Reductions

2/29/2015
Pete Manolios
Theory of Computation

Atv IS Undecidable

Amv = {<M,w>: M is a TM that accepts w}
Theorem: Atv Is Undecidable

Proof: Suppose there exists a TM H that decides
Amv. Then, for any input <M,w>, H accepts it M

accepts w and rejects otherwise.

Derive contradiction using diagonalization

Diagonalization!

<M1> <M2> <M3> <M4> <M5>
acc rej acc acc re|

acc acc acc rej re|
H re| acc re| re| re|
re| re| acc rej re|

acc rej rej acc acc

H accepts {<M, <M>> : M accepts <M>}

Diagonalization!

<M1> <M2> <M3> <M4> <M5>
acc rej acc acc re|

acc acc acc rej re|
H re| acc rej rej re|
re| rej acc rej re|
acc rej rej acc acc
rej rej acc acc rej ?2??

H accepts {<M, <M>> : M accepts <M>}
Diagonalization: Let D be at TM that negates diagonal
D is a TM: Call H on <M, <M>> and negate, so on list
But D is different, by construction, from all Mi. N

Atv IS Undecidable

Theorem: A, is Undecidable. (A, = {<M,w>: M is a TM that accepts w})

Proof: Suppose there exists a TM H that decides Aq,. Then, for any input <M,w>, H accepts
if M accepts w and rejects otherwise.

Consider a TM D that takes an input <M>, the description of M, and takes the following steps.
* Run Hon <M,<M>>
* If H accepts, reject
* If Hrejects, accept

Since H is a decider, D is also a decider.

D on <D> = accept

iff {def. D} H <D, <D>> = reject

iff {def. H} D on <D> = reject (Go both directions!) w

Reducibllity

We showed the undecidability of HALTy by reducing Amvto HALT 1y
We write Ary <y HALT v
This is read as “Any I1s mapping reducible to HALT 1"

It A <y B that means there is a computable function f: 2* = 2* s.t. for
all w

e we Aiffflw) e B
e fis a reductionfrom Ato B

A function is computable if some TM, on every input w halts with f(w)
on tape

Reducibllity

Theorem: If A <, B and B is decidable, then A is decidable
Proof: Let M be a decider for B and f the reduction from A to B. Here is a decider, N, for A
* Given w, compute f(w)
* Run M on f(w), returning same output
Why doesn’t the other direction work?
Corollary: If A <, B and A is undecidable, then B is undecidable. Proof?
Our proof of undecidability of HALT,,, was essentially based on this corollary.
Mapping reducibility version: f is defined by TM F: On input <M,w>
* Construct M’: Given x: Run M on x. If M accepts, accept else loop
* Qutput <M’ w>
Note: <M, w> € A, iff f(<M,w>)(=<M",w>) € HALT,,,
Theorem: If A<, Band Bis R.E., then Ais R.E. (Same proof as above)

Corollary: If A<, Band Ais not R.E., then B is not R.E.

Rice’'s Theorem

P is undecidable if it is a language consisting of TM descriptions s.t.
e Pis nontrivial: P2 & P does not include all TM descriptions

o If L(My) = L(M,) then <My> € P iff <M,> € P
Proof: By a reduction from Aqy, i.€., we show Ay <y P
Let E beaTM s.t. L(E) = @. Assume <E> ¢ P (A <y —P works also)
Note: there exists TM T s.t. <T> € P
f(<M,w>) = TM M,,: On input x, simulate M on w. If M accepts, simulate T on x.

fis a mapping reduction
o <M, w> e Ay = L(<M,>)=L(T) = <M,>€P

e <M, w> ¢ Ay = L(<M,,>)=L(E) = <M,,> ¢ P

{<M>: M always halts}, {<M> : L(M)= 2%}, ... all undecidable by Rice’s Theorem

Halting Problem

HALTy = {<M, w>: M halts on w}

Theorem: HALTy, is undecidable.

Proof: We show that if HALT+, is decidable, then so is Aqy.

Preview of reduction: We reduce from Aq,to HALT1y (A <y HALT 7).

Suppose H is the decider for HALT+,,. Then define a decider A for Ay, as follows.
On input <M, w>, A calls H on input <M, w>. If H accepts, then A runs M on w and

accepts if M accepts w, rejecting otherwise. If H rejects, then A rejects.

Consider <M,w> in Aqy. Since M accepts w, M halts on w. So H accepts <M, w>.
A calls H, which accepts, and then runs M on w, which accepts, so A accepts.

Consider <M,w> not in Aq. If M does not halt on w, H rejects <M, w>, and so does
A. Otherwise, M halts on w and rejects w. So A calls H, which accepts <M, w>. A
then calls M on w, which terminates in a reject state, so A rejects.

Etv IS undecidable

* By =1{<M>|L(M) =@} is undecidable
« Proof: Suppose it is decidable. Let R be a TM deciding it.
« Define S, a decider for A;,: On input <M,w>

« Construct Machine M,: if input = w, reject else run M on w

« Note: language of M, is either @ or {w}

* Runs Ron <M, >

* If R accepts, reject; if R rejects, accept
 Sis adecider for A,
« Note: S has to construct M,: add extra states to check input=w
 Reduction: f takes <M,w> and produces <M,>. M accepts w iff L(M1) # @, so we showed

e A, <y E

™ —M ™

* which implies E;,, is not decidable (decidability is not affected by complementation)

EQtv is undecidable

EQm =1{ <M, N> | L(M) = L(N) } is undecidable }

Proof: Ety is just a special case where L(N) = @. So, show Emy <wu
EQmu. Let R be a TM deciding EQmw.

Define S, a decider for Ery: On input <M>

« Runs Ron <M, N> where N is a TM that rejects all inputs
e If R accepts, accept; if R rejects, reject

S is a decider for Aty

Reduction: f takes <M> and produces <M, N> where N is a TM that
always rejects. L(M)=a iff L(M)=L(N) (where L(N) = @)

FQtv is not R.E.

EQmv = { <M, N> | L(M) = L(N) } is not R.E.
Recall the corollary: If A <y B and Ais not R.E., then B is not R.E.

But A < B iff =A < =B so to show B is not R.E. we can instead show
Amv <m B

Plan: Show At < —IEQTM

Proof: F = Given <M, w> (1) construct M;: always reject and Ms: Run M
on w (2) Output <My, Mo>

e If M accepts w, M, accepts everything, so My, M, are not equivalent

o If M doesn’t accept w, M, accepts nothing, so M4, M, are equivalent

-EQTMm is not R.E.

~EQm = | <M, N> | L(M) = L(N) } is not R.E.
Plan: Show ATI\/I <M EQTM

Proof: G = Given <M, w> (1) construct My: always accept and Mo:
Run M on w (2) Output <M;, Mo>

* |f M accepts w, M, accepts everything, so My, M, are equivalent

* |f M doesn’t accept w, M, accepts nothing, so My, M, are not
equivalent

We showed that neither of EQmy, "EQmv are R.E. so EQqmyis neither
R.E. nor co-R.E.!

REGULART\ IS undecidable

REQULAR, = { <M> | L(M) is a regular language }
P|aﬂ: ATM Sl\/l EQTM

Proof: Let R be a TM that decides REQULARy, and construct S, which decides Aq,
as follows

S: Given <M,w>
e (1) Construct N: On input x: If X € On1n, accept, otherwise run M on w
e (2) Run R on <N>
* (3) If R accepts, accept, else reject.

If M accepts w, N accepts everything, so N is regular

If M doesn’t accept w, N accepts {x e On1n} so N is not regular

