Algorithm 2).

The shadow LRU list must store St different block
identifiers each of which is an RGW object ID (up to
128 bytes) plus an offset (4 bytes), or 132 ·St bytes each
for the L1 and L2 shadow lists; with a 4 TB cache and
a block size of 4 MB, this is a total of up to 264 MB for
the two layers. We use a skip list [38] to calculate LRU
position in O(logN) time, for an asymptotic complexity
of O(logN) for Algorithm 1. Locating −→s ′ in Algorithm 2
searches 2 ·q cases, where q = O(St), for an asymptotic
complexity of O(St), although this may be reduced by
using a more sophisticated minimization algorithm.

Extension to 3 layers and more: In this case
Algorithm 1 is unmodified, updating e.g. SL3 and HC3 in
the same way as for lower layers. The exhaustive search
in Algorithm 2, however, is clearly infeasible for 3 or
more layers, and must be replaced by a more efficient
minimization algorithm such as hill climbing [15], [16].

V. EVALUATION

Section V-A describes our experimental setup.
Section V-B and V-C evaluates our prototype using micro
and macro benchmarks. Finally, at larger scale than our
experimental infrastructure, Section V-D examines the
dynamic cache-size management capability of D3N and
the runtime improvements it offers for real workloads.

A. Experimental Setup

Environment: Experiments are executed on a private
datacenter where racks interconnected in a partial-mesh
topology, with the equivalent of 4×40GbE inter-rack links
on each top-of-rack switch and an average distance of
3 hops between racks. The storage cluster is comprised
of 10 storage nodes, running Ceph 10.2.2. Table I lists
the details of the nodes used in the experiments.

Compute and cache nodes are located on 2 racks; on
each rack we allocate 1 cache and 8 compute nodes
for our experiments. All systems (storage, compute, and
cache nodes) run RHEL (Red Hat Enterprise Linux) 7.2,
with Linux kernel 3.10 and backported patches.
Workload Characterization; We use the 2010 publicly
available Facebook trace [13] and a 2017 trace from
an industry partner.5 Figure 6a and Figure 6b are heat
maps showing access counts to each file over time,
respectively for each trace, with files identified by their
time of first access.Both figures show that a number of

5We are working with our partner to make the trace publicly available.

0
First access time (in hours)

0

T
im

e
 (

in
 h

o
u
rs

)

103

104

105

(a) Industrial Partner

0 First access time (in hours)
0

Ti
m

e
(in

 h
ou

rs
)

101

102

103

(b) Facebook

Fig. 6: Re-use patterns for Industrial Partner and Facebook
traces:. Files are identified by time of first access (X axis), actual
access time is on Y axis; color intensity indicates access count.

files are accessed early and remain popular throughout
the trace while other files become hot for periods of time
at intermediate points in the trace; suggesting the value
of a dynamic caching mechanism.

B. Micro-Benchmarks

We craft and run a series of micro-benchmark on both
D3N and unmodified (Vanilla) RGW to measure the
imposed overhead and the maximum performance gains
achievable by D3N. We submit read and write requests6

to the Ceph data lake via D3N and the Vanilla RGW.
Figure 7 compares the D3N hit and miss throughput

performances with that of the Vanilla RGW. In these
experiments, for Vanilla RGW, the Ceph OSD buffer
caches are flushed before each test run to ensure that data
is fetched from the 90 OSD disks rather than the RAM
of the OSD servers. For presenting D3N hit performance,
the datasets are first prefetched into the L1 cache of
D3N before each run. The black dotted line (5.0 GB/s)
represents the maximum read rate of the cache server
SSDs as measured with “dd”; essentially the “speed of
light” for our experiments. It is also coincidentally the
throughput of the cache server’s 40GbE NIC.

As seen in Figure 7, our implementation is efficient
enough to saturate the dual NVMe SSDs and the 40 Gbit
NIC; meaning almost 5× of improvement over Vanilla
RGW. Also, misses on D3N (which incurs the overhead
of storing missed data to SSDs in both L1 and L2) has
∼26% impact on the read throughput. This overhead
seems easily justified if it results in subsequent hits.

