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Abstract—A method for analyzing designs and their specifica-
tions is presented. The method makes essential use of an interac-
tive theorem prover, but is fully automatic. Given a design and a
specification, the method returns one of three possible answers.
It can report that the design does not satisfy the specification,
in which case a concrete counterexample is provided. It can
report that the design does satisfy the specification, in which
case a formal proof to that effect is provided. If neither of these
cases hold, then a summary of the analysis is reported. We have
implemented and experimentally validated the method in ACL2s,
the ACL2 Sedan.

I. INTRODUCTION

Many formal methods techniques have been developed that

help designers build complex, dependable systems. At one

extreme we have interactive theorem proving, which places

few restrictions on the kinds of systems and properties that

can be verified, but which requires well trained professionals

with a deep understanding of logic and proof. At the other

extreme, we have methods that find certain classes of errors

in a fully automated way, but which place severe restrictions

on the kinds of systems and properties they can analyze.

Is it possible to have the best of both worlds? Is it possible

to have a powerful, expressive modeling language with a

powerful deductive engine that can be used to interactively

prove theorems and that can be used to automatically generate

counterexamples? In this paper, we show how to do just that.

We present an algorithm that makes essential use of interactive

theorem proving technology but analyzes specifications in a

fully automated way.

Our algorithm allows us to turn an interactive theorem

prover into an extensible, automatic, analysis tool that can be

used by regular engineers to provide increased assurance in the

correctness of their designs. The user is responsible only for

modeling and specifying the properties of their design; they

are not responsible for providing proofs. It is in this regard

that our approach is automatic. Our approach is extensible
because it can exploit any existing or newly developed libraries

of definitions, theorems and proof techniques. For example,

the use of libraries for reasoning about non-linear arithmetic,

set theory, the theory of lists, etc, can lead to significant

improvements in the ability to prove theorems and to generate

counterexamples.

The main idea of our algorithm is to use the deductive

verification engine of an interactive theorem prover to se-

mantically decompose properties into subgoals that are either

shown to be true or that can be tested to find counterexamples.

Deduction and testing proceed in an interleaved, synergistic

fashion. When the deductive engine generates a subgoal that

it cannot further simplify, we test it by selecting a variable in

the subgoal and assigning it a value. We then use the deductive

engine to propagate the consequences of that assignment,

which may lead to further deductive simplifications or to

backtracking if propagation reveals a conflict. At this level of

abstraction, the process is similar to the DPLL select, assign,

propagate loop. There are significant differences with DPLL,

however. Variables can be over infinite domains, so selecting

variables and assigning them reasonable values requires a care-

ful analysis. Propagation in our context can involve arbitrary

deductive reasoning, e.g., it can prune away infinite subspaces.

Backtracking also requires care because it is very difficult to

analyze conflicts when variables range over infinite domains.

We present an abstract algorithm that makes minimal as-

sumptions about the underlying interactive theorem prover.

The assumptions are outlined in Section II and the abstract

algorithm is presented in Section III. We have implemented

our algorithm in the ACL2 Sedan (ACL2s), a freely available,

open-source, well-supported theorem prover that uses ACL2

as its core reasoning engine. ACL2s is an Eclipse plug-in

that provides a modern integrated development environment

designed to bring computer-aided reasoning to the masses.

ACL2s has been used in several sections of a required fresh-

man course at Northeastern University to teach several hundred

undergraduate students how to reason about programs. We

evaluate our algorithm in Section IV. We present a case study

on hardware verification and we also compare our algorithm

with Alloy on a collection of examples from the literature.

In addition, our algorithm was used by freshmen students

to debug their programs and specifications. For this purpose,

the algorithm was very successful, as in almost all cases, it

was able to automatically to generate counterexamples when

students made mistakes. Related work appears in Section V

and conclusions in Section VI.

II. PRELIMINARIES

In this section, we outline the assumptions our algorithm

depends on. We assume that the specification language L
is a multi-sorted first-order logic which can be extended by
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introducing new function and predicate symbols using well-

founded recursive definitions, and that L executable.

We further assume that properties (also interchangeably

referred to as formulas, conjectures, or specifications\) have

no nested quantifiers and are of the form hyp1∧· · ·∧hypn ⇒
concl . Properties are implicitly universally quantified.

We assume the existence of an Interactive Theorem Prover

(ITP) than can reason about specifications written in L. We

will treat the ITP as a blackbox and all that we require from

the ITP are two procedures: SMASH and SIMPLIFY.

