
Faster SAT Solving with Better CNF Generation∗

Benjamin Chambers Panagiotis Manolios
Northeastern University

{bjchamb, pete}@ccs.neu.edu

Daron Vroon
General Theological Seminary of the Episcopal Church

daron.vroon@gmail.com

Abstract

Boolean satisfiability (SAT) solving has become an en-
abling technology with wide-ranging applications in nu-
merous disciplines. These applications tend to be most nat-
urally encoded using arbitrary Boolean expressions, but to
use modern SAT solvers, one has to generate expressions in
Conjunctive Normal Form (CNF). This process can signifi-
cantly affect SAT solving times. In this paper, we introduce a
new linear-time CNF generation algorithm. We have imple-
mented our algorithm and have conducted extensive exper-
iments, which show that our algorithm leads to faster SAT
solving times and smaller CNF than existing approaches.

1. Introduction

SAT solving technology is now routinely used in a va-
riety of areas ranging from hardware verification to artifi-
cial intelligence to computational biology. For many ap-
plications, users start by describing their problems using
Boolean logic. However, to use most current SAT solvers,
they then have to generate equisatisfiable CNF, the stan-
dard input format for most current SAT solvers. This is a
non-trivial task, which is frequently performed by specially
crafted algorithms and is often considered a technical con-
tribution. More powerful CNF generation algorithms will
provide a higher-level interface for users, lowering the bar
to entry and making SAT technology more widely applica-
ble.

For applications where SAT solvers are embedded in
other tools, CNF generation is performed algorithmically,
typically using the standard Tseitin algorithm. This is true
even with verification tools that make extensive and essen-
tial use of SAT solving, such as Yices [8]. For such appli-

∗This research was funded in part by NASA Cooperative Agreement
NNX08AE37A and NSF grants CCF-0429924, IIS-0417413, and CCF-
0438871.

cations, the CNF generation process can significantly affect
running times.

Finally, the performance of SAT solving technology
seems to have reached a plateau, and further progress will
most likely come from taking advantage of structure in
problems before it gets obfuscated in the translation to CNF.

For all these reasons, we revisit CNF generation. Our
contributions include:

• A new, linear-time CNF generation algorithm.
• NICE dags, a new data structure for representing

Boolean expressions. NICE dags subsume And-
Inverter Graphs (AIGs) [4] and are designed to provide
better normal forms at linear complexity.

• An implementation of our algorithm in the NICESAT
tool, which accepts as input both AIGs and NICE dags.

• Experimental evaluation, including the Hardware
Model Checking Competition and SATRACE 2008
benchmarks, showing that NICESAT has faster SAT
solving times and generates smaller CNF than existing
tools.

2. Related Work

Related work can be divided into four categories: the
representation of Boolean formulas, transformations ap-
plied to representations, CNF generation, and preprocessing
of generated CNF before SAT solving.

There are numerous representations for propositional
logic, including Reduced Boolean Circuits (RBCs) [2] and
And-Inverter Graphs (AIGs) [12]. All of these represen-
tations are dags where internal nodes correspond to opera-
tions and leaf nodes correspond to input variables. In ad-
dition, they all employ structural-hashing to ensure that no
duplicate nodes with the same operator and arguments ap-
pear in the dag. The representations differ in the operators
they allow and the restrictions they impose on dags (whose
purpose is to provide better normal forms).

Once a Boolean formula is converted into some machine
representation, there are a variety of transformations that
have been developed to simplify the dag. One approach is
to replace small, local parts of the dag with smaller sub-
dags [6,9]. Typically such transformations are only applied
when it can be shown they do not “hurt” sharing. An-
other set of techniques detect functionally equivalent sub-
expressions in the graph and use one of the sub-expressions
to eliminate the rest. An example is SAT sweeping [11].