Figure 8 compares D3N write performance using write-
through and write-back to vanilla RGW. Write-back mode
improves the write throughput 3×. Our implementation
is efficient enough to saturate the capacity of the dual
NVMe SSDs. Write-through, which blocks until the write
has completed to Ceph, incures additional overhead over
vanilla RGW of traversing multiple D3N caches and
writing the data to the SSDs. As we see this overhead

6Requests are submitted using curl, a high-performance HTTP
client, with eight nodes each issuing eight concurrent 4 GB read or
write requests based on the experiment. The largest object that can be
uploaded in a single PUT is 5 GB in S3 API.

 0
1
2
3
4
5
6

Ag
gr

eg
at

ed
 R

ea
d

Th
ro

ug
hp

ut
 (G

B/
se

c) Max SSD Read Bandwidth

Vanilla_RGW
D3N miss
D3N Hit

Fig. 7: D3N hits improve
the read throughput 5×,
saturating the dual NVMe
SSDs and a 40 Gbit NIC.

0.5

1
1.5

2
2.5

3
3.5

Ag
gr

eg
at

ed
 W

rit
e

Th
ro

ug
hp

ut
 (G

B/
se

c) Max SSD Write Bandwidth

Vanilla_RGW
D3N L2 Write-Through
D3N L1 Write-Back

Fig. 8: Write-back improves
the throughput by ∼3× and
write-through incurs a small
(∼10%) overhead.

is only around ∼10%. While the default policy right
now is write-around (given the experimental nature of
our changes), we expect users to use write-back for
intermediate data sets, where resilience is less critical,
and write-through in all other cases given the modest cost
and the significant value for subsequent hits.

To summarize, in our environment (with a very high
speed closely coupled data lake) D3N offers a 5× higher
throughput on L1 cache hits and 3× higher throughput on
writes with a write-back policy (saturating the SSDs on
cache servers in both cases) and incurs modest overhead
on cache misses (∼26%) and write through (∼10%).

C. Macro-benchmark

We use the Facebook trace described in Section V-A
to create a macro-benchmark and measure the runtime
impact of D3N for more realistic workloads. To be able to
test the trace over a smaller-sized cluster, we scale down
the original file sizes by half7 and then replay a part of the
trace with 75% percent re-use (a low re-use ratio compared
to our Industrial Partner’s trace). Our workload includes
853 jobs processing 40 TB of data with a 10.1 TB footprint;
8 TB of the data is repeatedly accessed while 2.1 TB of the
data is accessed only once. We preserve the original arrival
order of the jobs and consider only read traffic to emulate
access to a shared read-mostly multi-institutional data lake.

We create a two layer D3N configuration using two cache
servers with a total 5 TB capacity. We use the production
(non-adaptive) version of D3N, with a static cache of 50%
to each cache layer. Aggregate bandwidth to the back-end
storage cluster was 80 Gbit/s (one 40 Gbit NIC per server);
additional experiments were performed with an aggregate
bandwidth of 12 Gbit/s, by throttling each cache server-
to-storage connection to 6 Gbit/s. Hadoop clients were
emulated by a custom tool, generating HTTP requests (with
a 512 MB block size) to mimic the S3 requests each mapper
would have initiated, allowing all mappers to be emulated
from two 36-core nodes with 40 Gbit NICs. Since the trace
lacks client node information, requests were randomly as-

7Prior work has shown this has little or no impact on performance [6].

Fig. 9: Facebook workload runtime, D3N vs. vanilla RGW,
full-bandwidth (80 Gbit) and throttled (12 Gbit) network to data
lake, full run and after 1/3-trace warmup. D3N improves runtime
by 25% with (unrealistically) high data lake bandwidth, and
by 4× with a more realistic network.

signed to each mapper with no locality, giving conservative
results vs. real workloads with non-zero locality.

Figure 9 displays the trace completion time with
and without D3N for the two network bandwidth
configurations. The experiment was divided into two
consecutive phases, warm-up and measurement. The
warm-up phase consisted of the first 33% of the total trace;
performance results are reported for the measurement
phase alone as well as for the full workload run time
(warm-up plus measurement). With an unrealistic 80 Gbit
of bandwidth to the storage pool, performance improved
by about 25%. With 6 Gbit from each cache server to the
backend (a conservative emulation of a shared 10 Gbit
connection) the full workload and measurement-only
times improved by 2.4× and 3× respectively.