SMASH takes as input a goal, a well-formed formula written

in L, and returns a list of subgoals. We require that SMASH

preserves validity, i.e., the conjunction of the subgoals returned

is valid iff the original goal is valid. Modern interactive theo-

rem provers use various techniques for this, including decision

procedures for Boolean logic, case analysis, evaluation, linear

arithmetic, congruence closure, and rewriting.

SIMPLIFY takes as input an L-formula, c, and a list of

assumptions, H . SIMPLIFY simplifies c assuming H is true,

and returns a single formula that is equivalent to c under

assumptions H .

An assignment of a formula is a mapping from the free

variables in the formula to values in the domain of L. An

assignment may fail to satisfy all hypotheses, hyp1, · · · hypn

of a formula P . In such a case, we say that the assignment is

vacuous. Vacuous assignments are not helpful. For example,

suppose that we are analyzing a compiler, whose specifica-

tion says that the compiler transforms well-formed programs

into semantically equivalent well-formed programs. That this

property holds for ill-formed programs is trivial, and not

interesting. Therefore, we classify assignments as either: (1)

vacuous, assignments that do not satisfy all of the hypotheses,

(2) counterexamples, assignments that satisfy all the hypothe-

ses, but not the conclusion or (3) witnesses assignments that

satisfy all the hypotheses and also the conclusion. We note

Algorithm 1 Analyze

Input: Property P
1: n := 0
2: while ¬SCond ∧ n ≤ SLIMIT do
3: A, n := Search(P ), n+ 1
4: update summary (record counterexample)

5: if SCond then
6: print summary and exit
7: S := SMASH(P )
8: if S �= {P} ∧ S �= {} then
9: for all p ∈ S do

10: Analyze(p)
11: if P is “goal” then
12: print summary and exit
13: return

that in order to simplify the presentation, in this paper we use

assumptions that are stronger than they really need to be. For

example, in ACL2s, we do not require that all functions are

executable.

III. THE ABSTRACT ANALYZE ALGORITHM

Analyze (algorithm 1) takes as input a property P and ana-

lyzes P by recursively decomposing P into simpler properties

and searching for counterexamples to them.

Analyze first (lines 2-4) tries to repeatedly search for coun-

terexamples until either a user-defined stopping condition is

satisfied or limit on the number of search attempts is reached.

The limit is a user-defined parameter stored in SLIMIT. The

procedure Search (described next) uses a DPLL-like algo-

rithm to incrementally search for falsifying assignments to P .

Assignments obtained are checked (if they are indeed complete

falsifying assignments) and recorded as counterexamples.

Useful information is tracked in a global data structure

summary. It is used to record counterexamples, successful

proofs (if P was proved by the theorem prover), subgoals

that failed to provide either proofs or counterexamples (these

subgoals, which correspond to a particular case of the original

property can be examined more closely by the user) and other

statistics like, the number of unsuccessful search attempts,

the number of counterexamples and witnesses found,1 and the

number of subgoals analyzed.

The user-specified stopping condition is a predicate on

summary, for example a typical stopping condition would be:

number of counterexamples found should be greater than 3; a

more intricate stopping condition would involve some notion

of coverage. If the user-specified stopping condition is satisfied

a summary of the analysis is printed and the procedure exits.

Otherwise the property is semantically decomposed (line 7)

using the SMASH procedure of the theorem prover into simpler

properties. Each such simpler property is recursively analyzed

(lines 9-10). In case the theorem prover is unable to simplify

the input property, or it successfully proves the validity of the

input property, the appropriate information is recorded and the

procedure simply returns, unless the input property is the top-

level goal, in which case (lines 11-12), we print the summary

and exit.

Searching for counterexamples

Search (Algorithm 2) takes as input a property P and

searches for a counterexample by incrementally constructing a

complete (falsifying) assignment to P . The algorithm proceeds

by selecting a free variable, assigning it a value and propa-

gating this new information to obtain a partially instantiated

property P ′. If P ′ is clearly inconsistent, then we backtrack,

otherwise we continue till we obtain a complete assignment.

The partial assignment is stored in the local stack A. Stacks

S and B record information necessary to backtrack to an

earlier state (iteration) of the search process. S stores the

sequence of partially instantiated properties. B stores the

sequence of variables in the order in which they were selected.

