
CS 7805: Theory of Computation Homework 2

Problem 1: In class, I made the claim that not every non-regular language can be shown
to be non-regular using the pumping lemma.

Consider the language L = {aibjck : i, j, k ≥ 0 and if i = 1 then j = k}.

(a) Show that the pumping lemma cannot be used to prove that L is not regular.

(b) Read about the Myhill-Nerode theorem, which is exercise 1.52 of your book. Note that
the solution to the exercise appears at the end of the chapter. Use the Myhill-Nerode
theorem to prove that L is not regular.

Problem 2: Prove that the languages recognized by NFAs are closed under complement.

Problem 3: The Myhill-Nerode theorem implies that for any regular language L, any
DFA recognizing L has to have at least i states, where i is the index of L. In fact, there is
a DFA of size i that accepts L. This is a minimal DFA recognizing L.

(a) Propose an algorithm for DFA minimization.

(b) Prove that your algorithm is correct.

(c) Use your algorithm to minimize the following DFA.
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Problem 4: In class we studied finite-state automata that operate on strings of finite
length. How about finite-state automata that operate on strings of infinite length? Define
an Infinite Input Finite Automaton (IIFA) to be a tuple (Q,Σ, T,Q0, F ) where:

• Q is a finite set of states.

• Σ is the alphabet.

• δ : Σ×Q→ P(Q) is the transition function.



• Q0 ⊆ Q is a set of initial states.

• F ⊆ Q is a set of accepting states.

Given an infinite string s = s0s1 . . . over Σ, a run r of IIFA A on s is an infinite sequence
of states r = r0, r1, . . . where r0 ∈ Q0 and ri+1 ∈ δ(ri, si) for all i ≥ 0. There is no final state,
so we need a different notion of acceptance than we had with NFAs. Let lim(r) = {q : q = ri
for infinitely many i’s }. That is, lim(r) is the set of states that appear infinitely often in
run r. Run r is accepting if lim(r) ∩ F 6= ∅, i.e., some accepting state is visited infinitely
often. Automaton A accepts string s if there is an accepting run r of A on s. The language
of A, denoted L(A), is the set of infinite strings accepted by A.

(a) Show that if A and B are IIFAs, then there is an IIFA C such that L(C) = L(A)∪L(B).

(b) Show that if A and B are IIFAs, then there is an IIFA C such that L(C) = L(A)∩L(B).

(c) Are nondeterministic IIFAs more expressive than deterministic IIFAs? Provide a proof.
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