Next comes CNF generation. Until recently, most CNF
generation algorithms used in practice were minor varia-
tions of Tseitin’s linear-time algorithm [17]. Tseitin’s algo-
rithm works by introducing new variables for internal nodes
and constraining them so that equisatisfiable CNF is gener-
ated. Plaisted showed that one need only constraint an in-
troduced variable in one direction when the corresponding
node is used in only one polarity [16]. The AIGER tool
includes a very efficient implementation of Tseitin’s algo-
rithm [4].

Boy de la Tour introduced a further improvement by
showing how to compute the set of internal nodes which
should have a variable introduced for them in order to min-
imize the number of clauses generated [7]. Another CNF
generation algorithm is due to Velev, who identifies certain
patterns arising in formulas from pipelined machine ver-
ification problems and provides CNF generation methods
for these patters [18]. Jackson and Sheridan describe an al-
gorithm that is a significant generalization of Velev’s [10].
This algorithm converts RBCs to CNF and was designed to
be simpler than the Boy de la Tour algorithm, while retain-
ing many of its benefits. A key idea of the Jackson-Sheridan
algorithm is to introduce a new variable for an argument to
a disjunction only if that leads to fewer clauses. All of the
CNF generation algorithms described in this paragraph have
at least quadratic complexity, and the Jackson and Sheri-
dan and Velev algorithms can generate output that is at least
quadratic in the size of the input.1

In a previous short paper, we presented an informal
overview of NICE dags, outlined aspects of a quadratic-
time CNF generation algorithm and presented initial exper-
imental results using BAT [13], a bounded model checker
for a high-level, feature-rich, type-safe hardware descrip-
tion language that includes user-defined functions, arbitrary
sized bit-vectors, and memories [14]. We also showed that
the BAT algorithm generated simpler CNF and led to much
faster times as compared with the Jackson and Sheridan al-
gorithm. Since NICESAT outperforms BAT, it also handily
outperforms the Jackson-Sheridan algorithm.

Another approach to CNF generation is based on tech-
nology mapping [9] and is implemented in ABC [3]. This
algorithm computes a sequence of mappings, partial func-
tions from AIG nodes to cuts of the graph, in an effort to

1The claim in the Jackson and Sheridan paper that their algorithm is
linear time is wrong.

minimize a heuristic cost function. CNF is then generated
for the cuts of the nodes in the domain of the final mapping,
using their irredundant sum-of-products representation.

3. NICE Dags

In this section we start by introducing NICE expressions,
Boolean expressions over ¬, ite , iff , and ∧ operators. We
then introduce NICE dags, a structure-sharing representa-
tion for NICE expressions.

Boolean functions can be represented in numerous ways
as a Boolean expression, and it is often helpful to use a for-
malism that limits the number of possible representations.
At one extreme, we have unique, canonical representations
(e.g., BDDs), but at heavy computational cost. NICE ex-
pressions aim for a middle ground, where the computational
costs are negligible, yet expressions are restricted in a way
that allows us to efficiently do a fair amount of syntactic
inference.

Definition 1. Let VARS be a set of Boolean variables.
Then a Negation, Ite, Conjunction, and Equivalence (NICE)
expression over VARS is an expression that satisfies the
following mutually recursive definition:

NiceExp ::= VARS
| TRUE
| NOT (NiceExp)
| AND

(
NiceExp, NiceExp+

)
| IFF (NiceExp, NiceExp)
| ITE (NiceExp, NiceExp, NiceExp)

In addition, we impose the following restrictions to ob-
tain better normal forms:

• If TRUE appears anywhere in a NiceExp, then the en-
tire expression is either TRUE or NOT (TRUE).

• The argument to a NOT is not a negation.
• Neither of the arguments to an IFF are negated.
• Neither of the first 2 arguments to an ITE are negated.
• Arguments of expressions do not contain duplicates or

negations of other arguments.
• Matching (see below).

In practice, arguments are implemented as pointers or
edges (we use both terms interchangeably), with negations
appearing on the edge and all other operators (and variables)
appearing as vertices. For the rest of the paper, we assume
VARS is fixed.

