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Abstract. We present Integer Linear Programming (ILP) Modulo The-
ories (IMT). An IMT instance is an Integer Linear Programming in-
stance, where some symbols have interpretations in background theories.
In previous work, the IMT approach has been applied to industrial syn-
thesis and design problems with real-time constraints arising in the devel-
opment of the Boeing 787. Many other problems ranging from operations
research to software verification routinely involve linear constraints and
optimization. Thus, a general ILP Modulo Theories framework has the
potential to be widely applicable. The logical next step in the develop-
ment of IMT and the main goal of this paper is to provide theoretical
underpinnings. This is accomplished by means of BC(T'), the Branch
and Cut Modulo T abstract transition system. We show that BC(T)
provides a sound and complete optimization procedure for the ILP Mod-
ulo T problem, as long as T is a decidable, stably-infinite theory. We
compare a prototype of BC(T') against leading SMT solvers.

1 Introduction

The primary goal of this paper is to present the theoretical underpinnings of the
Integer Linear Programming (ILP) Modulo Theories (IMT) framework for com-
bining ILP with background theories. The motivation for developing the IMT
framework comes from our previous work, where we used an ILP-based synthesis
tool, CoBaSA (Component-Based System Assembly), to algorithmically synthe-
size architectural models using the actual production design data and constraints
arising during the development of the Boeing 787 Dreamliner [16]. According to
Boeing engineers, previous methods for creating architectural models required
the “cooperation of multiple teams of engineers working over long periods of
time.” We were able to synthesize architectures in minutes, directly from the
high-level requirements. What made this possible was the combination of ILP
with a custom decision procedure for hard real-time constraints [16], i.e., an
instance of IMT.

ILP has been the subject of intensive research for more than five decades [13].
ILP solvers [1,2] are routinely used to solve practical optimization problems
from a diverse set of fields including operations research, industrial engineering,
artificial intelligence, economics, and software verification. Based on our suc-
cessful use of the IMT approach to solve architectural synthesis problems and
the widespread applicability of ILP and optimization, we hypothesize that IMT



has the potential to enable interesting new applications, analogous to what is
currently happening with Satisfiability Modulo Theories [3, 10,27, 8].

We introduce the theoretical underpinnings of IMT via the BC(T) framework
(Branch and Cut Modulo T'). BC(T) can be thought of as the IMT counterpart
to the DPLL(T) architecture for lazy SMT [27]. BC(T) models the branch-
and-cut family of algorithms for integer programming as an abstract transition
system and allows plugging in theory solvers. Building on classical results on
combining decision procedures [23, 31, 19], we show that BC(T") provides a sound
and complete optimization procedure for the combination of ILP with stably-
infinite theories. As a side-product of our theoretical study of IMT, we show
how to bound variables while preserving optimality modulo the combination of
Linear Integer Arithmetic and a stably-infinite theory.

The rest of the paper is organized as follows. In Section 2, we formally define
IMT and provide an abstract BC(T) architecture for solving IMT problems.
IMT can be seen as SMT with a more expressive core than propositional logic.
We elaborate on the relationship between IMT and SMT in Section 3. We have
implemented BC(T'), using the SCIP MIP solver [2] as the core solver. We carried
out a sequence of experiments, as outlined in Section 4. The first experiment
shows that for our synthesis problems, ILP solvers [1, 2] outperform the Z3 SMT
solver [8]. In the second experiment, we compared our prototype implementation
with state-of-the-art SMT solvers [8,14] on SMT-LIB benchmarks. An analysis
of the results suggests that BC(T) is an interesting future alternative to the
DPLL(T) architecture. We provide an overview of related work in Section 5 and
conclude with Section 6.

2 BC(T)

In this section, we formally define IMT. We also provide a general BC(T') archi-
tecture for solving IMT problems. We describe BC(T') by means of a transition
system, similar in spirit to DPLL(T) [27]. The BC(T) architecture allows one
to obtain a solver for ILP Modulo T' by combining a branch-and-cut ILP solver
with a background solver for T.

2.1 Formal Preliminaries

An integer linear expression is a sum of the form ¢yv1 +- - - +¢, v, for integer con-
stants ¢; and variable symbols v;. An integer linear constraint is a constraint of
the form e 1 7, where e is an integer linear expression, r is an integer constant,
and < is one of the relations <, <, =, >, and >. An integer linear formula is a
set of (implicitly conjoined) integer linear constraints. We will use propositional
connectives over integer linear constraints and formulas as appropriate and omit
A when this does not cause ambiguity (i.e., juxtaposition will denote conjunc-
tion). An integer linear programming (ILP) instance is a pair C,0O, where C
is an integer linear formula, and the objective function O is an integer linear
expression. Our goal will always be minimizing the objective function.



We assume a fixed set of variables V. An integer assignment A is a function
V — Z, where Z is the set of integers. We say that an assignment A satisfies the
constraint ¢ = (cqv1 + -+ + ¢, X 1) (where i is one of the relations <, <,
=, >, >, and every v; is in V) if Y. ¢; - A(v;) > 7. An assignment A satisfies a
formula C' if it satisfies every constraint ¢ € C. A formula C' is integer-satisfiable
or integer-consistent if there is an assignment A that satisfies C. Otherwise, it
is called integer-unsatisfiable or integer-inconsistent.

A signature X consists of a set X of constant symbols, a set 2 of function
symbols, a set ¥ of predicate symbols, and a function ar : X U X¥ — Nt
that assigns a non-zero natural number (the arity) to every function and pred-
icate symbol. A XY-formula is a first-order logic formula constructed using the
symbols in X'. A Y-theory T is a closed set of YX-formulas (i.e., T contains no
free variables). We will write theory in place of X-theory when X' is clear from
the context (similarly for terms and formulas).

