
Software for Quantifier Elimination in
Propositional Logic

Eugene Goldberg1 and Panagiotis Manolios2

1 Northeastern University, USA
eigold@ccs.neu.edu,

http://www.ccs.neu.edu/home/eigold
2 Northeastern University, USA

pete@ccs.neu.edu,
http://www.ccs.neu.edu/home/pete

Abstract. We consider the problem of Quantifier Elimination (QE):
given a Boolean CNF formula F where some variables are existentially
quantified, find a logically equivalent quantifier-free CNF formula. This
problem can be solved by finding a set of clauses containing only free vari-
ables such that adding this set of clauses to F makes all of the clauses of
F containing quantified variables redundant. To solve the QE problem
we developed a tool that handles a more general problem called partial
QE. Our tool generates a set of clauses that when added to F render a
specified subset of clauses with quantified variables redundant. In par-
ticular, if the specified subset contains all the clauses with quantified
variables, our tool performs QE.

Keywords: Propositional logic, quantifier elimination, dependency se-
quents

1 Introduction

In this extended abstract, we describe software for solving the problem of Quan-
tifier Elimination (QE) and the Partial QE (PQE). Let H(X,Y ) be a Boolean
formula in Conjunctive Normal Form (CNF). Given a formula ∃X[H], the QE
problem is to find a CNF formula H∗(Y ) such that H∗ ≡ ∃X[H].

Let F (X,Y ) and G(X,Y ) be CNF formulas. Given a formula ∃X[F ∧G],
the PQE problem is to find a CNF formula F ∗(Y ) such that F ∗ ∧ ∃X[G] ≡
∃X[F ∧G]. We will say that formula F ∗ is obtained by taking F out of the scope
of quantifiers. Obviously, QE is a special case of PQE where the entire formula
is taken out of the scope of quantifiers.

QE has numerous applications in verification. For instance, to find if a system
specified by a transition relation T (S, S′) can reach a bad state, one needs to
perform reachability analysis. Here S, S′ specify current and next state variables.
The set of states reachable in one transition from states specified by Boolean
formula G(S′) is described by ∃S[G ∧ T ]. To represent this set of states in a
quantifier-free form one needs to find a quantifier-free formula logically equiva-
lent to ∃S[G ∧ T ], i.e., to solve the QE problem.



2 Goldberg-Manolios

Unfortunately, the “straightforward” methods of QE seem to be very time-
consuming even in propositional logic. This is one reason that many successful
theorem proving methods such as interpolation [4] and IC3 [1] avoid QE and use
SAT-based reasoning instead. This motivates our interest in studying variations
of QE that can be solved efficiently. PQE is one such variation. A detailed
description of our algorithm for solving the PQE problem is given in [3].

2 Application of PQE: Solving SAT by PQE

In [3], we list some applications of PQE to verification problems. In this section,
we give one more application not mentioned in [3]. Namely, we show how PQE
can be used to solve a version of SAT called Circuit-SAT. We give two methods
of reducing Circuit-SAT to PQE that are complementary to each other.

2.1 Circuit-SAT

Let N(X,Y, z) be a single-output combinational circuit, where X,Y, and z are
input variables, internal variables, and the output of N , respectively. Suppose
that one needs to check the satisfiability of N , i.e., whether N ever evaluates
to 1. We will refer to this problem as Circuit-SAT (in contrast with SAT, the
problem of checking the satisfiability of arbitrary Boolean formulas). A common
way of solving Circuit-SAT is to represent N as the CNF formula H(X,Y, z)
obtained by the Tseitsin transformation and to check if H ∧ z is satisfiable.

2.2 Reducing Circuit-SAT to PQE: First Method

One can reduce checking the satisfiability of formula H ∧ z above to PQE as
follows. Let F be the set of all clauses of H with literal z. We will refer to
such clauses as z-clauses of H. Let G = H \ F . Checking the satisfiability of
H ∧ z is equivalent to solving the PQE problem of finding formula F ∗(z) such
that F ∗(z) ∧ ∃W [G] ≡ ∃W [F ∧G] where W = X ∪ Y . If F ∗(z) ≡ 1, i.e., if F ∗

consists of an empty set of clauses, formula H∧z is satisfiable. If F ∗(z) = z, then
H ∧ z is unsatisfiable. In other words, if all z−clauses are redundant in ∃W [H],
then H∧z is satisfiable. However, if making the original z-clauses of H redundant
requires derivation and adding to H clause z, then H ∧ z is unsatisfiable.

Indeed, if clause z is derived from H it can be resolved with clause z of H ∧z
to produce an empty clause. This proves the unsatisfiability of H∧z. If z-clauses
are redundant in ∃W [H] without derivation of z, the fact that H is satisfiable,
implies that assignment z = 1 can be extended to an assignment satisfying H.
This assignment obviously satisfies H ∧ z.

Note that in case H ∧ z is unsatisfiable, the final goal of a PQE-algorithm is
the same as that of a SAT-solver: the PQE-algorithm derives a clause z that is
only one resolution operation away from producing an empty clause. However,
in case H ∧ z is satisfiable, there is an important difference: a PQE-algorithm
can prove satisfiability by showing that the z-clauses of H are redundant without
finding a satisfying assignment.