NICE dags are structurally hashed dags that are used
to succinctly represent NICE expressions: if two sub-dags
are structurally identical then they must be the same vertex.
Given the correspondence between NICE dags and expres-
sions, we sometimes use the terms “dag” and “expression”
interchangeably. In practice, NICE dags are built bottom-
up, using functions that create a new NICE dag by apply-
ing an operator to existing NICE dags. The functions and,

or, not, ite, iff, and impl all take NiceExps as argu-
ments and return a structurally hashed NiceExp correspond-
ing to the result of applying the appropriate logical operator
to their arguments. To ensure uniqueness they make use of
a global hash table, GTAB , using the arguments as keys.

Matching The and construction function also imple-
ments matching: it checks its arguments to determine if they
encode an ite or iff . More specifically, matching succeeds
when we try to construct a conjunction with two negated
edges which point to binary conjunctions whose arguments
are of the form v, v1 and ¬v, v2, respectively. When this
occurs, we return not (ite (v, v1, v2)). The ite will get
transformed into an iff , if it really encodes an equivalence.
These techniques in conjunction with a collection of well-
known rewrite rules are used to obtain normal forms. In
practice, matching leads to non-trivial speedups for both
CNF generation and SAT times.

4. CNF Generation

We present our algorithm for converting NICE dags to
CNF in this section, after first presenting some of the key
ideas upon which our algorithm depends.

We make essential use of sharing and polarity. Sharing
occurs when a vertex has multiple parents in the NICE dag.
This information is used by our algorithm when deciding
whether to introduce new proxy variables.

The polarity of a path in a dag is positive (negative) if it
contains an even (odd) number of negations. A vertex has
positive (negative) polarity if there exists a positive (nega-
tive) path from the root of the dag to the vertex. Note that
a vertex can have both positive and negative polarity. Pro-
cedures in our CNF generation algorithm often include an
argument indicating polarity information. To simplify the
presentation, we use the variable p, whose value is either +
or -, to indicate polarity; also the operator p flips polarities.

Pseudo-Expansion Previous CNF generation algorithms
deal with ite and iff by expanding such nodes away, say
by using conjunctions and negations. We leave such nodes
in the dag and define the function argsp (e) which returns
the pseudo-expansion of the node e in polarity p (see Fig-
ure 1). Leaving such nodes in the graph allows us to rec-
ognize args+ (e) and args- (e) as semantic negations of
each other even though they may not be syntactic negations.
Also, expanding the node differently based on the polarity
allows us to ensure we use the simplest expansion for the
situation (the one that yields a conjunction of disjunctions).
Pseudo-expansion leads to faster SAT solving times.

Counting Sharing Next, we annotate the DAG with in-
formation about the positive and negative sharing of each
vertex using the code shown in Figure 2. For each ver-
tex e, we record both the positive count (count+ (e)) and
the negative count (count- (e)). The positive count is the

args+ (ITE (x, y, z)) = {impl (x, y) ,impl (not (x) , z)}
args- (ITE (x, y, z)) = {impl (x,not (y)) ,

impl (not (x) ,not (z))}
args+ (IFF (x, y)) = {impl (x, y) ,impl (y, x)}
args- (IFF (x, y)) = {impl (x,not (y)) ,

impl (not (y) , x)}

Figure 1: Pseudo-expansions of iff and ite .

count-sharesp (e)

if e = NOT (e′) then e, p← e′, p
if countp (e) = 0 then

if e = ITE (x, y, z) or e = IFF (x, y) then
for all w ∈ argsp (e) do count-shares+ (w)

else if e = AND (W) then
for all w ∈W do count-sharesp (w)

countp (e)← countp (e) + 1

Figure 2: Annotating a NICE dag with sharing information.

number of positive pointers to e that appear in a positive
polarity and negative pointers to e that appear in a negative
polarity. Similarly, count- (e) represents the number of
positive pointers to e that appear in a negative polarity and
the number of negative pointers to e that appear in a posi-
tive polarity. Note that if a pointer appears in both a positive
and negative polarity it contributes to both the positive and
negative counts of the vertex it points to.