B also associates two values with each variable, i) number of

assigns made to the variable and ii) a string recording the type

1To simplify the exposition we only show how counterexamples are found,
but witnesses can also be found in a similar manner.
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of assignment to the variable, if it was decided by Assign,

string “decision” is stored, else string “implied” is stored.

Algorithm 2 Search

Input: Property P ,

1: local Assignment A
2: local Stack B (of (var, # assigns, type of assign))

3: local Stack S (of Property)

4: A,S :=[ ], push(P, S)
5: x0 := Select(P )
6: push((x0, 0, “na”), B)
7: while A is not complete do
8: P := head(S)
9: (x, i, ) := head(B)

10: if P has a constraint of form x = c then
11: v := [|c|]; t := “implied”
12: else
13: v, t := Assign(x, P )

14: /*Update # and type of assign of x*/

15: pop(B); push((x, i+ 1, t), B)
16: if x = x0 and i > BLIMIT then
17: return fail
18: P ′ := Propagate(x, v, P )
19: hyps := hyps(P ′); concl := conclusion(P ′)
20: if false �∈ hyps ∧ concl �= true then
21: A,S := push((x, v), A), push(P ′, S)
22: B := push((Select(P ′), 0, “na”), B)
23: else /*Inconsistent assignment */

24: repeat
25: S,B,A := pop(S), pop(B), pop(A)
26: (x′, i′, t′) := head(B)
27: until (t′ = “decision” ∧ i′ < BLIMIT) ∨

size(B) ≤ 1
28: if x′ = x0 ∧ (t′ = “implied” ∨ i′ = BLIMIT)

then
29: return fail
30: return A

Procedure Search first initializes A to be empty and pushes

P onto stack S. It calls the procedure Select (described next)

to choose the first variable x0 to be assigned. x0 is pushed

onto stack B, its assign counter(number of times the variable

is assigned) is initialized to 0 and the string specifying the

type of assignment is set to “na” (denoting not assigned).

The main search loop (lines 7-29) implements the iterative

construction of A. The selected variable x and property P
in the current iteration of the search loop are obtained by

reading the top of the stacks B and S. If x is constrained

by an equality(x = c where c is a constant expression), then

we simply assign x the value v (obtained by evaluating c),
otherwise, the instantiation is performed by the procedure

Assign which returns the value v to be assigned to x and

also the type of assignment t. The assign counter for x is

incremented and the type of assignment is recorded in B. We

will defer discussing the details of Assign to the next section,

for now think of it as an oracle that finds a value v that satisfies

simple local constraints involving only x. � 2

The procedure Propagate (described later) is used to

simplify P using the theorem prover in light of the new

assignment to x, deducing as much new information as possi-

ble, resulting in either a partially concretized property(P ′) or

an inconsistency. Inconsistency is (syntactically) recognized

if either false is found in the hypotheses(of P ′) or the

conclusion(of P ′) is equal to true.

If no inconsistency was found (checked in line 20), the

assignment A is extended, the partially concretized property

P ′ is pushed onto S and a free variable from P ′ is selected

and pushed onto B to be instantiated in the next iteration of

the main search loop (lines 21-22).

If an inconsistency is found, we backtrack to the last

decision (by popping the stacks and undoing the assigns in

A) that has not exhausted its limit, SLIMIT (lines 24-27).

While backtracking to the last decision, we never pop the first

variable selection stored in B at the start of the search loop.

If assigns to x0 are exhausted, then Search fails (lines 16-

17, 28-29), moreover if we backtracked to x0 and it’s type

of assign is “implied” then too we return fail. The search is

repeated until all free variables have been assigned values (line

7) returning a complete assignment (line 30).

Algorithm 3 Select

Input: P is a property

1: Do congruence closure on P
2: G := buildVariableDependencyGraph(P )
3: dagG := ComputeSCCs(G);
4: sortedListdagG := TopologicalSort(dagG)
5: X := pickLast(sortedListdagG )
6: if X is set (of mutually-dependent variables) then
7: return some vertex in X
8: else
9: return X

Selecting variables to assign

Select (Algorithm 3) procedure describes the mechanism

to choose a variable in a property. It takes as input a property

P , performs static analysis to determine a certain type of de-

pendency relationship among the variables (described below)

of P , and selects the variable with the least dependency. We

will motivate this notion of dependency in the context of the

Search algorithm with an example. In the following x, y, z, w
are constrained to be integers and hash is a standard hash

function.