Example 1. Let X4 be a signature that contains a binary function read, a ternary
function write, no constants, and no predicate symbols. The theory T 4 of arrays
(without extensionality) is defined by the following formulas [21]:

Va Vi Ve [read(write(a,i,e),i) = €]
Va Vi Vj Ve [i # j = read(write(a, i,e),7) = read(a, j)].

A formula F' is T-satisfiable or T-consistent if F' AT is satisfiable in the
first-order sense (i.e., there is an interpretation that satisfies it). A formula F is
called T-unsatisfiable or T-inconsistent if it is not T-satisfiable. For formulas F
and G, F T-entails G (in symbols F' =7 G) if F' A =G is T-inconsistent.

Definition 1. Let X'z be a signature that contains the constant symbols {0,
+1, £2, ...}, a binary function symbol +, a unary function symbol —, and a
binary predicate symbol <. The theory of Linear Integer Arithmetic, which we
will denote by Z, is the X z-theory defined by the set of closed X z-formulas that
are true in the standard model (an interpretation whose domain is Z, in which
the symbols in X'z are interpreted according to their standard meaning over Z).

We will use relation symbols like < that do not appear in Yz, and also mul-
tiplication by a constant (which is to be interpreted as repeated addition); these
are only syntactic shorthands. We will frequently view an integer assignment A
as the set of formulas {v = A(v) | v € V}, where A(v) is viewed as a X' z-term.
An integer assignment A viewed as a set of formulas is always Z-consistent. If A
is an integer assignment and A satisfies an integer linear formula C| it is also the
case that A =z C. If A is an integer assignment, T is a theory and F is a for-
mula, we will say that A is a T-model of F' if A is T-consistent and A Ezyr F.
Note that a T-model is not a first-order model.

A Y-interface atom is a X-atomic formula (i.e., the application of a predicate
symbol or equality), possibly annotated with a variable symbol, e.g., (z = y)*.
The meaning of a Y-interface atom with no annotation remains the same. An
annotated X-interface atom ¢V denotes ¢ < v > 0. A set of Y-interface atoms
will often be used to denote their conjunction.



Definition 2 (ILP Modulo T Instance). An ILP Modulo (Theory) T in-
stance, where the signature X' of T is disjoint from Xz, is a triple of the form
C, 1,0, where C is an integer linear formula, I is a set of X-interface atoms,
and O is an objective function. The variables that appear in both C' and I are
called interface variables.

An ILP Modulo T instance can be thought of as an integer linear program
that contains terms which have meaning in 7. In Definition 2, the interface
atoms (elements of I) are separated from the linear constraints, i.e., there are
no X-terms embedded within integer linear constraints. This is not a restric-
tion, because every set of (X' U X z)-atomic formulas can be written in separate
form [19, “Variable Abstraction”].

Example 2. Let X be a signature that contains the unary function symbol f.
The formula f(x + 1) + f(y + 2) > 3 (where  and y are variable symbols)
can be written in separate form as C = {vs +v4 > 3,01 =z + 1,v9 = y + 2}
and I = {vs = f(v1),v4 = f(v2)}. C is an integer linear formula; I is a set of
XY-interface atoms; and X is disjoint from Y z. Variable abstraction introduced
new variables, vy,...,v4. C and I only share variable symbols.

Let A be the assignment {x = 2,y = 1,v; = 3,v3 = 3,v3 = 3,v4 = 0}.
Clearly A =z C. However, A [~y I, where () stands for the theory of uninter-
preted functions (also called the empty theory, because it has an empty set of
formulas). The reason is that v1 = vy but f(v1) # f(v2). In contrast, the assign-
ment A’ = {z =2,y = 1,v; = 3,v2 = 3,v3 = 3,v4 = 3} is a P-model of C A T
per our definition, as it is (-consistent and A" =z 9 C' A 1.

2.2 Transition System

Definition 3 (Difference Constraint). A difference constraint is a constraint
of the form v; < c or v; —v; < ¢, where v; and v; are integer variables and c is
an integer constant.

Definition 4 (Subproblem). A subproblem is a pair of the form (C, D), where
C is a set of constraints and D is a set of difference constraints.

In a subproblem (C, D), we distinguish between the arbitrary constraints in
C and the simpler constraints in D in order to provide a good interface for the
interaction between the core ILP solver and background theory solvers that only
understand difference logic, i.e., a limited fragment of Z. It is the responsibility
of the core solver to notify the theory solver about the difference constraints that
hold. Difference constraints are clearly a special case of integer linear constraints.

Definition 5 (State). A state of BC(T') is a tuple P || A, where P is a set of
subproblems, and A is either the constant None, or an assignment. If A is an
assignment, it can optionally be annotated with the superscript —oo.



Our abstract framework maintains a list of open subproblems, because it
is designed to allow different branching strategies. This is in contrast to an
algorithm like CDCL that does not keep track of subproblems explicitly. There,
subproblems are implicit, i.e., backtracking can reconstruct them. ILP solvers
branch over non-Boolean variables in arbitrary ways, thus mandating that we
explicitly record subproblems.

In a state P || A, the assignment A is the best known (7T-consistent) solution
so far, if any. It has a superscript —oc if it satisfies all the constraints, but is not
optimal because the IMT instance admits solutions with arbitrarily low objective
values. If this is the case, it is useful to provide an assignment and to also report
that no optimal assignment exists.

The interface atoms I and the objective function O are not part of the
BC(T) states because they do not change over time. obj(A) denotes the value
of the objective function O under assignment A: if O = ", ¢;v;, then obj(A) =
> ¢ - A(v;). The objective function itself is not an argument to obj because
it will be clear from the context which objective function we are referring to.
For convenience, we define obj(None) = +o0o and obj(A~™*°) = —oco. Function
Ib({(C, D)) returns a lower bound for the possible values of the objective function
O for the subproblem (C, D): by definition, there is no A such that A satisfies
C A D and obj(A4) < Ib({(C, D)).