All the counts are initialized to 0, which also allows
us to detect whether a node has been previously visited.
The code for count-sharesp (e)2 performs a depth-first
traversal of the dag rooted at e. The first conditional is used
to check if we are visiting a negated edge, in which case
we flip the polarity. A subtle case occurs when we visit
the children of an ite or an iff vertex, in which case we
look at the pseudo-expansion in the appropriate polarity and
recursively call count-shares+ (e) on these arguments.
Why we call count-shares with positive polarity when
p = + should be clear. When p = -, note that the ite or iff
appears in negative polarity, but args- (e) corresponds to
the negation of e. The two negations cancel out and we call
count-shares+ (e).

Auxiliary Variables Efficient CNF generation requires
the use of proxy variables. The code for introducing such
variables appears in Figure 3. When varp (e) is called, we
have the invariant that clausesp (e) contains CNF repre-
senting e in polarity p. The variable corresponding to e is x.
If we previously introduced a variable for e in the opposite
polarity, then x is the negation of that variable; otherwise,
x is a new CNF variable. Surprisingly, the sign of the CNF
variable can significantly affect SAT times. After experi-
menting with various options, we developed our variable
polarity heuristic: we use polarity information to determine
the sign of CNF variables, i.e., if p is +, x is positive; oth-

2In our code, a “=” in a conditional returns true iff both the left and
right sides have identical structure and it then binds variables in the obvious
way.

varp (e)

if e = NOT (e′) then e, p← e′, p
if clausesp (e) = {{y}} then x← −y
else x← p(newvar ())
emit-clauses ({{−x} ∪ c | c ∈ clausesp (e)})
clausesp (e)← {{x}}

Figure 3: Replacing a clause with a variable

cnf-main (e)
pseudo-expand ()
count-shares+ (e)
emit-clauses (cnf+ (e))

Figure 4: Main CNF generation function

erwise x is negative. We then constrain x so that it is eq-
uisatisfiable to e in polarity p, by introducing the constraint
x → e (in CNF). This constraint appears in the final CNF
we generate, so we write it to disk using emit-clauses;
this allows us to free intermediate CNF which significantly
reduces the memory and IO time required by our algorithm.

The Generation Algorithm The top-level CNF gener-
ation function, cnf-main (e) is shown in Figure 4. It
generates CNF for a non-constant NICE dag, e, by call-
ing the annotation functions we previously defined, and
then invoking the recursive function cnf+ (e), which is
shown in figure Figure 5. The result of that call is a set
of clauses corresponding to e; this set is written to disk by
emit-clauses.

In brief, cnfworks by annotating NICE dag vertices in a
bottom-up fashion by calculating clausesp (e), the CNF
representation of e in polarity p. These annotations are ini-
tially set to null . The first three if statements in cnf should
be self-explanatory. If execution reaches the fourth if, then
e is either a conjunction, ite , or iff . In either case, we gen-
erate CNF clauses which are stored in clausesp (e). We
then use a heuristic to determine if a proxy variable should
be introduced (via varp (e), as described previously). Our
heuristic is encoded in var-heur and is explained later.

Finally, we explain how to compute clausesp (e),
which depends on both the expression and the polarity. If e

cnfp (e)

if e = NOT (e′) then e, p← e′, p
if clausesp (e) 6= null then return clausesp (e)
if e ∈ VARS then

x← newvar ()
clauses+ (e)← {{x}}
clauses- (e)← {{−x}}
return clausesp (e)

if e = AND (W) and p = + then
clausesp (e)←

S
w∈W cnf+ (w)

else if e = AND (W) and p = - then
clausesp (e)← dis (W)

else
clausesp (e)←

S
w∈argsp(e) cnf

+ (w)

if var-heur (countp (e) ,clausesp (e)) then varp (e)
return clausesp (e)