P : z = y2 ∧ y = hash(x) ∧ w = hash(y) ⇒ z > w2

Since we are interested in finding counterexamples, we have

four constraints to satisfy, the first three are the hypotheses,

and the final constraint is the negated conclusion. Lets assume

2In the concrete algorithm (next section) we randomly sample the variable’s
type domain, but in general one could use more heavyweight methods such
as constraint-solving.
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there is some procedure available for assigning a value to

a variable without falsifying any constraint. Which variable

should we (select and) assign first? Notice that equality

constraint fixes the value of y as soon as x is assigned, and the

value of z and w as soon as y is assigned a value that does not

falsify other constraints. Clearly choosing x before choosing y
is beneficial from the point of view of computation i.e., we just

evaluate hash(x) to obtain the value of y. Selecting y before

x, causes difficulty in satisfying the constraint y = hash(x),
since computing the inverse hash function might be non-trivial.

Moreover, any constraint solver used in Assign might not

be powerful enough to handle non-linear arithmetic of hash .

Treating equality in a special manner we can see that there is

a certain relation among the variables of the constraints that is

similar to the notion of data dependency in compiler literature.

We shall call such a relation a v-dependency which we define

more precisely below. The idea behind the algorithm is to

select the variable with the least dependency, breaking down

the task of simultaneously solving the constraints, into a more

local directed approach of solving the constraints one by one;

we want to finally select variables in an order such that we

can reduce the chances of running into an inconsistency and

backtracking. We construct a directed graph with variables as

nodes and the directed edges in the graph denote the depends
on binary relation. The edges are also annotated with the

logical relation that caused the edge to be drawn in the first

place. We call an edge annotated with relation R an R-edge.

The variable dependency graph for P initially consists of

only nodes, one for each variable and no edges. The graph

is constructed by iterating over the constraints of P using

the following rules, which form the core of the procedure

buildVariableDependencyGraph. We assume x and y are

(distinct) free variables of P and term is inductively defined

to be either a variable, a constant expression, or a function

application with arguments that are terms.

1) If P has a constraint of the form x = c, where c is a

constant expression, we force x to be a leaf node (no

outgoing edges). Once a node is marked leaf, it overrides

the other rules.

2) If P has a constraint of the form x = fterm such that

y ∈ freeVars(fterm) and x /∈ freeVars(fterm), we add

an =-edge from node x to node y. fterm is a function

application as defined above.

3) If P has a constraint of the form x �� fterm such that

�� is a binary relation, y ∈ freeVars(fterm) and x /∈
freeVars(fterm), we add an ��-edge from node x to node

y.

4) If P has a constraint of the form x �� y where �� ∈ {<
,≤, >,≥} we don’t draw an edge.

5) If P has a constraint of the form R(term1, term2,
. . ., termn), such that x ∈ freeVars(termi), y ∈
freeVars(termj), i �= j, n ≥ 2 and R is an arbitrary n-ary

relation, then we perform the following. Let n= and n��

be the number of incoming edges to a node labeled with

= and �� respectively. If x and y have no incoming or

outgoing edges, we add a bidirectional R-edge between

x and y, else we add a R-edge between x and y pointing

to the node (variable) that has a greater (n=, n��) value

lexicographically, else we don’t add an edge.

Using the above definition of v-dependency, procedure

Select constructs the variable dependency graph for P after

applying congruence closure (replace equivalent variables by

their representative chosen lexicographically) to P (lines 1-

2). Congruence closure helps simplify the graph since con-

straints such as x = y are quite common. After the graph

is constructed, using the forementioned rules, its strongly-

connected components are computed (lines 2-3). The resultant

directed acyclic graph (dag) obtained is topologically sorted.

The algorithm then picks the component (a set of variables)

which has no outgoing edges (i.e., has no dependency on other

components). If the component has just one variable, then

usually it is the node which is a leaf (i.e., no dependency),

in which case we return it. If there are more than one

variables to choose from (in case of multiple variables in

the connected component), the procedure returns the variable

with the lexicographically smallest name (lines 4-6). Note that

Select tries to ensure the following rule of thumb: select a

variable only when every variable it depends on has already

been assigned a value; this is not always the case.