With only 75% re-use, we see that the cache is
still highly effective, greatly increasing storage system
throughput and thus application performance. Throughput
also compares favorably with the traditional alternative
of manually copying hot datasets into a disk-based
cluster-local HDFS system. Due to the huge speed
disparity between NVMe and disk, it would take 60 to 80
disk spindles across this cluster to equal the throughput
of the two dual-SSD cache servers.

Another benefit is the reduction in inter-cluster traffic.
Figure 10 we see cumulative data transferred from the
back-end storage (sampled using pbench) for the 12 Gbit/s
experimental configuration. With the vanilla RGW, the
Ceph link is nearly always saturated, with 23 Tb of
observed data transferred after the warmup phase, while
D3N transfers about 5 Tb, more than a 4× improvement
(e.g. allowing 4 times as many analysis jobs to share the
storage backend or bottleneck links).

D. Performance of Dynamic Caching

In Section V-C, the cache space was allocated statically
across co-located L1 and L2. To be able to evaluate the
performance of the D3N partitioning algorithm at larger
scale, we run a series of trace-based simulations.

In our simulation, we assume a datacenter with 10 racks,
each rack containing one D3N cache server and 20 client

Fig. 10: Cumulative (sampled) Ceph transfers for Facebook
workload, D3N vs Vanilla , 12 Gb/s. For D3N the link is
saturated during the warm-up phase due to cache misses, but
demand is reduced during the measurement phase due to cache
hits; Vanilla takes 3× as long, saturating the link throughput.

machines. The aggregate bandwidth between clients and
D3N servers is 50 GB/s (i.e. one 40 Gbit NIC per server)
and the bandwidth between L1 and L2 is 15 GB/s, and with
a rack-to-rack over-subscription of 3.3:1. Each client issues
concurrent 150 requests for 4MB objects. Both synthetic
traces and Facebook traces were used. The Facebook trace
does not contain mapper information needed to determine
request locality; therefore we generated synthetic locality
information, assuming that a repeat access to a file
occurred on the same rack with p = 0.7, and from another
rack (chosen randomly) with p = 0.3. At simulation start,
each cache was divided equally between L1 and L2; every
1.5 minutes the cache allocation was adjusted by up to
5% of capacity in either direction. (Sensitivity to these
parameters was tested, and any combination able to adapt
by at least 2% every minute was found to give equivalent
performance.) Each experiment has a warm-up phase
and run phase. In this section, we only report the results,
which are collected during the run phase.

Adaptability to different access patterns:
To analyze D3N’s reaction to workload pattern changes

over in time, we split the Facebook trace and assume that
for the first 36 minutes of the trace all requests arrive from
Rack-1 and after the 36 minute mark all requests arrive
from Rack-4, mimicking behavior when different parts
of the datacenter have high workloads at different points
in time. In Figure 11(b) we see L1 capacity for Rack-1
and Rack-4; after the access pattern changes at the 36th
minute mark, Rack-4’s L1 capacity starts to increase while
Rack-1’s L1 capacity decreases, indicating rapid reaction
to workload pattern changes. Figure 11(a) compares the
overall runtime of the workload under dynamic and static
partitioning with a 50/50 L1/L2 assignment, and when only
a single layer distributed L2 cache is deployed. Runtime
for dynamic partitioning is improved by 19% over static
allocation and 36% over a single L2 cache, respectively.

Adaptability to network load changes: Next we
evaluate D3N’s adaptability to changes in the network
loads. We use synthetic trace, where all racks request the
same set of files and the size of the requested files are
bigger than the total size of the cache service. Starting

(a) Trace runtime.
(b) L1 capacity as access patterns
change.

Fig. 11: Dynamic cache allocation: (a) runtime, static / dynamic
/ L2-only; (b) L1 capacity changes as access patterns change.

(a) Trace runtime.
(b) L2 capacity after network
congestion.

Fig. 12: Impact of dynamic cache allocation of D3N when a
network congestion occurs. (a) Runtime of static and dynamic
allocation. (b) L2 capacity with changing network congestion.

from 240th second until the 440th second, we congest
the link that ties Rack-4 to other racks and the bandwidth
drops from 15Gbits/s to 1Gbits/s. As a result, it becomes
costly for other cache-servers to fetch data from L2 of
Rack-4. Therefore, all racks increased the capacity of
their L1 caches during the congested window.