Figure 5: Core of the CNF Generation Algorithm

dis (W)
C ← {∅}
for all e ∈W do cnf- (e)
for all e ∈W do

if dis-var-heur (C,clauses- (e)) then var- (e)
C ← {b ∪ c | b ∈ clauses- (e) ∧ c ∈ C}

return C

Figure 6: Function for taking the disjunction of a set of vertices

var-heur (count, clauses)
return count > 1 and ||clauses|| > 1

dis-var-heur (acc, e)
return ||e|| · |acc|+ |e| · ||acc|| > ||e||+ |acc|+ |e|+ ||acc|| or |e| > 4

Figure 7: Heuristics for minimizing the number of literals.

is an ite or a iff (the last else), we use the information we
computed during pseudo-expansion to return (essentially)
cnf+ (AND (argsp (e))). Note that we always use posi-
tive polarity in the subcalls to cnf for the same reason we
always used positive polarity when counting.

The last case to consider is when the vertex is a ∧, in
which case we either have a conjunction (if the polarity is
positive) or a disjunction (if the polarity is negative). In the
case of a conjunction, we take the union of all the clauses
generated for the conjunction’s arguments. In the case of a
disjunction, we invoke the helper method dis (W), which
is shown in Figure 6. This function begins by initializing an
accumulator, C, to the singleton set containing the empty
set. It then calls cnf- on each of the elements in e ∈ W ,
to ensure that clauses- (e) has been computed. Next, we
iterate over the elements e ∈ W . Before constructing the
disjunction e∨C, we use the heuristic dis-var-heur to
decide if we should introduce a variable for e.

Heuristics The heuristics used to decide when to intro-
duce variables significantly affect the complexity of the
CNF generation process and SAT times. While existing
heuristics we know of are designed to minimize the number
of clauses, our heuristics, shown in Figure 7, are designed
to minimize the number of literals. Experimentally we have
seen that this improves SAT times.

The heuristic for introducing variables when producing
CNF is relatively simple: if the expression appears multiple
times in the given polarity and currently takes more than a
single literal to represent, we introduce a variable. We use
double vertical bars to denote to the number of literals in a
set of clauses, i.e., ||D|| =

∑
d∈D |d|. Single vertical bars

denote length.
The heuristic for introducing variables for arguments of

a disjunction consists of a local check to see if introducing a
proxy for e will lead to an improvement and a global check
to prevent the result of the disjunction from containing a
large number of clauses. The combination of the two has
been experimentally shown to produce better CNF and SAT
times than either the global part or the local part alone.

k-Limited Merging Our algorithm often has to compute
c ∪ d, clause union. If we implement clause union by
appending the two lists, we miss opportunities to detect
clauses containing both x and ¬x (tautologies) or multi-
ple occurrences of x (duplicates). On the other hand, a full
check is too computationally expensive. Our technique of
k-limited merging occupies a middle ground: we maintain
the invariant that the first k literals of a clause are sorted (by
absolute value) and unique. A single O(k) merge operation
allows us to enforce the invariant and detect tautologies and
duplicates. We ran experiments and were surprised to dis-
cover that any value of k ≥ 2 is sufficient to pick up more
than 99% of the opportunities for merging. In addition, de-
tecting these tautologies and duplicates during the genera-
tion of CNF instead of during a post-processing step results
in better SAT times because the simplifications interact in a
virtuous way with our CNF-generation heuristics and algo-
rithm. Surprisingly, merging also leads to a reduction in the
CNF generation times due to reduced memory usage.

Theoretical Results

Theorem 1. Given a NICE dag, e, cnf-main (e) emits a
CNF formula that is equisatisfiable to e.

Theorem 2. cnf-main (e) has worst case running time
O(n), where n is the number of vertices in the dag repre-
senting e.

Due to space limitations, proofs have been elided. We
point out that obtaining Theorem 2 requires a certain
amount of care with the data structures and heuristics used.

