Reductions

2/29/2015 Pete Manolios Theory of Computation

ATM is Undecidable

- $A_{TM} = \{\langle M, w \rangle : M \text{ is a TM that accepts } w \}$
- Theorem: A_{TM} is Undecidable
- Proof: Suppose there exists a TM H that decides A_{TM}. Then, for any input <M,w>, H accepts if M accepts w and rejects otherwise.
- Derive contradiction using diagonalization

Diagonalization!

		<m1></m1>	<m2></m2>	<m3></m3>	<m4></m4>	<m5></m5>	
	M1	acc	rej	acc	acc	rej	
	M2	acc	acc	acc	rej	rej	
Н	M3	rej	acc	rej	rej	rej	
	M4	rej	rej	acc	rej	rej	
	M5	acc	rej	rej	acc	acc	

H accepts {<M, <M>> : M accepts <M>}

Diagonalization!

		<m1></m1>	<m2></m2>	<m3></m3>	<m4></m4>	<m5></m5>	 <d></d>
	M1	acc	rej	acc	acc	rej	
	M2	acc	acc	acc	rej	rej	
Н	M3	rej	acc	rej	rej	rej	
	M4	rej	rej	acc	rej	rej	
	M5	acc	rej	rej	acc	acc	
	D	rej	rej	acc	acc	rej	???

H accepts {<M, <M>> : M accepts <M>}

Diagonalization: Let D be at TM that negates diagonal D is a TM: Call H on <M, <M>> and negate, so on list But D is different, by construction, from all Mi. \searrow

ATM is Undecidable

- Theorem: A_{TM} is Undecidable. ($A_{TM} = \{ \langle M, w \rangle : M \text{ is a TM that accepts } w \}$)
- Proof: Suppose there exists a TM H that decides A_{TM}. Then, for any input <M,w>, H accepts if M accepts w and rejects otherwise.
- Consider a TM D that takes an input <M>, the description of M, and takes the following steps.
 - Run H on <M,<M>>
 - If H accepts, reject
 - If H rejects, accept
- Since H is a decider, D is also a decider.
- D on <D> = accept

iff {def. D} H <D, <D>> = reject

iff {def. H} D on $\langle D \rangle$ = reject (Go both directions!) \searrow

Reducibility

- We showed the undecidability of HALT_{TM} by reducing A_{TM} to HALT_{TM}
- We write $A_{TM} \leq_M HALT_{TM}$
- This is read as " A_{TM} is mapping reducible to HALT_{TM}"
- If A ≤_M B that means there is a *computable* function f: Σ* → Σ* s.t. for all w
 - $w \in A$ iff $f(w) \in B$
 - f is a *reduction* from A to B
- A function is computable if some TM, on every input w halts with f(w) on tape

Reducibility

- Theorem: If $A \leq_M B$ and B is decidable, then A is decidable
- Proof: Let M be a decider for B and f the reduction from A to B. Here is a decider, N, for A
 - Given w, compute f(w)
 - Run M on f(w), returning same output
- Why doesn't the other direction work?
- Corollary: If $A \leq_M B$ and A is undecidable, then B is undecidable. Proof?
- Our proof of undecidability of $HALT_{TM}$ was essentially based on this corollary.
- Mapping reducibility version: f is defined by TM F: On input <M,w>
 - Construct M': Given x: Run M on x. If M accepts, accept else loop
 - Output <M',w>
- Note: $\langle M, w \rangle \in A_{TM}$ iff $f(\langle M, w \rangle)(=\langle M', w \rangle) \in HALT_{TM}$
- Theorem: If A \leq_M B and B is R.E., then A is R.E. (Same proof as above)
- Corollary: If $A \leq_M B$ and A is not R.E., then B is not R.E.

Rice's Theorem

- P is undecidable if it is a language consisting of TM descriptions s.t.
 - P is nontrivial: P≠Ø & P does not include all TM descriptions
 - If $L(M_1) = L(M_2)$ then $\langle M_1 \rangle \in P$ iff $\langle M_2 \rangle \in P$
- Proof: By a reduction from A_{TM} , i.e., we show $A_{TM} \leq_M P$
- Let E be a TM s.t. $L(E) = \emptyset$. Assume $\langle E \rangle \notin P(A_{TM} \leq_M \neg P \text{ works also})$
- Note: there exists TM T s.t. $\langle T \rangle \in P$
- $f(\langle M, w \rangle) = TM M_w$: On input x, simulate M on w. If M accepts, simulate T on x.
- f is a mapping reduction
 - <M, w> \in A_{TM} \Rightarrow L(<M_w>)=L(T) \Rightarrow <M_w> \in P
 - <M, w> \notin A_{TM} \Rightarrow L(<M_w>)=L(E) \Rightarrow <M_w> \notin P
- {<M>: M always halts}, {<M> : $L(M) = \Sigma^*$ }, ... all undecidable by Rice's Theorem