Algorithm 4 Propagate

Input: Var x, Value v, Property P
1: hyps := hyps(P )
2: hyps.add(x = v)
3: shyps := simplifyAssumingRest(hyps)
4: concl := conclusion(P )
5: sconcl := SIMPLIFY(concl , shyps)
6: P ′ :=

∧
shyps ⇒ sconcl ; return P ′

Propagating new assignments
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Example

We illustrate the working of Search on a simple example

involving numbers and some arithmetic functions. Consider

the following property P defined on integers x, y, z, w; hash
and min are textbook hash and minimum functions.

x = hash(y)∧y = hash(z)∧z > 0∧w < min(x, y) ⇒ w < z

Before the main search loop begins, a variable is selected to be

instantiated. The variable dependency graph for P (constructed

following the forementioned rules) is shown in Figure 1.

X Y Z

W

= =

<< <

Fig. 1. Variable dependency graph for P

The graph has two strongly-connected components, one

containing just z, the other containing x, y, w. The topological

sort returns the vertices in decreasing finish times of the depth-

first search on the dag. We pick the last component (i.e.,
the one with the least dependency). Since this component z
is not a set we simply return z. After having selected the

variable to instantiate (z), we use Assign to pick a value

for it, satisfying the local constraint on it, z > 0, along

with the implicit constraint that z is an integer. Lets say the

oracle procedure Assign picked 1. Then we propagate this

assignment by adding the constraint z = 1 in P and using the

ITP to simplify the hypotheses and conclusion in light of this

new information. Propagate returns the following simplified

property:

P ′ : x = hash(y)∧y = 5184444∧w < min(x, y) ⇒ w < 1

whose dependency graph is shown in Figure 2.

Y

X

W

=

<

<

Fig. 2. Dependency graph for P ′

Since false does not appear in the hypotheses(and neither

does true in the conclusion), P ′ is not inconsistent and we

add z = 1 to the partial assignment A and the search for

the rest of the assignment is continued. Note that Propagate
helps eliminate some edges in the variable dependency graph

of P , breaking cycles(mutual dependency) in the connected

component, invariably helping the Select algorithm in the next

iteration of the main search loop.

The motivation for Propagate is that one assignment to a

variable, should result in assignment of the maximum number

of remaining variables. In this case, the assignment to z, results

in y being selected (because it is a leaf node) and being

directly assigned a value by virtue of the equality constraint

y = 5184444. Notice that this is an assignment of type

“implied” and was propagated due to the decision assignment

(z = 1) by the oracle procedure Assign in the previous

iteration. This information is again propagated resulting in the

furthur grounded property:

P ′′ : x = 5562452 ∧ w < min(x, 5184444) ⇒ w < 1

whose dependency graph is shown in Figure 3

X W<

Fig. 3. Dependency graph for P ′′

Notice that since x is constrained to be equal to the constant

expression 5562452, it is a leaf node and this eliminates the

edge that existed in Fig 2 from x to w. The last node in the

topological sort of the dag of Fig 3, x, is returned by Select,
thereby forcing a value satisfying the equality constraint x =
5562452. This assignment is further propagated, resulting in

the almost grounded property having just one free variable:

P ′′′ : w < 5184444 ⇒ w < 1

Assigning w (using implicit constraint that w is an integer

and the local constraints w < 5184444 and w ≥ 1) a

value 0 or value 5184445, will lead to inconsistency (after

the propagation), in which case we need to throw away the

current assign. If in the process we exhaust the limit on number

of assigns (BLIMIT) for w we backtrack all the way to the

decision variable z, by undoing the assignment for x and y,

in A, popping P ′′ and P ′ from S and continuing (the main

search loop). If an assign to w, say w := 2, did not lead to

an inconsistency, then we have a complete assignment A, we

quit the loop and return A, which is a counterexample of P .

We have implemented the proposed method in ACL2

Sedan [10]. We employ the ACL2 interactive theorem proving

system [15] to provide the interface methods SIMPLIFY and

SMASH. The engineering of the interface with the ACL2

theorem prover and the extension to ACL2, in support of this

interface, is described in [5]. We will briefly describe how we

implemented the Assign method that was left unspecified. In

view of delegating most of the heavy work to the theorem

prover we incorporated the lightweight method of random

testing inspired by the success of Quickcheck-like tools [6].