5. Experimental Evaluation

We implemented our algorithm in C++ and ran it on
850 different AIGs, including all 645 benchmarks from the
2008 Hardware Model Checking Competition (HWMCC
’08) [5], 100 benchmarks from the structural SAT track of
SAT-Race 2008 [1], and the 105 structural TIP benchmarks
available from the AIGER [4] Website. The AIGs from
the HWMCC were inducted using aigbmc with a value
of K = 45 to produce structural benchmark problems.

We compared our algorithm with the Tseitin-inspired al-
gorithm in AIGER, aigtocnf, and technology mapping,
as implemented in ABC. These tools represent the state-of-
the-art in CNF generation. Our experiments used the lat-
est versions of AIGER and ABC, 20071012 and 70930, re-
spectively. We used RSAT 2.01 [15], which was the over-
all fastest SAT solver we tried, but we also tested with Pi-
coSat, MiniSat (with and without simplification) and ob-
served similar results. The benchmarks were run on a clus-
ter of Dual-core 2.0 GHz Intel Xeon EM64T machines each
with either 8 or 16 GB of RAM. The results are summarized
in Table 1. The NICESAT and AIGER transformations pro-
duced CNF for all the problems, while ABC failed on 31
problems, the numbers from which are not included in the

Table 1: Statistics for each SAT solver on benchmark problems
AIGER ABC NICESAT

CNF Generation Time (s) 186 1224 310
SAT Time (s) 126K 107K 103K
Total Time (s) 127K 108K 103K
Variables 131M 44.2M 34.5M
Literals 888M 533M 424M
Clauses 380M 180M 129M

table. The SAT solver was given a timeout of 1,000 sec-
onds, and any benchmarks on which it timed out contributed
1,000 seconds to the SAT time (and total time) for the trans-
formation. Of the instances that ABC produced CNF for,
AIGER, ABC and NICESAT led to 103, 95 and 88 time-
outs respectively. On the remaining 31 cases, AIGER and
NICESAT led to 12 timeouts and 10 timeouts. It is also
worth pointing out that NICESAT provides a higher-level
interface than AIGER. Whereas AIGER accepts as input
only structurally-hashed AIGs, NICESAT also accepts arbi-
trary Boolean expressions. This incurs a runtime cost dur-
ing CNF generation, because, in contrast to AIGER, NICE-
SAT does not assume that the input has been structurally-
hashed. However, CNF generation time accounts for only
a fraction of total running time and NICESAT is faster than
AIGER and ABC on the benchmarks by 24K and 5K sec-
onds respectively.

Log-scale scatter plots comparing NICESAT to AIGER
and ABC are given in Figures 8 and 9. In all cases, smaller
is better, so points above the diagonal denote benchmarks
on which we get better results. Points on the top and right
borders indicate failures to produce an answer within the
time limit. The graphs show the total time to produce an an-
swer (combining CNF generation and SAT), the SAT times,
and the number of clauses and variables in the instance. We
also plot the lines corresponding to a difference of 1, 10,
100, . . . seconds, which aids in understanding the log-scale
graphs.

In Figure 10 we show a graph of the time-limit versus the
number of instances solved by the different tools. The figure
shows that regardless of the time limit selected, NICESAT
solves more problems than either ABC or AIGER.

Together, these experimental results show that we con-
vincingly improve the state of the art in CNF generation.

6. Conclusions and Future Work

We presented NICE dags, a data structure that can be
used to represent arbitrary circuits, and introduced a linear-
time algorithm that converts NICE dags to CNF. We de-
veloped NICESAT, a C++ implementation that operates on
NICE dags, AIGs, and Boolean expressions. By providing a
higher-level interface, we lower the barrier to entry for new
users of SAT technology. We have conducted extensive ex-
periments which show that we generate smaller CNF and
attain significant speed-ups in SAT solving times compared

