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Using an interactive theorem prover to reason about programs involves a sequence of interactions
where the user challenges the theorem prover with conjectures. Invariably, many of the conjectures
posed are in fact false, and users often spend considerable effort examining the theorem prover’s
output before realizing this. We present a synergistic integration of testing with theorem proving,
implemented in the ACL2 Sedan (ACL2s), for automatically generating concrete counterexamples.
Our method uses the full power of the theorem prover and associated libraries to simplify conjec-
tures; this simplification can transform conjectures for which finding counterexamples is hard into
conjectures where finding counterexamples is trivial. In fact, our approach even leads to better theo-
rem proving, e.g., if testing shows that a generalization step leads to a false conjecture, we force the
theorem prover to backtrack, allowing it to pursue more fruitful options that may yield a proof. The
focus of the paper is on the engineering of a synergistic integration of testing with interactive theo-
rem proving; this includes extending ACL2 with new functionality that we expect to be of general
interest. We also discuss our experience in using ACL2s to teach freshman students how to reason
about their programs.

1 Introduction

Users of interactive theorem provers such as ACL2 spend most of their time and effort challenging the
theorem prover to find proofs of conjectures. They may start with a high-level theorem, only to find that
a very long sequence of other theorems must be proven before the theorem prover is convinced that the
original conjecture is in fact a theorem.

During this process users invariably challenge the theorem prover with conjectures that are false. For
example, an intermediate lemma may be missing some non-obvious hypotheses. In such cases, users
routinely have a difficult time determining whether the theorem prover failed because the conjecture is
not true or because the theorem prover cannot find a proof without further user assistance.

Lightweight methods for quickly and automatically identifying false conjectures have the potential
to dramatically simplify the interactions between users and theorem provers.

In this paper we explore the obvious, well-studied idea of using random testing to try to find concrete
counterexamples to conjectures. A naive approach to random testing is unlikely to find counterexamples
in all but the simplest of cases. One reason is that it is highly unlikely that random assignments will
satisfy even relatively simple hypotheses. This is especially true in a theorem prover for an untyped
logic, like ACL2, where all variables can take on any value.

We use a general data definition framework that is integrated with our testing framework. Together,
they enable us to infer type information automatically from hypotheses.



2 Integrating Testing and Interactive Theorem Proving

Unfortunately, hypotheses are often much more complex than a sequence of type restrictions. Our
first contribution shows how to overcome this problem by using the full power of ACL2 to simplify
conjectures for better testing. While previous work has suggested that subgoals generated during the
proof process can be tested independently, as far as we know, no one has ever described or designed
a system that does this automatically for a fully featured interactive theorem prover. The effectiveness
of our approach is magnified by the use of libraries, including not only general-purpose libraries devel-
oped by the user community over many years (e.g., for reasoning about arithmetic and lists), but also
domain-specific libraries developed for specific applications. Such libraries may contain rules, typically
conditional rewrite rules, as well as other strategic guidance in the form of verified metatheoretic simpli-
fiers, dynamically computed hints, and so-called clause processors to connect to external tools.

Some of the challenges we faced in integrating testing and theorem proving are due to the powerful
proof procedures in ACL2, which can generate subgoals that differ radically from the goals they receive.
For example, proof procedures may remove and introduce variables. How does one then take subgoal
counterexamples and turn them into counterexamples for the original conjecture? Should we test every
subgoal, or is there some disciplined way of testing select subgoals? Proof procedures may strengthen
subgoals, making it possible to find counterexamples to subgoals derived from true conjectures. They
may generate implied facts that are not part of a subgoal, but that we can profitably mine for useful
information.

Proof procedures may also remove or modify “type” hypotheses (after all ACL2 is untyped, so “type”
hypotheses are just regular hypotheses and, therefore, subject to rewriting and other forms of simplifica-
tion). In fact, a variable may wind up having multiple type hypotheses associated with it; so what is the
best strategy for generating random test cases that satisfy these hypotheses? The way we deal with these
issues is described in Section 4.

Our second contribution is to show, perhaps surprisingly, that not only can theorem proving lead to
better testing, but testing can lead to better theorem proving. For example, suppose that the theorem
prover generalizes a goal, but subsequent testing shows that the resulting conjecture is not valid. Then
we can force the theorem prover to backtrack so that instead of painting itself into a corner, the theorem
prover can pursue more fruitful options that may yield a proof. In fact, this idea can be applied to several
proof procedures within ACL2, and can also be used to help the theorem prover choose from a set of
applicable proof steps. We describe this idea in Section 5, where we also present an example from the
ACL2 regression suite.