Figure 12(b) shows the L2 capacity of Rack-1, Rack-2,
and Rack-3 before, during and after the congestion. We
plot only 3 racks to make the figure more readable. We
note that remaining 7 racks follow the same pattern.
When the congestion is over, the dynamic algorithm
slowly increases the capacity of L2. As seen in the
figure, D3N adjusts the cache capacities as expected.
Figure 12(a) compares the overall job completion time of
the workload under dynamic and static allocation((50/50
L1/L2) mechanisms. As shown in the figure, dynamic
allocation completes 14% faster than static allocation.
Both figures indicate that D3N quickly reacts to network
congestion and adjusts cache sizes towards ideal settings.

Performance under different locality levels: In
Figure 13 we see job completion time for dynamic and
static (50/50 L1/L2) allocation for the Facebook trace
benchmark with different locality levels, from 100% (files
always accessed at the same L1) to 0%(access locations
are random). Dynamic allocation improves job completion
time for high-locality cases, e.g. by 42% and 26% for
localities of 100% and 80%, respectively.

VI. RELATED WORK

A number of projects have explored caching (mostly
in-memory) for big-data analytics [4], [6], [26], [35],

Fig. 13: Runtime comparison of static and dynamic cache
allocation for the Facebook trace under different locality levels.

[36], [50]. The most related approach to D3N, Alluxio,
aims to alleviate the cluster to data lake bottleneck by
implementing a distributed cache layer that can interface
with a variety of data lakes. A key difference in goals, that
impacts many elements of the architecture, is that Alluxio
implements a separate caching layer rather than modifying
the data lake itself. This results, in Alluxio adopting a
centralized metadata server for locating cached blocks
while D3N uses consistent hashing. More fundamentally,
Alluxio’s current caching policy on an object is controlled
by the client accessing the object. For example, in its
default policy Alluxio caches data local to the client and
uses other caches randomly only if a requested file is
larger than the worker’s entire cache; this is more similar
to D3N’s pure L1 schema rather than a distributed cache.

D3N borrows many ideas from the rich cooperating
caching research that ranges from CDNs [7], [22],
[32], [49], to network file systems [17], [23], [43], and
multiprocessors architectures [12], [19], [20]. D3N differs
from previous work in focusing on throughput and
network contention rather than on latency [17], [43] and
in introducing a dynamic cache management algorithm
to find the optimal cache size allocation for dynamic
caching demands of local/global accesses. Similar to [17],
[32], and different from most other work, D3N manages
cache space purely based on local decisions with explicit
cooperation and avoid a central coordinator.

Cache replacement policies such as Pacman [6]
increases cache efficiency by guaranteeing that all data
needed to start a new job is read into its caches at the
same time. Cliffhanger [15] adaptively sizes per-workload
cache sizes to increase hit rates in a manner similar to the
way D3N adapts per-layer cache sizes. D3N complements
these other caching solutions by focusing on a different
problem: network imbalances that limit bandwidth to
cached data. As such, D3N’s multi-layer caching approach
could be use to improve the performance afforded by
these existing caching systems.

Many in-network protocols address congestion or load
imbalances within data centers by identifying congested
paths and routing packets or flows on different ones [3],
[21], [27]. In contrast, D3N addresses the case where all
paths to a specific location have limited bandwidth due

to over-subscription or organic growth.
D3N shares many architectural similarities with

CDNs [2], [10], [25], [30]. For example, D3N anycast-
based lookup service, which identifies the nearest cache
service is similar to Akamai’s DNS black-magic method for
routing users to the closest CDN clusters. Unlike CDNs that
are designed for WAN to minimize read only access latency,
D3N supports both read and write-caching and it’s multi-
layer architecture aims to improve data lake throughput
and mitigate network bottlenecks within datacenters.

