6.15

- Theorem: For any language A, there exists a language B, s.t. A \leq_T B and B \leq_T A
- First, notice $A \leq_T A$, so finding B s.t. B $\leq_T A$ is the interesting part
- $B \leq_T A$ means B is harder than A: even with an oracle for A, we can't decide B
- Special case: suppose A is decidable, then any undecidable language works, say A_{TM}
- Generalize: $T_A = \{ M : M \text{ is a Turing machine with access to an A-oracle } \}$
- $A^{A}_{TM} = \{ \langle M, w \rangle : M \in T_{A} \text{ and } M \text{ accepts } w \}$
- Show $A \leq_T A^A_{TM}$ (easy: $w \in A$ iff $\langle N, w \rangle \in A^A_{TM}$, where N is a TM for A)
- and $A^{A}_{TM} \not\leq_{T} A$ (by diagonalization, just like we showed A_{TM} undecidable)

AA_{TM} is Undecidable

- Theorem: A^{A}_{TM} is undecidable (relative to A).
- Recall: $A^{A}_{TM} = \{ \langle M, w \rangle : M \in T_{A} \text{ and } M \text{ accepts } w \}$
- Proof: Suppose there exists a TM H that decides A^{A}_{TM} relative to A. Then, for any input <M,w>, where $M \in T_{A}$. H accepts if M accepts w and rejects otherwise.
- Consider a TM D that takes an input <M>, the description of M, and takes the following steps.
 - Run H on <M,<M>>
 - If H accepts, reject
 - If H rejects, accept
- Since H is a decider, D is also a decider.
- D on <D> = accept
 - iff {def. D} H <D, <D>> = reject
 - iff {def. H} D on $\langle D \rangle$ = reject (Go both directions!) \searrow