Our third contribution, described in Section 6, consists of enhancements related to the computed hint
mechanism of ACL2 required for the integration of testing with theorem proving. The first enhancement
involves changing ACL2 so that it records the reasons for eliding variables. We need this information to
generate counterexamples for top-level conjectures from subgoal counterexamples. This enhancement
is discussed in Section 4. The remaining three enhancements are to the computed hint mechanism in
ACL2. Computed hints are a very powerful mechanism that allow users to compute hints dynamically,
by examining the subgoals ACL2 generates during the theorem proving process. The first enhancement
to computed hints is that they are now given access to various sources of derived facts that are not
part of a subgoal, but that can be quite useful for testing. The second enhancement, which we call
override-hints, provides a kind of meta-programming capability for computed hints that allows us to add
testing hints dynamically to interesting subgoals, without interfering with user-provided hints. The third
enhancement to computed hints, backtrack hints, permits a limited form of backtracking. We expect that
these enhancements will be of use to the wider ACL2 community, and may be of interest to developers
of other theorem proving systems.

Our fourth contribution involves the implementation and evaluation of the work presented in this
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paper. All of our work has been implemented in ACL2s, the ACL2 Sedan [10]. ACL2s uses ACL2 as its
core reasoning engine, but was designed with particular emphasis on usability by a wide range of users.
In particular, ACL2s provides a modern integrated development environment in Eclipse, supports several
modes of interaction, and incorporates a powerful automated termination analysis engine [25]. ACL2s is
freely available, and well-supported. These enhancements have made it possible for us to use ACL2s to
teach hundreds of freshman students at Northeastern University how to reason formally about programs.

The work in this paper is motivated by our experience teaching college freshmen. Even advanced
freshmen have not been exposed to the idea of program verification. However, all of the students do
know how to program and how to evaluate a program on concrete inputs. Therefore, it is easy to ex-
plain how to falsify a conjecture with testing: find inputs such that evaluating the conjecture with these
inputs yields false. A conjecture is true if no such inputs exist. This is a good way of teaching students
about specification in a way that directly connects what they know, namely evaluation, to the new no-
tions of specification and verification. When they first start, they often make silly mistakes, specifying
conjectures that they mistakenly think are true. Therefore, tools that automatically falsify conjectures
and provide witnesses that students can evaluate can serve an important pedagogical role.

We have designed our testing framework with both beginners and experts in mind. The interfaces are
as simple as possible. In fact, no special incantations are required to use testing. In ACL2s, it will just
happen automatically. We have successfully used ACL2s augmented with testing in our freshman classes.
We expect our work to make ACL2s a more useful tool for students as well as the wider community. We
briefly discuss our experiences in Section 7.

2 Related Work

2.1 Counterexample Generation in Interactive Theorem Provers

Random Testing is a well-studied, scalable, lightweight technique for finding counterexamples to exe-
cutable formulas. Random testing has been widely adopted in the functional language community, as
seen by the recent success of QuickCheck [8]. The theorem-proving community has also embraced ran-
dom testing, for example in Isabelle/HOL [1], Agda [11] and PVS [26]. The other standard technique
for generating counterexamples for a conjecture is to use a SAT or SMT solver. This requires translating
from a rich, expressive logic to a restricted logic with limited expressiveness. The major constraint on
such approaches is that a counterexample to the translated formula should also be a counterexample to
the original formula. However, the absence of a counterexample does not imply that the conjecture is
true. Some tools making use of the above technique are Pythia [27], SAT Checking [28], Refute [29]
and Nitpick [2]. Another line of work translates to SAT or other decidable fragments of first order logic
for which efficient decision procedures exist, but only when the original conjecture is in fact expressible
in the decidable fragment [23, 24, 15]. ACL2 has included a related capability since 1995, when BDDs
with rewriting were integrated into ACL2 [18]. The work mentioned above has the same goal as our
work: to exhibit counterexamples to false conjectures. However, unlike our work, none of the above
mentioned approaches is a fully automated method that uses an interactive theorem prover to generate
counterexamples for arbitrary executable conjectures.

2.2 Combining testing and theorem proving

One of the first convincing examples of combining testing and proving was carried out using Agda [11],
although the ideas for combining formal specifications (and tools) and testing date back to at least
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1981 [6]. In Agda, random testing is used to check for counterexamples to the top-level goal, and
the authors suggest that the user could also manually apply random testing to subgoals. However, in
contrast to our work, the integration of testing is not automatic.

There has been a lot of work on employing formal methods technology to perform model-based
testing since the seminal work of Dick and Faivre [9]. We restrict our attention to some recent work
leveraging theorem provers towards this goal. In the tool HOL-TESTGEN [4], specifications are analyzed
symbolically (unfolding definitions) using Isabelle/HOL to derive formulas in conjunctive normal form.
To handle recursion, a uniformity hypothesis [14] is used to bound the number of unfoldings. After
minimization, the resulting formulas, called symbolic test-cases, are grounded using random or user-
specified test-data generators. Particular emphasis is put on interactive control of test hypotheses (derived
from uniformity and regularity hypotheses) for tractable testing. A similar tool with less focus on user
interaction is FocalTest [5]. FocalTest transforms a top-level property into a set of elementary properties
(normal form) which are independently tested by use of random test-data generation. Transforming a
specification into a normal form can be viewed as a form of case-analysis. ACL2’s proof procedures
accomplish much more than just case-analysis; in particular, rewrite rules programmed in ACL2 by user-
specified lemmas or lemmas in standard libraries contribute greatly to the effectiveness of our integrated
testing.