0.1

1

10

100

1000

0.1 1 10 100 1000

A
IG

E
R

NICESAT

(a) Total Time

0.1

1

10

100

1000

0.1 1 10 100 1000

A
IG

E
R

NICESAT

(b) SAT Time

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

A
IG

E
R

NICESAT

(c) Variables

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

A
IG

E
R

NICESAT

(d) Clauses

Figure 8: Scatter plots comparing our algorithm to AIGER

0.1

1

10

100

1000

0.1 1 10 100 1000

A
B

C

NICESAT

(a) Total Time

0.1

1

10

100

1000

0.1 1 10 100 1000

A
B

C

NICESAT

(b) SAT Time

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

A
B

C

NICESAT

(c) Variables

100

1000

10000

100000

1e+06

100 1000 10000 100000 1e+06

A
B

C

NICESAT

(d) Clauses

Figure 9: Scatter plots comparing our algorithm to ABC

680

690

700

710

720

730

740

750

0 200 400 600 800 1000

IN
S

T
A

N
C

E
S

TIME LIMIT (per instance)

NICESAT
aigtocnf

ABC

Figure 10: Time-limit vs. number of instances solved

with existing state-of-the-art tools. Novel techniques in our
algorithm include k-matching, pseudo-expansion, our vari-
able introduction heuristics, our variable polarity heuristic,
and k-limited merging. Each of these techniques improves
performance, and we plan on demonstrating this experimen-
tally in the journal version of the paper. We also plan to de-
velop additional techniques for improving CNF generation,
reducing the size of the NICE dags, and adding support for
quantification and bounded-model checking.

Finally, as CNF-based SAT solving is reaching a perfor-
mance plateau, we need to look elsewhere for new improve-
ments. What we have shown in this paper is that there is
ample room for improvement in CNF generation. There-
fore, we propose the study of linear-time algorithms for
CNF generation.

References

[1] SAT-Race 2008. http://www-sr.informatik.
uni-tuebingen.de/sat-race-2008/.

[2] P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic Reachability
Analysis Based on SAT-Solvers. In TACAS, 2000.

[3] Berkeley Logic Synthesis and Verification Group. ABC: A
System for Sequential Synthesis and Verification. http:
//www-cad.eecs.berkeley.edu/˜alanmi/abc.

[4] A. Biere. AIGER Format and Toolbox. http://fmv.
jku.at/aiger/.

[5] A. Biere. Hardware Model Checking Competition 2008.
http://fmv.jku.at/hwmcc/.

[6] R. Brummayer and A. Biere. Local Two-Level And-Inverter
Graph Minimization without Blowup. In MEMICS, 2006.

[7] T. B. de la Tour. An Optimality Result for Clause Form
Translation. Journal of Symbolic Computation, 1992.

[8] B. Dutertre and L. M. de Moura. A Fast Linear-Arithmetic
Solver for DPLL(T). In Proc. of CAV 2006.

[9] N. Een, A. Mischenko, and N. Sorensson. Applying Logic
Synthesis for Speeding Up SAT. In SAT, 2007.

[10] P. Jackson and D. Sheridan. Clause Form Conversions for
Boolean Circuits. In SAT, 2004.

[11] A. Kuehlmann. Dynamic Transition Relation Simplification
for Bounded Property Checking. ICCAD, 2004.

[12] A. Kuehlmann and F. Krohm. Equivalence Checking Using
Cuts And Heaps. Design Automation Conference, 1997.

[13] P. Manolios, S. K. Srinivasan, and D. Vroon. BAT: The
Bit-level Analysis Tool. http://www.ccs.neu.edu/
home/pete/bat.

[14] P. Manolios and D. Vroon. Efficient Circuit to CNF Conver-
sion. In SAT, 2007.

[15] K. Pipatsrisawat and A. Darwiche. RSat 2.0: SAT Solver
Description. Technical Report D–153, UCLA, 2007.

[16] D. A. Plaisted and S. Greenbaum. A Structure-preserving
Clause Form Translation. JSAT, 1986.

[17] G. Tseitin. On the complexity of derivation in propositional
calculus. Studies in Constructive Mathematics and Mathe-
matical Logic, 1968.

[18] M. N. Velev. Efficient Translation of Boolean Formulas to
CNF in Formal Verification of Microprocessors. In ASP-
DAC, 2004.

