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ATM is Undecidable
• ATM = {<M,w>: M is a TM that accepts w}  

• Theorem: ATM  is Undecidable 

• Proof: Suppose there exists a TM H that decides 
ATM.  Then, for any input <M,w>, H accepts if M 
accepts w and rejects otherwise. 

• Derive contradiction using diagonalization



Diagonalization!
<M1> <M2> <M3> <M4> <M5> …

M1 acc rej acc acc rej
M2 acc acc acc rej rej
M3 rej acc rej rej rej
M4 rej rej acc rej rej
M5 acc rej rej acc acc
…

H

H accepts {<M, <M>> : M accepts <M>}



Diagonalization!
<M1> <M2> <M3> <M4> <M5> … <D>

M1 acc rej acc acc rej
M2 acc acc acc rej rej
M3 rej acc rej rej rej
M4 rej rej acc rej rej
M5 acc rej rej acc acc
…
D rej rej acc acc rej ???

H accepts {<M, <M>> : M accepts <M>} 
Diagonalization: Let D be at TM that negates diagonal 
D is a TM: Call H on <M, <M>> and negate, so on list 
But D is different, by construction, from all Mi. ⇲

H



ATM is Undecidable
• Theorem: ATM  is Undecidable. (ATM = {<M,w>: M is a TM that accepts w}) 

• Proof: Suppose there exists a TM H that decides ATM.  Then, for any input <M,w>, H accepts 
if M accepts w and rejects otherwise. 

• Consider a TM D that takes an input <M>, the description of M, and takes the following steps. 

• Run H on <M,<M>> 

• If H accepts, reject 

• If H rejects, accept 

• Since H is a decider, D is also a decider.   

• D on <D> = accept  

iff {def. D} H <D, <D>> = reject  

iff {def. H} D on <D> = reject  (Go both directions!) ⇲



Reducibility
• We showed the undecidability of HALTTM by reducing ATM to HALTTM 

• We write ATM  ≤M HALTTM 

• This is read as “ATM  is mapping reducible to HALTTM” 

• If A ≤M  B that means there is a computable function f: Σ* → Σ* s.t. for 
all w 

• w ∈ A iff f(w) ∈ B 

• f is a reduction from A to B 

• A function is computable if some TM, on every input w halts with f(w) 
on tape



Reducibility
• Theorem: If A ≤M  B and B is decidable, then A is decidable 

• Proof: Let M be a decider for B and f the reduction from A to B. Here is a decider, N, for A 

• Given w, compute f(w) 

• Run M on f(w), returning same output 

• Why doesn’t the other direction work? 

• Corollary: If A ≤M  B and A is undecidable, then B is undecidable. Proof? 

• Our proof of undecidability of HALTTM  was essentially based on this corollary. 

• Mapping reducibility version: f is defined by TM F: On input <M,w> 

• Construct M’: Given x: Run M on x. If M accepts, accept else loop 

• Output <M’,w> 

• Note: <M, w> ∈ ATM   iff   f(<M,w>)(=<M’,w>) ∈ HALTTM 

• Theorem: If A ≤M  B and B is R.E., then A is R.E. (Same proof as above) 

• Corollary: If A ≤M  B and A is not R.E., then B is not R.E.



Rice’s Theorem
• P is undecidable if it is a language consisting of TM descriptions s.t.  

• P is nontrivial: P≠∅ & P does not include all TM descriptions 
• If L(M1) = L(M2) then <M1> ∈ P iff <M2> ∈ P   

• Proof: By a reduction from ATM, i.e., we show ATM  ≤M  P 
• Let E be a TM s.t. L(E) = ∅. Assume <E> ∉ P (ATM  ≤M  ¬P works also) 
• Note: there exists TM T s.t. <T> ∈ P 
• f(<M,w>) = TM Mw: On input x, simulate M on w. If M accepts, simulate T on x. 
• f is a mapping reduction  

• <M, w> ∈ ATM ⇒ L(<Mw>)=L(T)  ⇒ <Mw> ∈ P 

• <M, w> ∉ ATM ⇒ L(<Mw>)=L(E)  ⇒ <Mw> ∉ P 

• {<M>: M always halts}, {<M> : L(M)= Σ*}, … all undecidable by Rice’s Theorem



Halting Problem
• HALTTM = {<M, w>: M halts on w} 

• Theorem: HALTTM is undecidable. 

