
Reductions
2/29/2015

Pete Manolios
Theory of Computation

ATM is Undecidable
• ATM = {<M,w>: M is a TM that accepts w}

• Theorem: ATM is Undecidable

• Proof: Suppose there exists a TM H that decides
ATM. Then, for any input <M,w>, H accepts if M
accepts w and rejects otherwise.

• Derive contradiction using diagonalization

Diagonalization!
<M1> <M2> <M3> <M4> <M5> …

M1 acc rej acc acc rej
M2 acc acc acc rej rej
M3 rej acc rej rej rej
M4 rej rej acc rej rej
M5 acc rej rej acc acc
…

H

H accepts {<M, <M>> : M accepts <M>}

Diagonalization!
<M1> <M2> <M3> <M4> <M5> … <D>

M1 acc rej acc acc rej
M2 acc acc acc rej rej
M3 rej acc rej rej rej
M4 rej rej acc rej rej
M5 acc rej rej acc acc
…
D rej rej acc acc rej ???

H accepts {<M, <M>> : M accepts <M>}
Diagonalization: Let D be at TM that negates diagonal
D is a TM: Call H on <M, <M>> and negate, so on list
But D is different, by construction, from all Mi. ⇲

H

ATM is Undecidable
• Theorem: ATM is Undecidable. (ATM = {<M,w>: M is a TM that accepts w})

• Proof: Suppose there exists a TM H that decides ATM. Then, for any input <M,w>, H accepts
if M accepts w and rejects otherwise.

• Consider a TM D that takes an input <M>, the description of M, and takes the following steps.

• Run H on <M,<M>>

• If H accepts, reject

• If H rejects, accept

• Since H is a decider, D is also a decider.

• D on <D> = accept

iff {def. D} H <D, <D>> = reject

iff {def. H} D on <D> = reject (Go both directions!) ⇲

Reducibility
• We showed the undecidability of HALTTM by reducing ATM to HALTTM

• We write ATM ≤M HALTTM

• This is read as “ATM is mapping reducible to HALTTM”

• If A ≤M B that means there is a computable function f: Σ* → Σ* s.t. for
all w

• w ∈ A iff f(w) ∈ B

• f is a reduction from A to B

• A function is computable if some TM, on every input w halts with f(w)
on tape

Reducibility
• Theorem: If A ≤M B and B is decidable, then A is decidable

• Proof: Let M be a decider for B and f the reduction from A to B. Here is a decider, N, for A

• Given w, compute f(w)

• Run M on f(w), returning same output

• Why doesn’t the other direction work?

• Corollary: If A ≤M B and A is undecidable, then B is undecidable. Proof?

• Our proof of undecidability of HALTTM was essentially based on this corollary.

• Mapping reducibility version: f is defined by TM F: On input <M,w>

• Construct M’: Given x: Run M on x. If M accepts, accept else loop

• Output <M’,w>

• Note: <M, w> ∈ ATM iff f(<M,w>)(=<M’,w>) ∈ HALTTM

• Theorem: If A ≤M B and B is R.E., then A is R.E. (Same proof as above)

• Corollary: If A ≤M B and A is not R.E., then B is not R.E.

Rice’s Theorem
• P is undecidable if it is a language consisting of TM descriptions s.t.

• P is nontrivial: P≠∅ & P does not include all TM descriptions
• If L(M1) = L(M2) then <M1> ∈ P iff <M2> ∈ P

• Proof: By a reduction from ATM, i.e., we show ATM ≤M P
• Let E be a TM s.t. L(E) = ∅. Assume <E> ∉ P (ATM ≤M ¬P works also)
• Note: there exists TM T s.t. <T> ∈ P
• f(<M,w>) = TM Mw: On input x, simulate M on w. If M accepts, simulate T on x.
• f is a mapping reduction

• <M, w> ∈ ATM ⇒ L(<Mw>)=L(T) ⇒ <Mw> ∈ P

• <M, w> ∉ ATM ⇒ L(<Mw>)=L(E) ⇒ <Mw> ∉ P

• {<M>: M always halts}, {<M> : L(M)= Σ*}, … all undecidable by Rice’s Theorem

Halting Problem
• HALTTM = {<M, w>: M halts on w}

• Theorem: HALTTM is undecidable.