Figure 1 defines the transition relation — of BC(T') (a binary relation over
states). In the rules, ¢ and d always denote integer linear constraints and dif-
ference constraints. C' (possibly subscripted) denotes an integer linear formula
(set of integer linear constraints), while D denotes a set of difference constraints.
C c stands for the set union C'U {c}, under the implicit assumption that ¢ ¢ C;
similarly for D d. C and D are always well-formed sets, i.e., they contain no
syntactically duplicate elements. P and P’ stand for sets of syntactically dis-
tinct subproblems, while A and A’ are integer assignments. P W Q denotes the
union P U @, under the implicit assumption that the two sets are disjoint. The
intuitive meaning of the different BC(T") rules is the following:

Branch
Case-split on a subproblem (C, D), by replacing it with two or more differ-
ent subproblems (C;, D). If there is a satisfying assignment for C' A D, this
assignment will also satisfy C; A D for some 4, and conversely.
Learn, T-Learn, Propagate
Add an entailed constraint (in the case of Learn and T-Learn) or difference
constraint (Propagate) to a subproblem. T-Learn takes the theory T into
account. T-Learn is strictly more powerful than Learn. We retain the latter
as a way to denote transitions that do not involve theory reasoning.
Forget
Remove a constraint entailed by the remaining constraints of a subproblem.
Drop, Prune
Eliminate a subproblem either because it is unsatisfiable (Drop), or because
it cannot lead to a solution better than the one already known.



PY{(C,D)} || A— PU{(C.,D) [ 1<i<n}| A

Branch | n>1
if { DIz (C & Vlgign ;)
C,; are syntactically distinct

PY{(C,D)} | A— PU{(C¢,D)} | A
if CADEzc

Learn

Pu{(C,D)} |A— PU{{Cc,D)}| A
T-Learn
fCADANIEzurc

Py{(C,D)} | A— PU{(C,Dd)} || A

Propagate ECADEsd
foreey PEUC DY I A— PULC. D) || A
T HOADEzec
PU{(C,D)} [|A— P A
Drop

if C' A D is integer-inconsistent

Py{(C,D)} |A—P| A

Prune i A # None
1{WGQDD20WA)

PU{(C,D)} | A—P | A
{A' is a T-model of C AD AT
if

Retire

obj(A’) < obj(A)
for any T-model B of C A D A I, obj(A’) < obj(B)

PyY{(C.D)} [|A—0| A"~
A’ is a T-model of CAD AT
Unbounded obj(A") < obj(A)
for any integer k, there exists a T-model B of C A D A T
such that obj(B) < k

Fig. 1. The BC(T') Transition System

Retire, Unbounded
The solution to a subproblem becomes the new incumbent solution, as long
as it improves upon the objective value of the previous solution. If there
are solutions with arbitrarily low objective values, we don’t need to consider
other subproblems.



The observant reader will have noticed that the T-Learn rule is very powerful,
i.e., it allows for combined ZUT-entailment. This is in pursuit of generality. Our
completeness strategy (Theorem 3) will not depend in any way on performing
combined arithmetic and theory reasoning, but only on extracting equalities and
disequalities from the difference constraints. Entailment modulo ZUT is required
if we want to learn clauses, because they are represented as linear constraints.
Interesting implementations of BC(T') may go beyond clauses and apply T-Learn
for theory-specific cuts.

We define the binary relations —* and —* over BC(T') states as follows:
S —*+ 8§ if § — S, or there exists some state Q such that S —* Q and
Q— 5.8 —*8if S=95 or S —T S When convenient, we will annotate
a transition arrow between two BC(T') states with the name of the rule that
relates them, for example S — S".

Branch

A starting state for BC(T) is a state of the form {(C,0)} || None, where C' is
the set of integer linear constraints of an ILP Modulo T instance. A final state
is a state of the form () || A (A can also be None, or an assignment annotated
with —00).

2.3 Soundness and Completeness

Throughout this Section, we assume an IMT instance with objective function O
and a set of interface atoms I. Theorems 1 and 2 characterize BC(T") soundness.
A version of this paper with proofs is available through arXiv [20].

Theorem 1. For a formula C, if {{C,0)} || None —* @) || None, then C' A I is
Z U T-unsatisfiable.

Theorem 2. For a formula C and an assignment A, if
{(C,0)} || None —" 0 || A

where A # None, then (a) A is a T-model of CAI, and (b) there is no assignment
B such that B is a T-model of C' A I and obj(B) < obj(A).

Definition 6 (Stably-Infinite Theory). A X'-theory T is called stably-infinite
if for every T-satisfiable quantifier-free X'-formula F there exists an interpreta-
tion satisfying F' AT whose domain is infinite.

Definition 7 (Arrangement). Let E be an equivalence relation over a set of
variables V. The set

a(V,E)= {z=y | zBy} U {z#y|z,y€V and not xEy}
is the arrangement of V induced by E.

Note that Z is a stably-infinite theory. We build upon the following result
on the combination of signature-disjoint stably-infinite theories:



Fact 1 (Combination of Stably-Infinite Theories [23,31,19]) Let T; be
a stably-infinite X;-theory, for i = 1,2, and let X1 N Xy = (. Also, let I'; be
a conjunction of X; literals. It U Iy is (T1 U Ty)-satisfiable iff there exists an
equivalence relation E of the variables shared by I'y and I's such that I;Ua(V, E)
1s T;-satisfiable, for i =1,2.