Usage of shadow pages to estimate hit ratio statistics
have been explored in other areas. For example Dynacache
[14] and Cliffhanger [15] optimize memory usage in
Web caches by estimating the hit ratio statistics and
resizing the queues allocated for different sized objects in
Memcached [24] and Redis [41]. Similarly, Memshare [16]
offers efficient memory management for multi-tenant key-
value stores by estimating application hit ratios to automati-
cally sharing the pooled and idle memory resources among
the tenants while providing performance isolation guaran-
tees. D3N utilizes the shadow pages in a similar fashion
with these works albeit on a different problem. In addition
to utilizing shadow queues for collecting reuse distance
histograms, D3N also observes network latencies to dynam-
ically resize the dedicated space to different cache layers.

Some works focus on tiering data near clients rather
than caching [11], [39], [40]. We considered tiering as
opposed to caching for D3N, but found that it wasn’t a
good design choice because moving frequently-changing
hot data between tiers would incur too much overhead.

VII. CONCLUSION

We present D3N, a transparent caching extension to the
(Ceph-based) storage system itself, providing acceleration
to all existing clients. As a cooperative cache it scales
naturally with the number of clients, and its cache allocation
policy adapts to network imbalances in real, imperfect data
center networks. We show that by adding one additional
caching server to each rack, adding around 3% increase in
costs to the typical new racks in our datacenter, a cluster
will automatically obtain SSD-like performance for hot data
sets while having the economics of inexpensive disk based
storage for cold data sets. With micro-benchmarks we show
that we can saturate the SSDs and NICs of our servers and
obtain a 5x improvement in throughput from two SSDs
versus 90 disk spindles. With a macro-benchmark based
on Facebook traces we show that D3N can reduce the bi-
sectional bandwidth demands by a factor of 4 and improve
throughput by a factor of 3; these results are highly conser-
vative in that we assume no locality in access and re-use
is much lower than recent (not yet public) industry traces.
With simulation we show that D3N’s adaptive algorithm
can rapidly and automatically adjust to changes in workload

and network hotspots; resulting in substantial gains over ex-
isting static single layer caching technologies like Aluxio.

VIII. ACKNOWLEDGMENT

We gratefully acknowledge David Cohen for his
significant contributions to D3N. We would like to
thank Mass Open Cloud team for their assistance while
performing the experiments and the anonymous reviewers
for their valuable suggestions.

Partial support for this work was provided by the
National Science Foundation awards 1414119 and 1149232,
Netapp Faculty Fellowship and Red Hat Collaboratory
as well as the several industry partners of the Mass
Open Cloud (MOC), which include Red Hat, Two Sigma
Investments LP, Intel, Brocade, Cisco, and Lenovo.

REFERENCES

[1] Operation of anycast services. https://tools.ietf.org/html/rfc4786.
[2] Akamai web site. http://www.akamai.com.
[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, and N. Huang.

Hedera: Dynamic Flow Scheduling for Data Center Networks.
NSDI’15, 2010.

[4] Alluxio - open source memory speed virtual distributed storage.
https://www.alluxio.org.

[5] I. Amazon Web Services. Amazon Simple Storage Service (S3)
— Cloud Storage — AWS. available at aws.amazon.com/s3/.

[6] G. Ananthanarayanan, A. Ghodsi, A. Warfield, D. Borthakur, S. Kan-
dula, S. Shenker, and I. Stoica. PACMan: Coordinated Memory
Caching for Parallel Jobs. In Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 12), pages 267–280, San Jose, CA, 2012. USENIX.

[7] S. Annapureddy, M. J. Freedman, and D. Mazières. Shark: Scaling
file servers via cooperative caching. In Proceedings of the 2Nd
Conference on Symposium on Networked Systems Design &
Implementation - Volume 2, NSDI’05, pages 129–142, Berkeley,
CA, USA, 2005. USENIX Association.

[8] J. Arnold. OpenStack Swift: Using, Administering, and Developing
for Swift Object Storage. "O’Reilly Media, Inc.", Oct. 2014.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, Oct. 2003.

[10] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding
a Needle in Haystack: Facebook’s Photo Storage. OSDI, 2010.

[11] Cache tiering. http://docs.ceph.com/docs/master/rados/operations/
cache-tiering/.

[12] J. Chang and G. S. Sohi. Cooperative caching for chip
multiprocessors. In Proceedings of the 33rd Annual International
Symposium on Computer Architecture, ISCA ’06, pages 264–276,
Washington, DC, USA, 2006. IEEE Computer Society.