An obvious difference between our implementation and the aforementioned systems is that they do
not use the result of the testing process to influence the theorem proving process. In the context of ACL2,
there has been previous work with the goal of preventing the prover from performing “bad” generaliza-
tions. In [12], Erickson describes an extension to ACL2 allowing it to backtrack from a failed proof
to alternative proof strategies. Erickson’s procedure works by initially calling the simplifier (bash) to
process the original goal, returning an equivalent list of clauses. The procedure then attempts to refute
each clause. This involves unwinding the recursive functions to some finite depth and sending the result-
ing formula to bash. The failure of the simplifier to prove the formulas is used to control backtracking
during generalization. Although we share the common goal of improved theorem proving, there are a
number of differences. Adopting Erickson’s approach requires significant changes to the main prover
loop. His implementation can handle arbitrary ACL2 conjectures, even constrained functions, unlike us.
We employ a sound technique of using evaluation (testing) to control the backtracking, whereas Erick-
son’s procedure uses the bash simplifier, which potentially can fail to prove a true clause, thus resulting
in preventing a potentially “good” generalization.

Our approach seamlessly integrates ACL2 theorem proving with testing, with a high level of automa-
tion. In the context of interactive theorem proving, we know of no previous work for which reasoning
and testing are tightly integrated with each automatically informing the other.

3 Test Generation

ACL2 formulas tend to be executable; hence testing in ACL2 simply involves executing a formula under
an instantiation of its free variables.1

For testing to be effective, the variables should be bound to values satisfying the “type-like” hypothe-
ses of the formula. While ACL2 is syntactically untyped, the ACL2 value universe is divided into 14
pairwise-disjoint “primitive types” which include {0}, the positive integers, the positive non-integer ra-
tionals, the negative integers, the negative non-integer rationals, the complex rationals, {nil}, {t}, other
symbols, null-terminated non-empty lists, conses that are not null-terminated lists, strings, characters,

1Many other theorem provers also provide various levels of support for executing formulas.
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and everything else (the universe is not closed). ACL2 users provide the prover with type information by
specifying type constraints (hypotheses such as (stringp x)).

One cannot create new types in ACL2, in the sense that one cannot define a new non-empty set
of values that provably extends the ACL2 value universe. Rather, one defines a “type” by defining a
predicate that recognizes a subset of the ACL2 universe (e.g., true-listp).

ACL2s includes a data definition framework [7] that supports and automates the generation of such
user-defined data types. For example, the following form defines a list of integers (loi).

(defdata loi (listof integer))

Given the above form, ACL2s will automatically generate a type predicate loip, which recognizes
lists of integers. The data definition framework also supports testing by generating nth-loi, a type
enumerator that maps natural numbers into lists of integers. In general, a type enumerator for type T is
a surjective function from natural numbers to T . ACL2s will automatically generate a type enumerator
for any new data types defined using the data definition framework. The type predicate and enumerator
are generated using a syntax-directed translation. We say that foo is a ‘type’, recognized by the data
definition framework, if there exists a predicate function, foop, and an enumerator function, nth-foo.
If foo is a ‘type’, it can be used in a defdata form to define another ‘type’. In the above example, integer
is used to define a list of integers (loi).

ACL2s also proves certain theorems and updates a global table maintaining metadata for existing
datatypes, e.g., it will prove and then record that loi is a subtype of true-list. Below we show what
loip and nth-loi evaluate to on simple examples.

(loip ’(-1 -23 -42 7 13)) = T

(nth-loi 26945) = (24 -5 1 0)

The data definition framework in ACL2s provides type enumerators for the primitive types and for
basic ACL2 types that are combinations of primitive types (e.g., the natural numbers, integers, rationals,
and lists). Each data object in the ACL2 universe is treated as a singleton “type”, i.e., a set with just one
element, the data object itself. The type which represents all of the ACL2 universe is called all; every
type is thus a subset of all. Also fully supported are user-defined union types, product types, list types,
set types, record types, and enumerated types. ACL2s even supports custom types (e.g., prime numbers),
but then the burden of generating the enumerator falls on the user. Table 1 gives a synopsis of the main
features of the data definition framework.

To enable effective testing, one should use type predicates understood by the data definition frame-
work (e.g., loip) to specify the types of the free variables in the hypotheses of a conjecture. The cor-
responding type enumerator (e.g., nth-loi) can then be used to generate test samples. There are many
ways in which test generation can proceed. For example, we can enumerate test instances up to a certain
size (bounded exhaustive testing); we can randomly sample (random testing); we can do both. Cur-
rently, the default is to randomly sample. Furthermore, the separation of concerns between enumerators
and random number generators also gives us the flexibility to choose any kind of random distribution.
Currently we have support for pseudo-geometric and pseudo-uniform random distributions.