Decidability for the combination of 77 = Z and another stably-infinite theory
follows trivially, as we can pick an arrangement over the variables shared by the
two sets of literals non-deterministically and perform two T;-satisfiability checks.
We show that BC(T') can be applied in a complete way by meeting the hypotheses
of Fact 1.

Theorem 3 (Completeness). BC(T) provides a complete optimization proce-
dure for the ILP Modulo T problem, where T is a decidable stably-infinite theory.

Proof (Sketch). Let C,I,0 be an ILP Modulo T instance. Assume that
{(C,0)} || None —" P || A,

and that for every (C,D) € P the following conditions hold: (a) there is an
equivalence relation Ep over the set of interface variables V' of the ILP Modulo T’
instance, such that D =z a(V, Ep), and (b) either D =z v >0o0r D =z v <0
for every v that appears as the annotation of an interface atom in I. Then
we can solve the IMT instance to optimality as follows. For every subproblem
(C,D) e P, CADAI ZUT-entails the following set of literals:

{¢ | ¢ € I and ¢ is not annotated} U

{p|¢"€land Dz v>0}U

{-¢|¢"€land D=z v<0}U
a(V, Ep)

If the set of literals is T-unsatisfiable, then C' A D A I is Z U T-unsatisfiable.
If it is T-satisfiable, any integer solution for C' A D will be a T-model. For the
T-unsatisfiable subproblems, we apply T-Learn to learn an integer-infeasible
constraint (e.g., 0 < 0) and subsequently apply Drop. If all the subproblems are
T-unsatisfiable, we reach a final state () || A. If there are T-satisfiable subprob-
lems, it suffices to let a (complete) branch-and-cut ILP algorithm run to opti-
mality, as we have already established T-consistency. The basic steps of such
algorithms can be described by means of BC(T') steps. Note that unbounded
objective functions do not hinder completeness: it suffices to recognize an un-
bounded subproblem [4] and apply Unbounded.

A systematic branching strategy can guarantee that after a finite number of
steps, the difference constraints of every subproblem entail an arrangement. For
every pair of interface variables x and y and every subproblem, we apply the
Branch rule to obtain three new subproblems, each of which contains one of the
constraints t —y < 0, x —y = 0, and x —y > 0. The Propagate rule then applies
to all three subproblems. Similarly, we branch to obtain a truth value for v > 0
for every v that appears as the annotation of an interface atom.



3 SMT as IMT

In Section 2, we provided a sound and complete optimization procedure for the
combination of ILP and a stably-infinite theory (Theorems 1, 2, and 3). We will
now demonstrate how to deal with propositional structure, so that we can use
this procedure for SAT Modulo Z U T problems, where T is stably-infinite. In
essence, our goal is to flatten propositional structure into linear constraints.

3.1 Bounding Z U T Instances

As a prerequisite for dealing with propositional structure, we show how to bound
integer terms in quantifier-free formulas while preserving Z U T-satisfiability.
We build upon well-known results for ILP [5]. Similar ideas have been applied
to Z [30]. Our results go beyond the bounds for Z, in that we take into account
background theories and objective functions.

We will say that a term is X-rooted if (at its root) it is an application of a
function symbol from the signature Y. Let Yy and X7 be signatures such that
YoN X = 0. Given a Xy U X -formula F, we will refer to the X;-rooted terms
that appear directly under predicate and function symbols from X;_; as the X;-
interface terms in F'. Interface terms are the ones for which variable abstraction
(Example 2) introduces fresh variables.

Let X be a signature such that ¥z N X = (), and F be a quantifier-free
X'z U X-formula. We denote by intfz(F') and intfs(F") the sets of X z-interface
terms and X-interface terms in F, and by intf(F") the union intfy,(F)Uintf z (F).
Let atomsz(F) be the set of atomic formulas in F' that are applications of <;
without loss of generality, we will assume that formulas contain no arithmetic
equalities or other kinds of inequalities. Also, let maxc(F) be the maximum
absolute value among integer coefficients in F' plus one, and varsz (F') be the set
of variable symbols that appear directly under predicate and function symbols
from X'z. By o(M) we denote the interpretation of linear expression o under the
first-order model M. We finally define bounds(F,p) = {—p < tAt < p |t €
varsz (F) Uintf(F)}, for positive integers p.

Theorem 4. Let X be a signature such that Xz N'X = () and T be a stably-
infinite X -theory. Let F be a quantifier-free Xz U X -formula and o an objective
function. Let k = |atomsz (F)|+|intf(F)| + |varsz(F)| —1, m = |intf z(F)| + k,
and n = |intf(F)| + |varsz (F)|. Finally, let

p = (2n+ Ek)3[(m + 2) maxc(F)]*m 12,

If there is a first-order model M such that M = F AN Z AT and M s a finite
optimum for F with respect to o (i.e., there is some integer constant ¢ such that
M = o = ¢ and there is no model M’ such that M' = FAZAT and M' =0 < ¢),
then {F'} Ubounds(F, p) U{o=0o(M)} is Z U T-satisfiable.



We provide a proof through arXiv [20]. Intuitively, given a quantifier-free
Yz U Y-formula F' and an objective function o, Theorem 4 allows us to bound
the integer terms of F while preserving (finite) optimality. *

3.2 Propositional Structure

Let X be a signature such that ¥z N Y = § and T be a stably-infinite X-
theory. Throughout this Section, F' will be a quantifier-free X'z U X-formula and
O will be an objective function. We show how to encode F' as the conjunction
of a set C of integer linear constraints and a set I of Y-interface atoms, while
preserving optimality with respect to O. We apply a Tseitin-like algorithm, i.e.,
we recursively introduce {0, 1}-constrained variables for subformulas of F'.