• Proof: We show that if HALTTM is decidable, then so is ATM.

• Preview of reduction: We reduce from ATM to HALTTM (ATM ≤M HALTTM).

• Suppose H is the decider for HALTTM. Then define a decider A for ATM as follows.
On input <M, w>, A calls H on input <M, w>. If H accepts, then A runs M on w and
accepts if M accepts w, rejecting otherwise. If H rejects, then A rejects.

• Consider <M,w> in ATM. Since M accepts w, M halts on w. So H accepts <M, w>.
A calls H, which accepts, and then runs M on w, which accepts, so A accepts.

• Consider <M,w> not in ATM. If M does not halt on w, H rejects <M, w>, and so does
A. Otherwise, M halts on w and rejects w. So A calls H, which accepts <M, w>. A
then calls M on w, which terminates in a reject state, so A rejects.

ETM is undecidable
• ETM = { <M> | L(M) = ∅ } is undecidable

• Proof: Suppose it is decidable. Let R be a TM deciding it.

• Define S, a decider for ATM: On input <M,w>

• Construct Machine M1: if input ≠ w, reject else run M on w

• Note: language of M1 is either ∅ or {w}

• Runs R on <M1>

• If R accepts, reject; if R rejects, accept

• S is a decider for ATM

• Note: S has to construct M1: add extra states to check input=w

• Reduction: f takes <M,w> and produces <M1>. M accepts w iff L(M1) ≠ ∅, so we showed

• ATM ≤M ¬ETM

• which implies ETM is not decidable (decidability is not affected by complementation)

EQTM is undecidable
• EQTM = { <M, N> | L(M) = L(N) } is undecidable }

• Proof: ETM is just a special case where L(N) = ∅. So, show ETM ≤M
EQTM. Let R be a TM deciding EQTM.

• Define S, a decider for ETM: On input <M>

• Runs R on <M, N> where N is a TM that rejects all inputs

• If R accepts, accept; if R rejects, reject

• S is a decider for ATM

• Reduction: f takes <M> and produces <M, N> where N is a TM that
always rejects. L(M)=∅ iff L(M)=L(N) (where L(N) = ∅)

EQTM is not R.E.
• EQTM = { <M, N> | L(M) = L(N) } is not R.E.

• Recall the corollary: If A ≤M B and A is not R.E., then B is not R.E.

• But A ≤M B iff ¬A ≤M ¬B so to show B is not R.E. we can instead show
ATM ≤M ¬B

• Plan: Show ATM ≤M ¬EQTM

• Proof: F = Given <M, w> (1) construct M1: always reject and M2: Run M
on w (2) Output <M1, M2>

• If M accepts w, M2 accepts everything, so M1, M2 are not equivalent

• If M doesn’t accept w, M2 accepts nothing, so M1, M2 are equivalent

¬EQTM is not R.E.
• ¬EQTM = { <M, N> | L(M) ≠ L(N) } is not R.E.

• Plan: Show ATM ≤M EQTM

• Proof: G = Given <M, w> (1) construct M1: always accept and M2:
Run M on w (2) Output <M1, M2>

• If M accepts w, M2 accepts everything, so M1, M2 are equivalent

• If M doesn’t accept w, M2 accepts nothing, so M1, M2 are not
equivalent

• We showed that neither of EQTM, ¬EQTM are R.E. so EQTM is neither
R.E. nor co-R.E.!

REGULARTM is undecidable
• REQULARTM = { <M> | L(M) is a regular language }

• Plan: ATM ≤M EQTM

• Proof: Let R be a TM that decides REQULARTM and construct S, which decides ATM
as follows

• S: Given <M,w>

• (1) Construct N: On input x: If x ∈ 0n1n, accept, otherwise run M on w

• (2) Run R on <N>

• (3) If R accepts, accept, else reject.

• If M accepts w, N accepts everything, so N is regular

• If M doesn’t accept w, N accepts {x ∈ 0n1n } so N is not regular