To show the testing framework in action, we pick a classic example. After defining rev, the user
tests that taking the reverse of a reversed list gives back the original list:

2The enumerator given as an example for custom type prime uses the sieve of Eratosthenes, to find all prime numbers less
than a given bound. One naive upper bound of (nth-prime n) is 2n+1, for n≥ 1.
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Feature Example
Enumerated Types (defdata RGB (enum ’(red green blue)))

Union Types (defdata BorC (oneof boolean character))

Product Types (defdata NP (cons nat (cons pos (cons neg nil))))

Types with Macros (defdata NP (list nat pos neg))

List Types (defdata loi (listof integer))

Set Types (defdata points (set (list x-pos y-pos)))

Record Types (defdata pg-tbl-entry (record (valid . boolean)

(protection . boolean)

(ppage-addr . p-addr)))

Recursive Types (defdata tree (oneof ’Leaf

(Node (id . symbol)

(left . tree)

(right . tree))))

Mutually Recursive Types (defdata

(sexp (oneof symbol integer slist))

(slist (oneof nil (cons sexp slist))))

Custom Types (defun primep (x)

(and (natp x)

(= (num-divisors x) 2)))

(defun nth-prime (n)

(nth n (sieve (upper-bound n)))

Figure 1: Data definition framework - Examples2

(defun rev (x)

(if (endp x)

nil

(append (rev (cdr x)) (list (car x)))))

(top-level-test? (equal (rev (rev x)) x))

The result is the following output:
Random testing with type alist ((X . ALL))

We falsified the conjecture. Here are counterexamples:

-- (X 0)

-- (X "ba")

Cases in which the conjecture is true include:

-- (X NIL)

-- (X (U |h|))

...

The above output snippet tells us that x was randomly instantiated with type all and for x = 0 and
x ="ba", the value of (rev (rev x)) is not equal to the value of x. This illustrates a common mistake
made by new users: ACL2 is a logic of total functions, but new users often assume that a conjecture
is restricted to the domain of interest when specifying conjectures. The logic needs all assumptions to
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be given explicitly. Notice that we not only generate counterexamples, but we also generate witnesses:
examples which satisfy both the hypotheses (none in this case) and conclusions of conjectures. In the
above example, the witnesses are the empty list, nil, and the symbol list, (U |h|). By comparing
witness and counterexamples, the user can easily add the missing type hypothesis:

(top-level-test? (implies (true-listp x)

(equal (rev (rev x)) x)))

Top-level-test? now reports only witnesses:
Random testing with type alist ((X . TRUE-LIST))

Cases in which the conjecture is true include:

-- (X (23 -1 0))

-- (X (|a| 0 NIL))

We tried 100 random trials, 100 (99 unique) of which satisfied the hypotheses.

Of these, none were counterexamples and 99 were witnesses.

Notice that in the original conjecture no type restriction is specified. Hence, random instances for
x are selected from the entire ACL2 universe, i.e., x is of type all. In the modified conjecture, how-
ever, the framework automatically extracts the type restriction that x is a true-list from the hypothesis
and generates only examples of the desired type. Thus, we are guaranteed that no test passes trivially,
merely because the hypotheses were not satisfied; i.e., there are no vacuous witnesses. The framework
“understands” and syntactically extracts two types of type restrictions:

1. Datatype hypotheses such as (loip x) where loi is a ‘type’, i.e., it has a corresponding enumera-
tor function (i.e., nth-loi).

2. Equality hypotheses such as (equal x 42) which is the strongest type restriction possible, where
a variable can take only one value (the case of a singleton type).

Often type restrictions are more complex than datatype hypotheses; we consider a variation of another
classic example [9] below. A triangle is a triple of positive integers (recognized by type predicate posp),
representing its three sides, with each side less than the sum of the other two sides.

(defdata triple (list pos pos pos))

(defun trianglep (v)

(and (triplep v)

(< (third v) (+ (first v) (second v)))

(< (first v) (+ (second v) (third v)))

(< (second v) (+ (first v) (third v)))))

The shape function determines whether its argument is an equilateral, isosceles, scalene or illegal
triangle.

(defun shape (v)

(if (trianglep v)

(cond ((equal (first v) (second v))

(if (equal (second v) (third v))

"equilateral"

"isosceles"))

((equal (second v) (third v)) "isosceles")

((equal (first v) (third v)) "isosceles")

(t "scalene"))

"error"))
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Consider the conjecture that there are no isosceles triangles whose third side is the product of the
other two sides and is greater than 256.

(top-level-test?

(implies (and (triplep x)

(trianglep x)

(> (third x) 256)

(= (third x)

(* (second x) (first x))))

(not (equal "isosceles" (shape x)))))

=⇒

Random testing with type alist ((X . TRIPLE))

We tried 10000 random trials, none of which satisfied the hypotheses.