The most interesting part is dealing with predicate symbols from X and X'z.
For the former we simply introduce annotated X-interface atoms, e.g., [p(x)]".
For Xz, we can assume that we are only confronted with inequalities of the form
¢ = (>, ci-v; <r), because other relations can be expressed in terms of < and
the propositional connectives. Also, we only have to deal with sums over variable
symbols, because variable abstraction takes care of terms that involve Y. We
define a variable v(¢) such that v(¢) < ¢ as follows. By bounding all variables
as per Theorem 4, we compute m and k such that m < ZZ ¢;-v; < k always holds.
The direction v(¢) = ¢ can be expressed as Y . ¢;-v; <7+ (k—7)- (1 —v(¢));
for the opposite direction we have . ¢;-v; > r+ (m —7) - v(¢p).

With atomic formulas taken care of, what remains is propositional connec-
tives; we encode them by using clauses in the standard fashion. Clauses appear
as part of our collection of ILP constraints: V;l; is equivalent to Zl l; > 1. (For
translating a clause to a linear expression, a negative literal —w; appears as 1 —v;
while a positive literal remains intact.)

Note that the (possibly astronomical) coefficients we compute only serve the
purpose of representing formulas as sets of linear constraints. Their magnitude
does not necessarily have algorithmic side-effects. In the worst case, the initial
continuous relaxation will be weak, but relaxations will become stronger once
we start branching on the Boolean variables. This is no worse than Lazy SMT,
where linear constraints are only applicable once the SAT core assigns the cor-
responding Boolean variables.

4 Implementation and Experiments

IMT first appeared in the context of architectural synthesis for aerospace sys-
tems [16]. Our approach combined an ILP solver with a custom decision proce-
dure for real-time constraints. We implemented the combination in the CoBaSA
tool. The CoBaSA manifestation of IMT predates BC(T). More recently, we
implemented a BC(T')-based solver, which we call Inez.

L A solver that relies on Theorem 4 for bounding can detect unboundedness by im-
posing the additional constraint o < o(M), re-computing bounds, and solving the
resulting instance. If the updated instance is satisfiable, the original is unbounded.
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Fig. 2. Z3 versus SCIP and CPLEX (Synthesis Instances)

Our experimental evaluation is twofold. First, we show that an ILP core is
essential for the practicality of our synthesis approach. This part of the evalua-
tion does not deal with BC(T') in any way, but it nevertheless provides evidence
that IMT enables new applications. Second, we compare our BC(T') prototype
against Z3 [8] and MathSAT [14] using benchmarks from the SMT-LIB.

4.1 Motivation

In the past, we applied CoBaSA to solve the architectural synthesis problem for
the real, production data from the 787, which was provided to us by Boeing [16].
We have made available a family of 60 benchmark instances derived from Boeing
problems, 47 of which are unsatisfiable. 2 We will use these instances to evaluate
the suitability of SMT and ILP solvers as the core of a combination framework
for synthesis, which is a key application area for IMT.

We briefly describe the synthesis problem that gives rise to our benchmarks.
The basic components for this problem are cabinets (providing resources like
CPU time, bandwidth, battery backup, and memory), software applications
(that consume resources), and global memory spaces (that also consume re-
sources). Applications and memories have to be mapped to cabinets subject to
various constraints, e.g., resource allocation and fault tolerance. Applications
communicate via a publish-subscribe network. Messages are aggregated into vir-
tual links that are multicast. The network and messages are subject to various
constraints, e.g., bandwidth and scheduling constraints. The instances differ in
the numbers of different components, the amounts of different resources, and the
collection of structural and scheduling requirements they encode.

The instances are {0,1}-ILP (also known as Pseudo-Boolean). There are
multiple ways to encode {0,1}-ILP problems as SMT-LIB instances. A direct
translation led to SMT problems that Z3 could not solve, so we tried several
encodings, most of which yielded similar results. One encoding was significantly

2 http://www.ccs.neu.edu/home/vpap/benchmarks . html



better than the rest, and it works as follows. Some of the linear constraints
are clauses, i.e., of the form > I, > 1 for literals I;. It makes sense to help
SMT solvers by encoding such constraints as disjunctions of literals instead of
inequalities. To do this, we declare all variables to be Boolean. Since almost
all variables also appear in arithmetic contexts where they are multiplied by
constants greater than 1, we translate such constraints as demonstrated by the
following example: the linear constraint z +y + 2z > 2 becomes (>= (+ (ite x
10) (itey 1 0) (ite z 2 0)) 2).

Figure 2 visualizes the behavior of Z3 versus SCIP and CPLEX. SCIP solves
all instances, while CPLEX solves all but 3. Z3 solves 5 out of 13 satisfiable and
30 out of 47 unsatisfiable instances. Strictly speaking, the only theory involved is
Z. However, the instances do contain collections of scheduling theory lemmas [16]
recorded by CoBaSA in the process of solving synthesis problems. Therefore, our
setup simulates the kinds of queries a core solver would be confronted with,
when coupled with our scheduling solver. With suitability for synthesis as the
evaluation criterion, this is the most rigorous comparison we can perform without
implementing and optimizing the combination of SMT with scheduling. Both
ILP solvers significantly outperform Z3, demonstrating the potential of a general
ILP-based combination framework.

4.2 BC(T) Implementation

Inez is implemented as an unobtrusive extension of SCIP. Namely, we have ex-
tended SCIP with a congruence closure procedure (constraint handler in SCIP
terms), and also provide an SMT-LIB frontend. The overall architecture of SCIP
matches BC(T'). Subproblems (called nodes) are created by branching (Branch)
and eliminated by operations semantically very similar to Drop, Prune, Retire,
and Unbounded. SCIP employs various techniques for cut generation (Learn).