Software for Quantifier Elimination ... 3

2.3 Reducing Circuit-SAT to PQE: Second Method

Here we give a different method of reducing Circuit-SAT to PQE. We will refer to
the methods of the previous and current subsections as first and second method
respectively. The second method is to solve the PQE problem of finding a CNF
formula K(X) such that K ∧ ∃V [H] ≡ ∃V [z ∧H] where V = Y ∪ {z}. That
is K is obtained by taking clause z out of the scope of quantifiers. It is not
hard to show that H ∧ z is satisfiable if and only if formula K contains at least
one clause. Every complete assignment to X falsifying K specifies an input for
which N evaluates to 1, i.e., a counterexample. So if finding one counterexample
suffices, one can stop as soon as a clause is added to K.

Notice that the first and second methods are, in a sense, complementary. To
prove unsatisfiability of H ∧ z by the first method, one needs to produce an
explicit derivation of an empty clause. However, proving satisfiability of H ∧ z
does not require finding an explicit satisfying assignment. In the second method,
the situation is the opposite. Proving satisfiability requires generating at least
one clause of H and hence finding at least one counterexample. On the other
hand, the fact that clause z is redundant in ∃V [z ∧H] means that H ∧ z is
unsatisfiable. However, the second method does not give an explicit proof of this
fact (e.g., it does not generate an empty clause).

An interesting feature of the second method is that it provides a derivation
of a counterexample. Usually a counterexample is a result of guesswork even
in a formal verification tool. For example, finding a satisfying assignment by a
SAT-solver requires guessing the decision assignments. (Implied assignments are
derived from learned clauses and do not need guesswork.) This makes it hard
to measure the complexity of finding a counterexample. In the second method,
a counterexample x is a complete assignment falsifying a clause C of K. This
clause is derived from z ∧ H and the length of this derivation can be used to
measure the complexity of finding counterexample x.

3 Quantifier Elimination By Dependency Sequents

In this section, we give the high-level view of our algorithms for QE and PQE.
Suppose that one needs to eliminate quantifiers from formula ∃X[H]. In [2],

we developed a QE algorithm based on the notion of a Dependency Sequent
(D-sequent). This algorithm is called DCDS (Derivation of Clause D-sequents).
DCDS is based on the following two ideas. First, if one adds to H a “sufficient”
number of resolvent clauses, all X-clauses (i.e., clauses containing variables of X)
will become redundant. Second, proving clause redundancy globally is hard. So
it makes sense to use branching to prove redundancy of X-clauses in subspaces
first and then merge the results of different branches. Proving redundancy of
X-clauses of H in subspaces, in general, requires adding resolvent clauses to H.

Let q be an assignment to variables of H. A record (∃X[H], q) → R called
D-sequent is used by DCDS to store the fact that a set R of X-clauses is
redundant in ∃X[H] in subspace q. Assignment q is called the conditional part



4 Goldberg-Manolios

of the D-sequent. When DCDS merges results of branching on a variable v, it
“merges” D-sequents obtained in subspaces v = 0 and v = 1 using a resolution-
like operation called join. This results in producing new D-sequents that do not
have an assignment to variable v in their conditional parts. The objective of
DCDS is to derive D-sequent (∃X[H], ∅) → HX where HX is the set of all X-
clauses of H. This D-sequents states unconditional redundancy of X-clauses in
∃X[H]. Once this D-sequent is derived, a solution to the QE problem is obtained
by removing all X-clauses from H.

We have developed a PQE algorithm based on DCDS. This algorithm is called
DS-PQE (DS stands for D-Sequents). Suppose one needs to solve the PQE
problem of taking F out of the scope of quantifiers in ∃X[F ∧G]. DS-PQE is
based on the same two ideas as above. The main difference of DS-PQE from
DCDS , is that the former needs to prove only the redundancy of X-clauses of
F . So the objective of DS-PQE is to derive D-sequent (∃X[F ∧G], ∅) → FX

where FX is the set of all X-clauses of F . In DS-PQE, new resolvent clauses
are assumed to be added to F while G stays unchanged. So after the final D-
sequent above is derived, a solution to the PQE problem is obtained from F by
discarding the clauses of FX .

4 Software Description

DS-PQE is implemented as a stand-alone program written in C++. DS-PQE ac-
cepts formula ∃X[F ∧G] and returns formula F ∗ such that F ∗ ∧ ∃X[G] ≡
∃X[F ∧G]. The formula ∃X[F ∧G] is specified by three files. The first file de-
scribes the CNF formula F ∧G in the DIMACS format. The second file contains
the free variables of ∃X[F ∧G]. Variables not mentioned in this file are assumed
to be quantified. The third file contains the clauses of F . The resulting CNF
formula F ∗ is returned in a file in the DIMACS format.

5 Acknowledgments

This research was supported in part by DARPA under AFRL Cooperative
Agreement No. FA8750-10-2-0233 and by NSF grants CCF-1117184 and CCF-
1319580.

References

1. A. R. Bradley. Sat-based model checking without unrolling. In VMCAI, pages
70–87, 2011.

2. E.Goldberg and P.Manolios. Quantifier elimination via clause redudnancy. In
FMCAD-13, pages 85–92, 2013.

3. E.Goldberg and P.Manolios. Partial quantifier elimination. Submitted for publica-
tion, 2014.

4. K. L. Mcmillan. Interpolation and sat-based model checking. In CAV-03, pages
1–13. Springer, 2003.