Straightforward random testing (top-level-test?) fails miserably, because even though we pick up
that x is of type triple and randomly instantiate it, it is very hard to satisfy the extra constraints on x.
Consider the probability of finding a counterexample to the conjecture by randomly generating positive
integer values a, b, and c for the first, second, and third side of the triangle, respectively. Let us assume
that we are using a uniform distribution over the numbers [1..k]. For the case that c > 1 is equal to one of
the other two (a and b), the probability that we guess a counterexample (ignoring the condition c > 256)
is 2

k2 because one of a,b has to be equal to c and the other has to be equal to 1. For the case that a = b,
then c must be a square number and then there is only one choice for a,b, namely

√
c, so the probability

that we select a counterexample is ≤ 1
k2 . Once we take the c > 256 constraint into account, we see that

the probability of generating a counterexample is less than 1
32,678 . A constraint solver might help find

counterexamples, but this is an undecidable problem in general. In the next section, we show how to
make use of an interactive theorem prover to tackle complex constraints like the above.

Enable testing in ACL2: To use the testing framework in its minimalist setting, submit, in an ACL2
session, the following two forms3.

(include-book "<acl2s-modes-src-dir>/acl2-datadef/top")

(set-acl2s-random-testing-enabled t)

4 Improved Random Testing with Theorem Proving

In this section, we show how to use the full power of the ACL2 theorem prover to simplify conjectures
for better testing. The main idea is to let ACL2 use all of the proof techniques at its disposal to simplify
conjectures into subgoals, and then to test those subgoals. The challenge is that ACL2 employs proof
procedures that often generate radically transformed subgoals. We describe some of these issues and our
solutions in this section.

First, let us step back and quickly review the organization of the ACL2 theorem prover. ACL2 keeps
track of a set of goals to be proved, starting with the top-level conjecture. A goal may be processed
by a collection of proof techniques, each of which uses the world, which is a database containing all
the current axioms, theorems, and definitions. These proof techniques are tried on a given goal, in
order, until one succeeds by producing a (possibly empty) set of new subgoals. If none succeeds, then

3Typically, if you install ACL2s (eclipse plugin), acl2s-modes-src-dir is located in <eclipse-dir>/plugins/.
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the goal is pushed into a pool of formulas to be proved by induction. This organization is called the
waterfall [3, 16, 21]. The original conjecture is proved when the pool has been fully drained.

Space limitations do not allow us to describe fully the waterfall and its proof techniques. Instead
we will focus on two of the proof techniques in this section, simplification and destructor elimination.
Simplification is quite complicated. It includes decision procedures for propositional logic, equality,
uninterpreted functions, and rational linear arithmetic. It uses type information and forward chaining
rules to deduce a context of derived facts. It uses conditional rewriting rules and metafunctions (which
can be thought of as user-provided, verified theorem provers). It uses if-normalization to convert formulas
to a set of equivalent (but simpler) formulas. Such simplification techniques are carefully controlled using
heuristics developed over many years.

The first issue is what subgoals to test. We do not test every subgoal, because simplification may
generate subgoals that can be further simplified. Instead, we test checkpoints, subgoals that users of
ACL2 are encouraged to examine when their proof fails [16]. Only subgoals that cannot be further
simplified are identified as checkpoints, and ACL2 has a mechanism that supports examination of key
checkpoints. Testing at checkpoints makes sense because case analysis has been applied, providing more
specific guidance in locating counterexamples.

The next issue is that ACL2 proof procedures may remove and/or introduce variables. For example,
simplification can decide to replace a variable by an equivalent expression. The destructor-elimination
proof technique may remove and introduce variables at the same time, as happens when ACL2 tries to
prove the following conjecture, which is identical to the one from the previous section.

(thm (implies (and (trianglep x)

(> (third x) 256)

(= (third x)

(* (second x) (first x))))

(not (equal "isosceles" (shape x)))))

We note that our integration of testing into ACL2s does not require new syntax to be learned; users
invoke thm as before. The prover opens up the definitions of shape, trianglep and triplep and uses
case analysis, reducing the above “Goal” to three subgoals. After several simplification steps and a few
rounds of destructor elimination on one of these subgoals, we have the following subgoal, for which
testing easily yields a counterexample.

Subgoal 3’4’

(IMPLIES (AND (INTEGERP X1)

(< 0 X1)

(< 1 (* 2 X1))

(< 256 X1))

(EQUAL X1 1)).

Random testing "Subgoal 3’4’" with type alist ((X1 . POS))

We falsified the conjecture. Here are counterexamples:

-- (X (429 1 429))

...

Notice that the theorem prover simplified away two variables representing two sides of the triangle, thus
drastically simplifying the constraints. As we saw previously, for the original conjecture the probability
of finding a counterexample if we randomly assign positive integers to the three sides using a uniform
distribution over [1..k] was ≤ 2

k2 . By using the theorem prover, we generated the subgoal above, where
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the probability of finding a counterexample approaches 1 as k goes to ∞. Apart from case-analysis and
destructor elimination, the primary simplification is due to the presence of libraries of lemmas (notably
arithmetic-5 [22]). In this respect interactive theorem proving has a huge advantage over other tools
routinely combined with testing, especially considering the fact that most interactive theorem provers
have good library support.