Like most modern MIP solvers, SCIP relies heavily on linear relaxations.
While not explicitly mentioned in BC(T), linear relaxations fit nicely: (a) Ib
relies on continuous relaxations, as the best integral solution can be at most as
good as the best non-integral solution. (b) Solutions to relaxations frequently
guide branching, e.g., if a solution assigns a non-integer value r to variable v,
it makes sense to branch around r (v > [r] or v < |r]). (c) If some relaxation
is infeasible, then the corresponding subproblem is infeasible and Drop applies,
while (d) Retire or Unbounded applies to T-consistent integer solutions.

BC(T') proposes difference constraints as a channel of communication with
theory solvers (Propagate rule). Inez implements Propagate as follows. For every
pair of variables  and y whose (dis)equality is of interest to the theory solver,
Inez introduces a variable d, , and imposes the constraint d, , = z — y. When
SCIP fixes the lower bound of d,, to [, the theory solver is notified of the
difference constraint ! < z—y (similarly for the upper bound). We generally need
quadratically many such auxiliary variables. This is not necessarily a practical
issue, because most pairs of variables are irrelevant.

Our congruence closure procedure takes offsets into account [25]. In addition
to standard propagation based on congruence closure, Inez applies techniques
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Fig. 3. Inez versus Z3 and MathSAT (SMT-LIB Instances)

specific to the integer domain. Notably, if = is bounded between a and b, and
for every value of k in [a,b], f(k) is bounded between [ and wu, it follows that
I < f(z) < u, i.e., we can impose bounds on f(z). a and b do not have to
be constants, e.g., it may be the case that m < d,, =z —y < n and f(y +
m),..., f(y 4+ n) are bounded. We apply this idea dynamically (to benefit from
local bounds) and not just as preprocessing.

BC(T') does not preclude techniques that target special classes of linear con-
straints. For example, an implementation can use the two-watched-literal scheme
to accelerate Boolean Constraint Propagation on clauses. SCIP implements such
techniques. Note that IMT does not strive to replace propositional reasoning,
but rather to shift a broader class of constraints to the core solver.

4.3 BC(T) on SMT-LIB

We experimentally evaluate Inez against MathSAT and Z3, based on the most
relevant SMT-LIB category, which is QF_UFLIA (Quantifier-Free Linear Integer
Arithmetic with Uninterpreted Functions). Z3 and MathSAT solve all 562 bench-
marks, and so does Inez. While Inez is generally slower than the more mature
SMT solvers, the majority of the benchmarks (338) require less than a second,
462 benchmarks require less than 10 seconds, and 528 less than 100 seconds.
The integer-specific kind of propagation outlined in Section 4.2 is crucial; we
only solve 490 instances with this technique disabled. Figure 3 visualizes our
experiments.

Interestingly, the underlying SCIP solver learns no cutting planes whatsoever
for 362 out of the 562 instances. For the remaining instances the number of cuts
is limited. Namely, 126 instances lead to a single cut, 61 lead to 2 cuts, and
the remaining 13 instances lead to 9 cuts or less. Based on this observation,
the branching part of Inez’s branch-and-cut algorithm is being stressed here.
We have not yet tried to optimize branching heuristics, so there is plenty of
room for improvement. More importantly, the instances are not representative
of arithmetic-heavy optimization problems, where we would expect more cuts.



A final observation is that SCIP performs floating-point (FP) arithmetic,
which may lead to wrong answers. Interestingly, Inez provides no wrong answers
for the benchmark set in question, i.e., the instances do not pose numerical
difficulties. The fact that we learn very few cutting planes partially explains
why. There is little room for learning anything at all, let alone for learning
something unsound.

5 Related Work

Branch-and-Cut: Branch-and-cut algorithms [22] combine branch-and-bound
with cutting plane techniques, i.e., adding violated inequalities (cuts) to the lin-
ear formulation. Different cut generation methods have been studied for general
integer programming problems, starting with the seminal work of Gomory [13].
Cuts can also be generated in a problem-specific way, e.g., for TSP [15]. Problem-
specific cuts are analogous to theory lemmas in IMT.

Nelson-Oppen: The seminal work of Nelson and Oppen [23] provided the foun-
dations for combining decision procedures. Tinelli and Harandi [31] revisit the
Nelson-Oppen method and propose a non-deterministic variant for non-convex
stably-infinite theories. Manna and Zarba provide a detailed survey of Nelson-
Oppen and related methods [19].

SMT: ILP Modulo Theories resembles Satisfiability Modulo Theories, with ILP
as the core formalism instead of SAT. SMT has been the subject of active re-
search over the last decade [3, 10,27, 8]. Nieuwenhuis, Oliveras and Tinelli [27]
present the abstract DPLL(T') framework for reasoning about lazy SMT. Dif-
ferent fragments of Linear Arithmetic have been studied as background theories
for SMT [11, 14]. Extensions of SMT support optimization [26, 6, 29].

Generalized CDCL: A family of solvers that generalize CDCL-style search to
richer logics recently emerged [17, 28, 18, 9]. This research direction can be viewed
as progress towards SMT with a non-propositional core. Our work is complemen-
tary, in the sense that we do not focus on the core solver, but rather provide a
way to combine a non-Boolean core with theories.

Inexact Solvers: Linear and integer programming solvers generally perform FP
(and thus inexact) calculations. Faure et al. experiment with the inexact CPLEX
solver as a theory solver [12] and observe wrong answers. For many applications,
numerical inaccuracies are not a concern, e.g., the noise in the model overshadows
the floating point error intervals. However, accuracy is often critical. Recent
work [24,7] proposes using FP arithmetic as much as possible (especially for
solving continuous relaxations) while preserving safety. IMT solvers can be
built on top of both exact and inexact solvers.