Halting Problem

- $HALT_{TM} = \{ <M, w >: M \text{ halts on } w \}$
- Theorem: $HALT_{TM}$ is undecidable.
- Proof: We show that if $HALT_{TM}$ is decidable, then so is A_{TM} .
- Preview of reduction: We reduce from A_{TM} to $HALT_{TM}$ ($A_{TM} \leq_M HALT_{TM}$).
- Suppose H is the decider for HALT_{TM}. Then define a decider A for A_{TM} as follows. On input <M, w>, A calls H on input <M, w>. If H accepts, then A runs M on w and accepts if M accepts w, rejecting otherwise. If H rejects, then A rejects.
- Consider <M,w> in A_{TM}. Since M accepts w, M halts on w. So H accepts <M, w>. A calls H, which accepts, and then runs M on w, which accepts, so A accepts.
- Consider <M,w> not in A_{TM}. If M does not halt on w, H rejects <M, w>, and so does A. Otherwise, M halts on w and rejects w. So A calls H, which accepts <M, w>. A then calls M on w, which terminates in a reject state, so A rejects.

ETM is undecidable

- $E_{TM} = \{ \langle M \rangle | L(M) = \emptyset \}$ is undecidable
- Proof: Suppose it is decidable. Let R be a TM deciding it.
- Define S, a decider for A_{TM}: On input <M,w>
 - Construct Machine M_1 : if input \neq w, reject else run M on w
 - Note: language of M₁ is either Ø or {w}
 - Runs R on $< M_1 >$
 - If R accepts, reject; if R rejects, accept
- S is a decider for A_{TM}
- Note: S has to construct M₁: add extra states to check input=w
- Reduction: f takes $\langle M, w \rangle$ and produces $\langle M_1 \rangle$. M accepts w iff $L(M1) \neq \emptyset$, so we showed
 - $A_{TM} \leq_M \neg E_{TM}$
 - which implies E_{TM} is not decidable (decidability is *not* affected by complementation)

EQ_{TM} is undecidable

- $EQ_{TM} = \{ \langle M, N \rangle | L(M) = L(N) \}$ is undecidable $\}$
- Proof: E_{TM} is just a special case where $L(N) = \emptyset$. So, show $E_{TM} \leq_M EQ_{TM}$. Let R be a TM deciding EQ_{TM} .
- Define S, a decider for E_{TM} : On input $\langle M \rangle$
 - Runs R on <M, N> where N is a TM that rejects all inputs
 - If R accepts, accept; if R rejects, reject
- S is a decider for A_{TM}
- Reduction: f takes <M> and produces <M, N> where N is a TM that always rejects. L(M)=Ø iff L(M)=L(N) (where L(N) = Ø)

EQ_{TM} is not R.E.

- $EQ_{TM} = \{ \langle M, N \rangle | L(M) = L(N) \} \text{ is not } R.E.$
- Recall the corollary: If $A \leq_M B$ and A is not R.E., then B is not R.E.
- But $A \leq_M B$ iff $\neg A \leq_M \neg B$ so to show B is not R.E. we can instead show $A_{TM} \leq_M \neg B$
- Plan: Show $A_{TM} \leq_M \neg EQ_{TM}$
- Proof: F = Given <M, w> (1) construct M₁: always reject and M₂: Run M on w (2) Output <M₁, M₂>
 - If M accepts w, M₂ accepts everything, so M₁, M₂ are not equivalent
 - If M doesn't accept w, M₂ accepts nothing, so M₁, M₂ are equivalent

¬EQ_{TM} is not R.E.

- $\neg EQ_{TM} = \{ \langle M, N \rangle | L(M) \neq L(N) \} \text{ is not } R.E. \}$
- Plan: Show $A_{TM} \leq_M EQ_{TM}$
- Proof: G = Given <M, w> (1) construct M₁: always accept and M₂: Run M on w (2) Output <M₁, M₂>
 - If M accepts w, M₂ accepts everything, so M₁, M₂ are equivalent
 - If M doesn't accept w, M₂ accepts nothing, so M₁, M₂ are not equivalent
- We showed that neither of EQ_{TM}, ¬EQ_{TM} are R.E. so EQ_{TM} is neither R.E. nor co-R.E.!

REGULAR_{TM} is undecidable

- REQULAR_{TM} = { $\langle M \rangle | L(M)$ is a regular language }
- Plan: A_{TM} ≤_M EQ_{TM}
- Proof: Let R be a TM that decides $\text{REQULAR}_{\text{TM}}$ and construct S, which decides A_{TM} as follows
- S: Given <M,w>
 - (1) Construct N: On input x: If $x \in 0^{n}1^{n}$, accept, otherwise run M on w
 - (2) Run R on <N>
 - (3) If R accepts, accept, else reject.
- If M accepts w, N accepts everything, so N is regular
- If M doesn't accept w, N accepts $\{x \in 0^n 1^n\}$ so N is not regular