Experience suggests that presenting a counterexample such as X1 = 429, which falsifies a subgoal
but contains a variable (X1) occurring in the subgoal but not in the original goal, is less useful than
a counterexample to the original goal. In order to construct counterexamples for the original conjec-
ture from counterexamples for subgoals, we automate maintenance of a testing-history data structure in
ACL2. This structure associates each goal with its parent and maintains a mapping from variables ap-
pearing in its parent to expressions over the variables appearing in the child subgoal. For example, after
destructor elimination on the above example, we would record that X maps to (CONS X1 X2). Some-
times a variable is completely elided away (consider the hypothesis (EQUAL X X)), in which case we
arbitrarily assign it the symbol ?, denoting a don’t-care. This information allows us to propagate child
goal counterexamples upward, to obtain a complete counterexample to the top-level conjecture.4

Another issue is that since ACL2 is untyped, it may decide to throw away datatype information
in a hypothesis, say because it is implied in the current context. While we can sometimes recover this
information, we would like a guarantee of datatype monotonicity: subgoals do not wind up with less type
information their parents. To that end, we record in the testing-history data structure another mapping
from variables in the subgoal to a list of type restrictions that the variable must satisfy at that subgoal
and its descendants. The reason we have a list is that we have several type restrictions on the same
variable, arising from either several datatype/equality hypotheses in the subgoal itself, type information
from ancestor goals, or the theorem prover itself.5 The list may grow as we move from a goal to its
subgoals. For example, consider a goal in which a variable may be an integer or a string. After case
analysis we may wind up with two goals: in one the variable is assumed to be a string; in the other it is
assumed to be an integer.

If we have several type restrictions on a variable, we would like to use all available information for the
generation of random tests. For example, it is desirable to determine automatically the minimal datatype
that the variable satisfies. For built-in datatypes like Nat and Integer, ACL2 already can determine
this information, but for custom datatypes and for datatypes constructed using our testing framework
(defdata), there are several complications. First, a minimal datatype need not exist, e.g., consider the case
in which the variable satisfies two datatypes, but there is no datatype corresponding to the intersection.
Second, custom datatypes make this an undecidable question, e.g., the proof that type T1 corresponds to
the intersection of types T2 and T3 can be arbitrarily hard to establish. In order to deal with these issues
we maintain a defdata subtype graph. The vertices are the known data definitions and if there is an edge
between T1 and T2 then T1 ⊆ T2 (we are abusing notation here by using Ti to denote the subset of the
ACL2 universe satisfying data definition Ti). This is a directed graph. Notice that nothing stops us from
having two data definitions that have exactly the same elements. We allow users to add edges to this
graph by proving that one type subsumes another using defdata-subtype, for example as follows.

(defdata-subtype triple proper-cons)

We use the graph by first computing strongly connected components. Nodes in the same component

4For some proof procedures—generalization, fertilization and induction—it can be hard to obtain a top-level counterexam-
ple, and we may fail to do so. Indeed, such a counterexample does not exist when generalization changes a theorem into a
non-theorem.

5ACL2 uses a type reasoning mechanism which can be customized by user input in the form of rules.
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are provably equivalent. We then compute the transitive closure of the resulting dag and can use this
information to help select the smallest type associated with a variable.

5 Improved Theorem Proving with Random Testing

In this section we describe briefly a novel use of testing to direct an automated theorem prover. For more
details about how this works, see the discussion of backtrack hints in Section 6.

The ACL2 proof engine relies on proof processes to replace a given goal by a list of goals, such that if
each goal in that list is provable then the given goal is provable. One such proof process is generalization,
which replaces a goal G by a single new goal, G′, such that G is an instance of G′. It is well-known in the
ACL2 community that generalization often produces non-theorems from goals that are theorems. Thus,
one will find numerous hints in the ACL2 regression suite, placed manually by ACL2 users, that turn off
generalization.

In particular, as an example, consider the following lemma6 proved as part of an effort to formalize
matrix algebra in ACL2 [13]:

(defthm m-=-row-1-implies-equal-dot-2

(implies (and (m-=-row-1 M2 M3 n p)

(integerp p)

(integerp j)

(>= j 0)

(>= p j))

(equal (dot M1 M2 m n j)

(dot M1 M3 m n j)))

:hints (("Goal" :do-not ’(generalize) ...)))

If the hint :do-not ’(generalize) is removed, then the proof fails because a goal is generalized
to one that is no longer valid.