6 Conclusions and Future Work

We introduced the ILP Modulo Theories (IMT) framework for describing prob-
lems that consist of linear constraints along with background theory constraints.
We did this via the BC(T') transition system that captures the essence of branch-
and-cut for solving IMT problems. We showed that BC(T") is a sound and com-
plete optimization procedure for the combination of ILP with stably-infinite
theories. We conducted a detailed comparison between SMT and IMT.

Many interesting research directions now open up. We could try to relax
requirements on the background theory (e.g., stably-infiniteness, signature dis-
jointness) while preserving soundness and completeness. We anticipate inter-
esting connections between IMT and other paradigms, e.g., SMT, constraint
programming, cut generation, and decomposition. Additionally, the BC(T) ar-
chitecture seems to allow for significant parallelization. Finally, we believe that
IMT has the potential to enable interesting new applications.
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A Appendix: Proof of Soundness

Lemma 1. For states P || A and P’ || A’ such that P || A— P’ || A’, if there
is an assignment B such that B is a T-model of C AD AT for some (C,D) € P,
then one of the following conditions holds: either (i) obj(A") < obj(B), or (ii) B
is a T-model of C' AN D' A1 for some (C',D’) € P'.

Proof. Assume that there is a subproblem p = (C, D) € P and an assignment
B such that B is a T-model of C A D AI. If p € P’ then (ii) holds trivially. If
p ¢ P’, then the transition cannot possibly be Drop (we cannot apply Drop on
(C, D) because B is an assignment that satisfies C' A D). For the other rules:

— Branch: There are subproblems (Cy, D), ..., {(Cy, D) in P’ such that D =z
(C < Vi<ic, Ci). Thus, B is a T-model of C; ADAI for some i (1 <i < n).
(C;, D) € P, therefore (ii) holds.

— Prune: obj(A’) < Ib(C' A D) < obj(B). Condition (i) holds.

— Retire, Unbounded: obj(A’) < obj(B), therefore (i) holds.

— Learn, Forget, Propagate, T-Learn: there is a subproblem (C’,D’) € P’
such that CADAI Ezur C'AD’, and therefore B is a T-model of C'AD'AI.

Lemma 2. For states P || A and P’ || A’ such that P || A — P" || A, obj(A") <
obj(A).

Proof. The only rules that modify the assignment are Retire and Unbounded;
the conditions under which we can apply them imply obj(A’) < obj(A). For any
other rule, A = A’

Lemma 3. For states P || A and P’ || A’ such that P | A — P’ || A, if
A #£ A then A’ is a T-model of C AN D AT for some (C,D) € P.

Proof. The conditions of Retire and Unbounded guarantee that A’ is a T-model
of C A D AT for some (C, D) € P. No other rule modifies the assignment.

Lemma 4. For states P || A and P' || A’ such that P || A —* P’ || A, if there
is an assignment B such that B is a T-model of C AND A1 for some (C,D) € P,
then one of the following conditions holds: obj(A’) < obj(B), or B is a T-model
of C" ND' AT for some (C',D’) € P'.

Proof. We induct on the length n of the sequence of transitions.

— Induction base: n =0. P || A= P’ || A’; obvious.

— Induction step: assume that the property holds for any sequence of n — 1
transitions, where n > 1. We will prove that it holds for any sequence of
transitions Py || Ao — ... — Pp—1 || An—1 — Py || A, Assume there is an
assignment B such that B is a T-model of Co ADgAI for some (Cy, Do) € Py.
By the induction hypothesis, one of the two following conditions holds:

e 0bj(A4,,—1) < obj(B): then obj(A,) < obj(A,—-1) < obj(B) from Lemma 2.



e Bisa T-model of C,,_1 AD,,_1 AT for some subproblem (C,,_1, D,,_1) €
P,,_1: our proof obligation follows from Lemma 1 applied to the transi-
tion P,—1 || A1 — P, || An.

Lemma 5. For states P || A and P’ || A" such that P || A — P’ || A,
Vie.pyer CAD 2z Ve pyep CAD.

Proof. We case-split on the BC(T') transitions.

The rules Prune, Drop, and Retire can only make the disjunction of the
subproblems in P’ stronger, because a subproblem is eliminated and the
rest of the subproblems remain intact.

For Unbounded, \/ ¢ pycps C A D = false; false =z \/ o pyep C A D.
The rules Learn, Forget, and Propagate and substitute a subproblem for a
Z-equivalent one.

The rule T-Learn adds a constraint to a subproblem, and therefore makes
the disjunction in P’ stronger.

The rule Branch replaces a subproblem (C, D) with a set of subproblems
whose disjunction is Z-equivalent to C' A D.

Lemma 6. For states P || A and P’ || A" such that P | A —* P' || A,
Vie.pyer CAND Ez Ve pyep CAD.

Proof. Induction on the length of the sequence of transitions and application of
Lemma 5.

Proof (Theorem 1). Assume that there is an assignment A such that A is a T-
model of C. Then, from Lemma 4 either there exists (C’, D’) € () such that A is
a T-model of C" A D’ AT (which cannot possibly be true), or +00 = obj(None) <
obj(A) (contradiction, because obj(A) has to be finite).

Proof (Theorem 2).

(a)

The sequence of transitions from {(C,®)} || None to §) || A has to be of the
following form:

{(C,0)} || None —* S || Ax — S||A—*0| A
Retire/Unbounded
There is at least one Retire or Unbounded step, as these are the only rules
that can modify the assignment. Consider the last such step. The con-
ditions on Retire and Unbounded steps require that A is a T-model of
IAV ¢ pyes, (CAD). From Lemma 6, \/ ¢ pyes, (CAD) =z C. Therefore,
A is a T-model of C.

(b) Follows from Lemma 4.