ACL2 formulas tend to be executable, hence testing in ACL2

simply involves executing a formula under an instantiation of

its free variables. To assign a value to a variable, we need

to know its domain, which in a given formula is decided

by the “type-like” hypotheses constraining the variable. The

domain can be characterized by an enumerator which is a

surjective function from natural numbers to elements of the
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domain. In our implementation we enable automatic testdata

generation by supporting a notion of an enumerable type in the

otherwise untyped language of ACL2. Separation of concerns

between enumerators and random number generators also

gives us the flexibility to choose between pseudo-geometric,

pseudo-uniform random testing and bounded exhaustive test-

ing. Assign does static analysis to infer the (enumerable) type

of a variable from the type hypotheses of P , if the domain

of the type is greater than one, we decide a value to return

(using the enumerator and the chosen sampling distribution),

otherwise, we simply return the implied singleton value.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

We present two experiments3 to evaluate our method. In

Section IV-A, we present an in-depth hardware case-study,

analyzing the design of a simple, yet non-trivial, pipelined

machine, demonstrating the effectiveness of our method in

uncovering subtle design errors. In Section IV-B we compare

our method with the popular Alloy method (Alloy modeling

language and Alloy Analyzer). We modeled various Alloy

examples in ACL2 and analyzed them with our method.

We find counterexamples to all failed properties (falsified by

Alloy), but more importantly we prove all the properties that

Alloy posits are theorems (based on the absence of small coun-

terexamples). Surprisingly, in addition to the counterexamples,

we also found all the proofs, automatically.

A. Hardware: Finding hazards in a Pipeline Machine

Pipelining is a key optimization technique used to increase

performance in modern microprocessors. The instruction-set
architecture (ISA) model is a natural functional specification

for any pipelined design. The correctness of the implemen-

tation i.e., machine architecture (MA) can be established

by showing that all behaviors (execution traces) of MA are

observationally equivalent to behaviors of its specification

(ISA).

We analyze a three stage pipeline, consisting of fetch,

read, and execute/write-back stages. The machine fetches an

instruction pointed to by the program counter in the fetch

stage, reads the source register from the register file in the

read stage, and updates the destination register with the result

of the operation it performs (execution) in the write-back

stage. The primary challenge in designing a correct pipeline

implementation is respecting program dependency and avoid-

ing resource conflicts among instructions that are in different

stages of the pipeline. Consider the following sequence of

ADD instructions:

I1 : r3 = r2 + r1

I2 : r4 = r3 + r2

Instruction I2 will read stale data for register r3, if read

phase of I2 overlaps with the execution phase (write-back)

of instruction I1. In such a scenario (called Read-after-Write

3We recommend the reader download the experiments from
http://ccs.neu.edu/home/harshrc/fmcad11

data hazard), to correctly handle the data dependency, the

pipeline must be stalled to allow the older instruction (I1)

to execute and update the destination register (r3) before the

younger dependent instruction (I2) reads it. In our pipeline

machine model, we will on purpose introduce a design error

by failing to stall the read for I2 in the above scenario. Another

scenario that we consider is related to handling of branch/jump

instructions. By the time, the program counter is updated to

fetch from the target of a BEZ/JMP instruction, subsequent

instructions from the sequential program code have already

been fetched. To prevent the wrongly fetched instruction

from polluting the architectural state (control hazard), it is

required to invalidate the latches holding information related

to instructions from the wrong execution path. A common

error occurring in initial phases of the design of a pipeline

machine, is to forget invalidating latch 2, in the scenario that

latch 1 is invalid (explain a little more).

The objective of the experiment was to evaluate the ef-

fectiveness of our method to find these important and subtle

design errors (data and control hazards). How do we find these

bugs using our method? Given that the designer has written

both the ISA and MA models of the pipeline machine, one just

needs to formalize the aforementioned correctness definition

and analyze it. We will use a notion of refinement, where the

main idea is to show that infinite behavior of MA and ISA

are observationally equivalent under an appropriate refinement

map. By using the theory of Well-founded equivalence bisim-

ulation (WEB) refinement, we can establish this by proving a

local property that only requires reasoning about MA states,

their successors, and ISA state and their successors [17]. The

refinement map is straightforward, except for the matter of

relating the program counters of MA and ISA states. Since

the observable effect of any instruction only appears in the

write-back stage, the observable program counter is simply

the PC value of the oldest instruction in the pipeline. Let M ′

denote the state of the machine after it has taken one step

i.e., it has been run for one hardware clock cycle. Then the

safety part of our WEB refinement proof obligation is that if

ISA state S and MA state M are observationally equivalent,

and both take a step to S′ and M ′ respectively, then either S
is observationally equivalent to M ′, or S′ is observationally

equivalent to M ′ (stepping MA for one cycle resulted in an

observable architecturalfallback change) i.e., (obs= S M)
⇒ (obs= S M’) ∨ (obs= S’ M’)

Analyzing this high-level property, our method is able to

uncover both the design errors in our MA machine which

manifested as hazards. The counterexamples (instances of

MA that falsified the safety property) were illuminating; they

pointed out the kind of hazards and the scenarios in which they

occurred. We recommend the reader to play around with the

model provided to see if the tool can uncover other scenarios

he/she has seen before.