We would like to retain the occasional win we get from generalization, but with fewer defeats such
as the one mentioned above. Testing helps us by triggering backtracking, as follows. We can arrange, as
described in Section 6, for testing to be triggered after a generalization. If testing finds a counterexample,
then the generalization is discarded, ACL2 backtracks to the state before the generalization, and from
there it proceeds without generalizing that particular subgoal. In a proof attempt for the above example,
testing prevented six attempts at generalizing a valid goal to an invalid goal by finding a counterexample
in each case, and the proof succeeded.

Note that random testing might lead to unstable proofs, where bad generalizations are discarded
on some runs of the theorem prover, but not on others, depending on whether random sampling was
successful in finding a counterexample or not. One solution is to fix a global constant to be used as
the initial random seed for testing a defthm form. A less restrictive solution is to switch to bounded
exhaustive testing making sure the bound on the number of tests is fixed to some global constant.

The example above demonstrates that testing can assist the proof activity, by allowing the gainful use
of “dangerous” proof techniques (like generalization) while avoiding some of their pitfalls.

6The relevant source file can be found at books/workshops/2003/cowles-gamboa-van-baalen matrix/support/-

matrix.lisp in the ACL2 regression suite.
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6 ACL2 Enhancements

In this section we explain how we exploit the ACL2 hints mechanism to generate and evaluate tests, when
appropriate. These ACL2 enhancements were introduced with Version 3.6 (released August, 2009).

ACL2 has long had a computed hints mechanism [19] that allows proof hints to be computed dynam-
ically — that is, during a proof attempt — as a function of information pertaining to the current goal.
It may thus seem that such a mechanism is well-suited to the integration of testing and proving, using
testing hints that may direct evaluation of the current goal in various environments.

In order to understand why computed hints were not quite sufficient for that purpose, we must first
understand the basic structure of an ACL2 proof attempt. Recall the waterfall, discussed in Section 4.
There is at any time a current goal, which is initially the formula submitted for proof. This goal is handed
to a fixed sequence of proof processes, including a simplification process and, later in the sequence, a
generalization process. Each process can fail or succeed on the current goal, G. The first one that
succeeds replaces G by a list of goals, whose provability implies the provability of G. If none of the
processes applies, then the goal is “pushed” for later proof by induction.

When a goal becomes the current goal, ACL2 searches through the available hints until it finds an
appropriate hint structure (if any) to apply to that goal. This hint structure is applied at the “top” of
the waterfall, that is, before the first process is attempted on the current goal — not as each new proof
process is attempted on that goal.

There are two problems with this approach, which we describe in turn below. First, in order to use
theorem proving for improved testing as described in Section 4, we need to apply not only the testing
hints, but we also need to apply the user’s original hints so that the intended proof is not adversely
affected by the testing hints. Yet, as described above, at most one hint structure is chosen. Second,
in order to use testing for improved theorem proving as described in Section 5, we use testing hints to
backtrack, so we want to be able to apply hints after a goal has been processed and created proposed
child goals. Yet, as described above, hints are processed at the top of the waterfall, at which time the
resulting child goals have not yet been computed.

The first problem, to allow the application of a user’s hint together with testing hints, is conceivably
solvable by using computed hints to merge hints; but this would be awkward. Instead, this work has
inspired a new, very general utility: a new hint mechanism for specifying easily how to modify hints
selected for goals. These override-hints [20] are expressions to evaluate, each of which can mention the
variable HINT-SETTINGS, which is bound initially to reflect the hint structure selected for the goal (or
nil if none is found). Then each override-hint is evaluated in turn, where the result of each is the value
of HINT-SETTINGS used for evaluation of the next override-hint. The final such result is supplied as
the hint to use for the goal. A utility add-override-hints allows the user to add override-hints to the
global environment.

We turn now to the second problem: how to support backtracking as used in Section 5, in which
the ACL2 hint mechanism can discard a harmful attempt at generalization. Such a capability requires
knowing that generalization is the applicable proof process, as well as knowing the goal resulting from
the generalization. The hint mechanism applied at the top of the waterfall would be at best awkward to
use; one would have to figure out how to invoke the waterfall explicitly to predict what will happen, and
then generate a hint based on that result.

Instead, this work has inspired the addition to ACL2 of a backtrack hint mechanism [17]. A back-
track hint is applied after a proof process has been applied to a goal, G. The hint’s value is an expression
that can refer to variables clause-list and processor. That expression is then evaluated in an envi-
ronment in which these two variables are bound respectively to the list of resulting goals and the proof
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process that has just been applied. The evaluation result is either the special value nil, indicating that
the backtrack hint is to be ignored, or an object specifying the hint structure to be applied to G. In the
latter case, the clause list resulting from the proof process is discarded, and G is sent back through the
waterfall with the new hint structure.

Let us see how backtrack hints support improved theorem proving as described in Section 5. Consider

(add-default-hints ’((test-gen-checkpoint)))

which indicates that the arity-0 function test-gen-checkpoint is to be applied to a goal in order to
generate a hint structure. Evaluation of the expression (test-gen-checkpoint), in turn, generates a
backtrack hint. The code below specifies that this backtrack hint should be applied to every goal, not just
the current goal, by using :computed-hint-replacement t. That backtrack hint says that if the proof
process that applies to the goal is the generalization process, then ACL2 should run our testing apparatus
to look for a counterexample. If there is a counterexample (i.e., if res is true), then the backtrack hint
generates a hint structure specifying that the goal should be re-tried with generalization turned off.