B Appendix: Proof of Theorem 4

Our starting point is known bounds for ILP instances of the form

min c¢x
subject to Ax =1b (1)
x>0

where A, b, and ¢ are matrices of integers (m x n, m x 1, and 1 x n respectively),
and x is an n-vector of integer variables.

Fact 2 ([5, Corollary of Theorem 13.5]) If an ILP instance of the form (1)
has a finite optimum, then it has an optimal solution x such that x; < n3[(m +
2)d|*™*12 for 1 < j < n, where d = max(max; ; | A; ;|, max; |b;|, max; |c;|).

In what follows, it will be more convenient to work with the following form:

min c¢x
subject to Ax =10 (2)
Dx<h

where A, D, b, h and ¢ are matrices of integers (m X n, k X n, m x 1, k x 1 and
1 x n respectively), and x is an n-vector of integer variables.

Lemma 7. If an ILP instance I of the form (2) has a finite optimum, then it has
an optimal solution x such that |x;| < (2n + k)3[(m + k + 2)d)*mH4++12 for 1 <
J <n, where d = max(max; ; |A; j|, max; |b;|, max; |¢;|, max; j |D; ;|, max; |h;]).

Proof. We reduce I to an equisatisfiable instance over a vector x’ of 2n variables
constrained to be non-negative (x’ > 0). We achieve this by replacing each
variable z; with zj — ] ;. In the resulting matrices A’, D" and ¢/, z; appears
with the same coefficients as x;; «;, | ; appears with the coefficients multiplied by
—1. The resulting ILP instance I’ has m + k constraints and 2n variables. We
replace inequalities with equalities by introducing k slack variables and obtain
an equisatisfiable instance I” over a vector x” of 2n + k variables (the last k of
which are the slack variables) and m + k constraints.

The chain of transformations preserves the maximum absolute coefficients.
We can translate solutions of I to solutions of I” and vice versa via the equalities
x; = xf —a) ;, for 1 <14 < n;an optimal assignment in either side corresponds to
an optimum in the other. I” has a finite optimum because I does. By Lemma 2,
I" has an optimal solution y” such that y§ < (2n + k)3[(m + k + 2)d]*mF4++12,
For the corresponding solution y to I, we have |y;| = |y =yl 1| < (2n+k)3[(m+
k + 2)d)*m+4k+12 which concludes our proof.

Lemma 8. Let X be a signature such that Xz NX = 0, and T be a stably-
infinite X -theory. Furthermore, let H be a finite set of Xz U X literals, and o an



objective function. Let
k = |atomsz(H)| + |intf(H)| + |varsz(H)| — 1,
m = |intfz(H)| + k,
n = |varsz(H)| + |intf(H)|, and
p = (2n+ k)*[(m + 2) maxc(H)]*™ 12

If there is a first-order model M such that M = HANZ AT and M is a finite
optimum, for H with respect to o (i.e., there is some integer constant ¢ such
that M |= o = ¢ and there is no model M’ such that M' = HANZ AT and
M' =0 < ¢), then {H} Ubounds(H, p) U{o=0(M)} is ZUT-satisfiable.

Proof. We perform variable abstraction on H (as demonstrated by Example 2)
and obtain a set of Xz literals L and a set of X literals U. Let V be the set
of variables shared by L and U (|V| < [|intf(H)| + |varsz(H)|). Let E be the
equivalence relation on V' induced by M. Clearly, L U a(V, E) is Z-satisfiable
and U U «(V, E) is T-satisfiable. L contains |intfz (H)| equalities, | atomsz (H)]
possibly negated inequalities, and |varsz (H)|+|intf(H )| variables. We eliminate
any negations in L by rewriting =(S < r) to —S < —r — 1 and obtain a set of
inequalities L.

We order the variables V' so that v is before uw if M |= v < w. (This is slight
abuse of notation; M in fact models an inequality between the corresponding
terms in H.) We obtain a sequence of variables v, vy, ..., vy -1, v; € [V]. Let

C :{vi—vi+1:O\O§i<|V|—1andM):vi:vi+1}, and
N ={v,—v41<0]0<i<|V|-1and M = v; <viy1}.

Minimizing o subject to L'’ U Un is an ILP instance I of the form (2).
The maximum absolute value among coefficients in the matrices representing
I is maxc(H). Lemma 7 applies to I. In the worst case, ¢ is empty and |n| =
|intf(H)|+|varsz(H)|—1, i.e., we have | intf z(H)| equalities and k inequalities.
Thus, I has an optimal assignment A such that for every variable v, |A(v)| < p.
Therefore, L' U¢UnUbounds(L’, p)U{o = o(M)} is Z-satisfiable. Since (Un =z
a(V,E), L' =z L, and bounds(L, p) = bounds(L’, p), L U bounds(L, p) U {o =
o(M)}Ua(V, E) is Z-satisfiable. Because it is also the case that U U a(V, E) is
T-satisfiable, it follows from Theorem 1 that L UU Ubounds(L, p) U{o = o(M)}
is Z U T-satisfiable. Thus, H U bounds(H, p) U {o = o(M)} is Z U T-satisfiable.

Proof (Theorem /). M satisfies some literals in F', and falsifies the rest. Let H
be the set {t | ¢t is aliteral in F, M = t} U {~t | ¢ is a literal in F, M | —it}.
M is a finite optimum for H with respect to o: if it was not, it would not
be a finite optimum for F which contradicts our assumptions. For any first-
order model M’ such that M’ = H A Z AT, it will also be the case that
M' = FANZAT (because M and M’ assign the same truth values to the literals
that appear in F', and the propositional structure does not change). By Lemma 8,
HUbounds(p)U{o = o(M)} is ZUT-satisfiable, i.e., there is some model M’ that
satisfies it (and also satisfies ZUT'). M’ also satisfies F'Ubounds(p)U{o = o(M)},
which concludes our proof.