A few observations are in line. No assertions were provided.

No lemmas were written down. No manual tests (micropro-

grams) were provided as inputs. No test driver needed to be

given. The only effort on part of the designer was in writing
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the ISA and MA models in ACL2, defining the datatypes (used

for automatic test data generation), specifying the abstraction

function (for observational equivalence) and formulating the

high-level correctness property.

B. Software: Comparison with Alloy

Alloy [13] is a declarative modelling language based on

sets and relations, primarily used for describing high-level

specifications and designs. Alloy Analyzer [14] is a tool

that supports automatic analysis of models written in Alloy.

Given a bound on the number of model elements, called

scope, the Alloy Analyzer (AA) translates Alloy models (and

its specifications\) into Boolean formulas, uses off-the-shelf

SAT solvers to generate satisfying instances and translates

them back to corresponding set and relation instances of the

objects in the model. Alloy is a first-order relational logic

with transitive closure, which allows expressing rich structural

properties using succinct expressions. However to enable fea-

sible automatic analysis, it has poor support for two features

that we feel naturally apply in many types of modelling/design

examples: recursive definitions and arithmetic. The ACL2

language, on the other hand, has excellent support for recursive

definitions (in fact, most interesting properties are expressed

using recursive definitions\) and arithmetic [19]. In view of this

(and our limited Alloy expertise), we avoid doing a comparison

on problems that we perform well (e.g., the property involving

hash function in Section III is inexpressible in Alloy due to

absence of multiplication), and restrict ourselves to examples

(from the Alloy distribution) that we think Alloy performs well

on.

Alloy Analyzer Our method
Property Scope Time Result Time Result

delUndoesAdd 31 80.91 – 0.07 QED
addIdempotent 31 112.66 – 0.19 QED

addLocal 3 0.05 CE 12.63 CE
lookupYields 3 0.05 CE 0.83 CE

writeRead 44 179.89 – 0.02 QED
writeIdempotent 29 98.03 – 0.01 QED
hidePreservesInv 87 86.03 – 0.26 QED

cutPaste 3 0.19 CE 0.49 CE
pasteAffectsHidden 29 138.34 – 0.42 QED
markSweepSound 8 29.03 – 0.28 QED

markSweepComplete 7 46.51 – 0.34 QED

TABLE I
COMPARISON WITH ALLOY ANALYZER (AA)

We analyzed 11 properties from 4 Alloy problems (speci-

fications\), except the markSweep problem, all the others are

from the Alloy book [13] and can alternatively be downloaded

from the Alloy distribution.4 Table 1 shows results, comparing

the performance of our method implemented in ACL2s, with

the performance of the Alloy Analyzer (AA). The time (in

seconds) is measured on an Intel Core i3, 2.8GHz, 4GB

memory machine. The Alloy analysis time is the total of the

time spent on generating CNF and solving it using the SAT4J

4Alloy Analyzer 4: http://alloy.mit.edu/alloy4

solver. The time taken by our method is what the ACL2 macro

time$ reports and includes the time taken by the ACL2

theorem prover. The Scope column for AA either denotes the

minimum scope that finds a counterexample, or the maximum

scope for which AA can check the property before reaching the

timeout fixed at 180 seconds. The Result column shows either

’CE’,’QED’ or ’–’, that stand for Counterexample found, Proof

found, Neither Counterexample nor Proof found, respectively.

The first 4 properties are from the model of an email client’s

address book supporting aliases and groups, the writeRead
and writeIdempotent properties are from the abstract memory

problem, the next 3 properties are from an Alloy model de-

scribing the design of a media file management software. The

last 2 rows are the Soundness and Completeness properties of

the mark-and-sweep model, where live (reachable from root)

nodes of the heap are marked and garbage (unreachable from

root) nodes are sweeped into a freelist. The mark-and-sweep

Alloy model was taken from an experiment in [12] where

Alloy specifications are automatically translated to SMT2

language supported by the Z3 SMT solver [9].