• Proof: We show that if HALTTM is decidable, then so is ATM.   

• Preview of reduction: We reduce from ATM to HALTTM  (ATM ≤M HALTTM).   

• Suppose H is the decider for HALTTM. Then define a decider A for ATM as follows.  
On input <M, w>, A calls H on input <M, w>.  If H accepts, then A runs M on w and 
accepts if M accepts w, rejecting otherwise.  If H rejects, then A rejects. 

• Consider <M,w> in ATM.  Since M accepts w, M halts on w.  So H accepts <M, w>.  
A calls H, which accepts, and then runs M on w, which accepts, so A accepts. 

• Consider <M,w> not in ATM. If M does not halt on w, H rejects <M, w>, and so does 
A. Otherwise, M halts on w and rejects w.  So A calls H, which accepts <M, w>.  A 
then calls M on w, which terminates in a reject state, so A rejects.



ETM is undecidable
• ETM = { <M> | L(M) = ∅ } is undecidable 

• Proof: Suppose it is decidable. Let R be a TM deciding it. 

• Define S, a decider for ATM: On input <M,w> 

• Construct Machine M1: if input ≠ w, reject else run M on w 

• Note: language of M1 is either ∅ or {w} 

• Runs R on <M1> 

• If R accepts, reject; if R rejects, accept  

• S is a decider for ATM 

• Note: S has to construct M1: add extra states to check input=w 

• Reduction: f takes <M,w> and produces <M1>. M accepts w iff L(M1) ≠ ∅, so we showed 

•  ATM ≤M ¬ETM 

• which implies ETM is not decidable (decidability is not affected by complementation)



EQTM is undecidable
• EQTM = { <M, N> | L(M) = L(N) } is undecidable } 

• Proof: ETM is just a special case where L(N) = ∅. So, show ETM ≤M 
EQTM. Let R be a TM deciding EQTM. 

• Define S, a decider for ETM: On input <M> 

• Runs R on <M, N> where N is a TM that rejects all inputs 

• If R accepts, accept; if R rejects, reject  

• S is a decider for ATM 

• Reduction: f takes <M> and produces <M, N> where N is a TM that 
always rejects. L(M)=∅ iff L(M)=L(N) (where L(N) = ∅) 



EQTM is not R.E.
• EQTM = { <M, N> | L(M) = L(N) } is not R.E. 

• Recall the corollary: If A ≤M  B and A is not R.E., then B is not R.E.  

• But A ≤M  B iff ¬A ≤M ¬B so to show B is not R.E. we can instead show 
ATM ≤M ¬B 

• Plan: Show ATM  ≤M  ¬EQTM  

• Proof: F = Given <M, w> (1) construct M1: always reject and M2: Run M 
on w (2) Output <M1, M2> 

• If M accepts w, M2 accepts everything, so M1, M2 are not equivalent 

• If M doesn’t accept w, M2 accepts nothing, so M1, M2 are equivalent



¬EQTM is not R.E.
• ¬EQTM = { <M, N> | L(M) ≠ L(N) } is not R.E. 

• Plan: Show ATM  ≤M  EQTM  

• Proof: G = Given <M, w> (1) construct M1: always accept and M2: 
Run M on w (2) Output <M1, M2> 

• If M accepts w, M2 accepts everything, so M1, M2 are equivalent 

• If M doesn’t accept w, M2 accepts nothing, so M1, M2 are not 
equivalent 

• We showed that neither of EQTM, ¬EQTM are R.E. so EQTM is neither 
R.E. nor co-R.E.!



REGULARTM is undecidable
• REQULARTM = { <M> | L(M) is a regular language } 

• Plan:  ATM  ≤M  EQTM  

• Proof: Let R be a TM that decides REQULARTM and construct S, which decides ATM 
as follows 

• S: Given <M,w>  

• (1) Construct N: On input x: If x ∈ 0n1n, accept, otherwise run M on w 

• (2) Run R on <N> 

• (3) If R accepts, accept, else reject. 

• If M accepts w, N accepts everything, so N is regular 

• If M doesn’t accept w, N accepts {x ∈ 0n1n } so N is not regular