[13] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing
in big data systems: A cross-industry study of mapreduce workloads.
Proc. VLDB Endow., 5(12):1802–1813, Aug. 2012.

[14] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Dynacache:
Dynamic cloud caching. In 7th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 15), Santa Clara, CA, 2015.
USENIX Association.

[15] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Cliffhanger: Scal-
ing performance cliffs in web memory caches. In 13th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI
16), pages 379–392, Santa Clara, CA, 2016. USENIX Association.

[16] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman. Memshare:
a dynamic multi-tenant key-value cache. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 321–334, Santa
Clara, CA, 2017. USENIX Association.

[17] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson.
Cooperative caching: Using remote client memory to improve file
system performance. In Proceedings of the 1st USENIX Conference
on Operating Systems Design and Implementation, OSDI ’94,
Berkeley, CA, USA, 1994. USENIX Association.

[18] A. Devulapalli, D. Dalessandro, P. Wyckoff, N. Ali, and
P. Sadayappan. Integrating Parallel File Systems with Object-based
Storage Devices. In Proceedings of the 2007 ACM/IEEE Conference
on Supercomputing, SC ’07, pages 27:1–27:10. ACM, 2007.

[19] H. Dybdahl and P. Stenstrom. An adaptive shared/private nuca
cache partitioning scheme for chip multiprocessors. In 2007 IEEE
13th International Symposium on High Performance Computer
Architecture, pages 2–12, Feb 2007.

[20] H. Dybdahl and P. Stenstrom. An adaptive shared/private nuca
cache partitioning scheme for chip multiprocessors. In 2007 IEEE
13th International Symposium on High Performance Computer
Architecture, pages 2–12, Feb 2007.

[21] T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut,
V. T. Lam, F. Matus, R. Pan, N. Yadav, M. Alizadeh, T. Edsall,
S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, V. T.
Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese. CONGA:
distributed congestion-aware load balancing for datacenters,
volume 44. ACM, Feb. 2015.

[22] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A
scalable wide-area web cache sharing protocol. IEEE/ACM Trans.
Netw., 8(3):281–293, June 2000.

[23] M. J. Feeley, W. E. Morgan, E. P. Pighin, A. R. Karlin, H. M. Levy,
and C. A. Thekkath. Implementing global memory management
in a workstation cluster. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, SOSP ’95, pages
201–212, New York, NY, USA, 1995. ACM.

[24] B. Fitzpatrick. Memcached. available at http://memcached.org/.
[25] A. Flavel, P. Mani, D. A. Maltz, N. Holt, J. Liu, Y. Chen, and

O. Surmachev. FastRoute: A Scalable Load-aware Anycast
Routing Architecture for Modern CDNs. In Proceedings of the
12th USENIX Conference on Networked Systems Design and
Implementation, NSDI’15, pages 381–394, Berkeley, CA, USA,
2015. USENIX Association.

[26] A. Floratou, N. Megiddo, N. Potti, F. Özcan, U. Kale, and J. Schmitz-
Hermes. Adaptive caching in big sql using the hdfs cache. In
Proceedings of the Seventh ACM Symposium on Cloud Computing,
SoCC ’16, pages 321–333, New York, NY, USA, 2016. ACM.

[27] A. Ford, C. Raiciu, M. Handly, and O. Bonaventure. TCP
extensions for multipath operation with multiple addresses. RFC
6824, IETF, Jan. 2013. https://tools.ietf.org/html/rfc6824.

[28] Apache hadoop. http://hadoop.apache.org/.
[29] A. Halevy, P. Norvig, and F. Pereira. The Unreasonable Effectiveness

of Data. IEEE Intelligent Systems, 24(2):8–12, Mar. 2009.
[30] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and

H. C. Li. An analysis of Facebook photo caching. ACM, Nov. 2013.
[31] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-

free Coordination for Internet-scale Systems. In Proceedings of the
2010 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’10, Berkeley, CA, USA, 2010. USENIX Association.

[32] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized
peer-to-peer web cache. In Proceedings of the Twenty-first Annual
Symposium on Principles of Distributed Computing, PODC ’02,
pages 213–222, New York, NY, USA, 2002. ACM.