We took the above examples and modelled them in the

ACL2 language; mimicking the original formulation in Alloy

as much as possible. In particular we used set types and map
types i.e., binary relations, which are part of the rich datatype

support provided by ACL2s [10]. These respectively make use

of the ordered sets library [8] and the records library [16]) in

the ACL2 standard library distribution. These libraries provide

a generic collection of reasoning rules (used in rewriting)

about sets and records. In fact they are powerful enough

to prove all the properties that Alloy exhaustively checked

within the scope. No intermediate lemmas were provided,

no hint or guidance was offered to the theorem prover, the

proof of pasteAffectsHidden by ACL2s was as unassisted as

the counterexample generated by Alloy for cutPaste. The

counterexamples generated by our method, in few cases,

required a change in the ACL2s settings when random testing

(default) was not good enough to catch the counterexample,

we had to revert to bounded exhaustive testing, which is also

as automatic as Alloy, but not as efficient, as we observe in

Table 1 in the entry of addLocal.
In experiments shown in [12], it is found that the correct-

ness of the translated (from Alloy into Z3) mark-and-sweep

model could not be proven by Z3; the authors mention that

this problem is particularly difficult due to the fact that the

simulation of recursion involved in mark-and-sweep by transi-

tive closure results in deeply-nested quantifiers that Z3 cannot

handle. We modelled the problem in ACL2, used sets and maps

as mentioned before, the mark procedure (involving transitive

closure) is modelled using a simple recursive definition. We

then formalize the following properties that imply correctness:

Soundness: No live node appears in the freelist
Completeness: All garbage nodes are eventually collected
We were able to prove the above properties automatically.

Again, no domain-specific lemmas were used, no hints were

given to the theorem prover, no expert knowledge of theorem

prover was required. This might seem surprising, and we
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must deflate some optimism here, by pointing out that this

automation will not scale for non-trivial models, but surely

we must not overlook the effectiveness of powerful libraries

(e.g., set reasoning) by the tool-writer put to use by the choice

of right abstractions (e.g., using set datatypes) by the designer.

V. RELATED WORK

Counterexample Generation in Interactive Theorem Provers

Random Testing is a well-studied, scalable, lightweight

technique for finding counterexamples to executable formulas.

Many Interactive Theorem Provers motivated by the success

of QuickCheck and related random testing tools [6] have

implemented random testing libraries e.g., Isabelle/HOL [1],

Agda [11] and PVS [18]. The other standard technique for

generating counterexamples for a conjecture is to use a SAT or

SMT solver. This requires translating from a rich, expressive

logic to a restricted logic with limited expressiveness. The

major constraint on such approaches is that a counterexample

to the translated formula should also be a counterexample

to the original formula. However, the absence of a coun-

terexample does not imply that the conjecture is true. Some

tools making use of the above technique are Pythia [20],

SAT Checking [21], Refute [22] and Nitpick [2]. The work

mentioned above has the same goal as our work: automatically

exhibit counterexamples to false properties. However, unlike

our work, none of the above mentioned approaches use the

interactive theorem prover to generate counterexamples for

arbitrary properties.

Combining Testing and Interactive Theorem Proving

Ideas for combining formal specifications and testing date

back to at least 1981 [4]. One of the first examples of

combining testing and interactive theorem proving was carried

using Agda [11]. Random testing was used to check for

counterexamples, and the point was made that the user could

apply random testing also to subgoals. Another instance of

leveraging a theorem prover to improve testing is the HOL-

Testgen tool [3] which was designed for specification-based

testcase generation. Compared to the above approaches, our

method has a more fine-grained and tighter integration with

the interactive theorem prover.

A. Automatic Analysis tools

Alloy is a declarative specification language based on re-

lations and sets. The Alloy Analyzer can automatically find

small counterexamples to Alloy specifications. This is done by

translating the Alloy specification into a boolean satisfiability

formula and using an off-shelf SAT Solver to find a solution.

Model checking [7].

VI. CONCLUSIONS

We presented an algorithm that uses an interactive theorem

prover to automatically analyze models and specifications. Our

approach has several advantages over related work. It allows

designers to use expressive languages to model systems at

various levels of abstraction, with support for data structures,

arithmetic, and recursive procedures. It is fully automated

and compares favorably to existing methods for analyzing

high-level models. Our algorithm is implemented and freely

availabe in ACL2s, the ACL2 Sedan.
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