(defun test-gen-checkpoint ()

‘(:computed-hint-replacement t

:backtrack

(cond

((eq processor ’generalize-clause)

(er-let*

((res (test-clause (car clause-list) state)))

(value (cond (res ’(:do-not ’(generalize)))

(t nil)))))

(t (value nil)))))

Finally, we remark that override-hints are useful in combination with backtrack hints: instead of
the add-default-hints form described above, an override-hint can be used with a new version of
test-gen-checkpoint. This new version extends the existing hint structure with a suitable backtrack
hint, where that backtrack hint also extends the existing hint structure (so that if the generalization is
discarded, then the user’s hints are still respected).

(add-override-hints

’((test-gen-checkpoint hint-settings)))

7 Experiences

We describe two experiences using the counterexample generation capabilities of ACL2s. One involves
using counterexamples to teach students how to reason about their programs and the other involves an
example from an expert.

For several years, we have been teaching freshman students at Northeastern University how to reason
about programs. We have used ACL2s and it has been an invaluable teaching aid. One place where stu-
dents often struggle is in writing specifications. They sometimes make logical and conceptual mistakes,
and they often omit required hypotheses. Therefore, they often try to prove conjectures that are false. In
large part, the motivation for this work was to help students by providing them with counterexamples. In
this, we have succeeded because our testing framework tends to find counterexamples easily. The coun-
terexamples allow students to see what is wrong with their conjectures, in terms they readily understand.
Without the counterexamples we generate, students are left trying to determine whether they need more
lemmas or whether their conjectures are false, a skill that takes time to develop. From a usability point
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of view, we note that our testing framework has the nice property that it does not incur any cognitive load
on the user. Students do not have to enable testing; they do not have to give it hints; they do not have to
invoke it. Testing is just an invisible, natural part of the theorem proving process.

Our counterexample generation can also be fruitfully used by experts. Consider the following con-
jecture:
(thm (implies (and (real/rationalp a)

(real/rationalp b)

(real/rationalp c)

(< 0 a)

(< 0 b)

(< 0 c)

(<= (expt a 2) (* b (+ c 1)))

(<= b (* 4 c)))

(< (expt (- a 1) 2) (* b c))))

An ACL2 expert who uses ACL2 to reason about industrial designs asked the ACL2 mailing list
for help in proving (his formulation of) the above conjecture with ACL2. However, his conjecture was
missing a hypothesis. ACL2s immediately came up with a counterexample:
Random testing ‘‘Subgoal 1" with type alist

((A . RATIONAL) (B . RATIONAL) (C . RATIONAL))

We falsified the conjecture. Here are counterexamples:

-- (A 1/7), (B 2/11) and (C 2/9)

...

We indicated that the conjecture was not true, and the expert quickly strengthened one of the hy-
potheses to a ≥ 1. Three ACL2 users then quickly replied with successful proofs, and an ACL2s proof
took advantage of automatically included libraries for reasoning about arithmetic [22]. In fact, with a
little bit of trial and error, we were able to generalize the theorem by removing hypotheses (< 0 b) and
(< 0 c). Using binary search we also replaced (<= 1 a) with (< 3/4 a). We know that the bound
is tight because (<= 3/4 a) leads to a counterexample. We also know no further hypotheses can be
removed because doing so leads to our framework generating counterexamples.

The moral of the story here is that if the expert had submitted his conjecture to ACL2s, he would
have immediately been presented with a counterexample. He would have then fixed the hypothesis and
would have been rewarded with a QED.

8 Conclusions and Future Work

Our work integrates random testing seamlessly with theorem proving, resulting in a system with power-
ful, automatic testing capabilities and more guidance in proof discovery. We identify four contributions.
First, we show how to use the power of an interactive theorem prover for better testing. Second, we
show how to use testing to make interactive theorem proving more powerful and automatic. Our third
contribution is a set of enhancements to the ACL2 theorem prover’s hint mechanism that were developed
to support this work and that we expect will be of interest to the wider interactive theorem proving com-
munity. Our fourth contribution is the implementation of the above ideas in the ACL2 Sedan, a freely
available theorem prover which has been used to teach several hundred freshman students how to reason
about programs.

For future work, we plan to explore more powerful algorithms for generating counterexamples. We
also plan to explore support for intersection types and more powerful methods for determining where in
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the partial order of types user defined datatypes belong, along with automatic generation of rules to relate
different such types. (J Moore [private communication] is exploring similar support and methods, which
may lead to collaborative solutions.) Finally, we plan to explore the integration of constraint solving and
decision procedures into our framework, for even better counterexample generation.
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