[33] T. Johnson and D. Shasha. 2q: A low overhead high performance
buffer management replacement algorithm. In VLDB, 1994.

[34] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web.
In Proceedings of the Twenty-ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, pages 654–663, New York, NY,
USA, 1997. ACM.

[35] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.
Tachyon: Reliable, Memory Speed Storage for Cluster Computing
Frameworks. ACM SoCC’14, Nov. 2014.

[36] C. McCabe and A. Wang. Hdfs read caching.
http://blog.cloudera.com/blog/2014/08/new-in-cdh-5-1-hdfs-
read-caching/.

https://tools.ietf.org/html/rfc4786
http://www.akamai.com
https://www.alluxio.org
aws.amazon.com/s3/
http://docs.ceph.com/docs/master/rados/operations/cache-tiering/
http://docs.ceph.com/docs/master/rados/operations/cache-tiering/
http://memcached.org/
https://tools.ietf.org/html/rfc6824
http://hadoop.apache.org/
http://blog.cloudera.com/blog/2014/08/new-in-cdh-5-1-hdfs-read-caching/
http://blog.cloudera.com/blog/2014/08/new-in-cdh-5-1-hdfs-read-caching/

[37] N. Megiddo and D. S. Modha. Arc: A self-tuning, low overhead
replacement cache. In Proceedings of the 2Nd USENIX Conference
on File and Storage Technologies, FAST ’03, pages 115–130,
Berkeley, CA, USA, 2003. USENIX Association.

[38] J. I. Munro, T. Papadakis, and R. Sedgewick. Deterministic skip
lists. In Proceedings of the Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’92, pages 367–375, Philadelphia,
PA, USA, 1992. Society for Industrial and Applied Mathematics.

[39] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan,
S. Shankar, V. Sivakumar, L. Tang, and S. Kumar. f4: Facebook’s
warm BLOB storage system. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), pages
383–398, Broomfield, CO, 2014. USENIX Association.

[40] R. Ramakrishnan, B. Sridharan, J. R. Douceur, P. Kasturi,
B. Krishnamachari-Sampath, K. Krishnamoorthy, P. Li, M. Manu,
S. Michaylov, R. Ramos, N. Sharman, Z. Xu, Y. Barakat,
C. Douglas, R. Draves, S. S. Naidu, S. Shastry, A. Sikaria, S. Sun,
and R. Venkatesan. Azure data lake store: A hyperscale distributed
file service for big data analytics. In Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD
’17, pages 51–63, New York, NY, USA, 2017. ACM.

[41] RedisLab. Redis. available at http://redis.io.
[42] S3a filesystem client.
[43] P. Sarkar, P. Sarkar, and J. H. Hartman. Hint-based cooperative

caching. ACM Trans. Comput. Syst., 18(4):387–419, Nov. 2000.
[44] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead,

R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano,

A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. HÃűlzle, S. Stuart, and A. Vahdat. Jupiter Rising: A Decade
of Clos Topologies and Centralized Control in Google’s Datacenter
Network. In Proceedings of the 2015 ACM SIGCOMM Conference,
SIGCOMM ’15, pages 183–197. ACM, 2015.

[45] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson.
Container-based operating system virtualization: A scalable,
high-performance alternative to hypervisors. SIGOPS Oper. Syst.
Rev., 41(3):275–287, Mar. 2007.

[46] Storage Performance Development Kit | 01.org. http://www.spdk.io.
[47] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and

C. Maltzahn. Ceph: A scalable, high-performance distributed
file system. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, OSDI ’06, pages 307–320,
Berkeley, CA, USA, 2006. USENIX Association.

[48] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. Crush:
Controlled, scalable, decentralized placement of replicated data. In
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing,
SC ’06, New York, NY, USA, 2006. ACM.

[49] G. Yadgar, M. Factor, and A. Schuster. Cooperative caching with
return on investment. In 2013 IEEE 29th Symposium on Mass
Storage Systems and Technologies (MSST), pages 1–13, May 2013.

[50] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
Proceedings of the 2Nd USENIX Conference on Hot Topics in
Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA,
2010. USENIX Association.

http://redis.io
http://www.spdk.io

