The Size-Change Principle for Program Termination

- * - -
Chin Soon Lee Neil D. Jones Amir M. Ben-Amram
Department of Computer Datalogisk Institut Academic College of Tel-Aviv—
Science and Software University of Copenhagen Yaffo

Engineering
The University of Western
Australia
Nedlands 6907
Western Australia

leecs@cs.uwa.edu.au

ABSTRACT

The “size-change termination” principle for a first-order func-
tional language with well-founded data is: a program termi-
nates on all inputs if every infinite call sequence (follow-
ing program control flow) would cause an infinite descent in
some data values.

Size-change analysis is based only on local approximations to
parameter size changes derivable from program syntax. The
set of infinite call sequences that follow program flow and can
be recognized as causing infinite descent is an w-regular set,
representable by a Biichi automaton. Algorithms for such
automata can be used to decide size-change termination.
We also give a direct algorithm operating on “size-change
graphs” (without the passage to automata).

Compared to other results in the literature, termination
analysis based on the size-change principle is surprisingly
simple and general: lexical orders (also called lexicographic
orders), indirect function calls and permuted arguments (de-
scent that is not in-situ) are all handled automatically and
without spectal treatment, with no need for manually sup-
plied argument orders, or theorem-proving methods not cer-
tain to terminate at analysis time.

We establish the problem’s intrinsic complezity. This turns
out to be surprisingly high, complete for PSPACE, in spite of
the simplicity of the principle. PSPACE hardness is proved
by a reduction from Boolean program termination. An in-
teresting consequence: the same hardness result applies to
many other analyses found in the termination and quasi-
termination literature.

*This research was done while visiting DIKU.

Universitetsparken 1
DK-2100 Copenhagen
Denmark

neil@diku.dk

4 Antokolsky Street
Tel-Aviv 64044
Israel

amirben@mta.ac.il

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.3.4 [Programming Languages]: Processors;
F.3.1 [Logics and Meanings of Programs|: Specifying
and Verifying and Reasoning about Programs; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages

Keywords

Termination, program analysis, omega automaton, PSPACE-
completeness, partial evaluation.

1. INTRODUCTION

1.1 Motivation

There are many reasons to study automatic methods to
prove program termination, including:

e Program verification: typically deductive methods are
used to show partial correctness (the input-output spec-
ification is satisfied provided the program terminates),
followed by a separate proof of termination [11].

e Automatic program manipulation: termination has to
be ensurable when dealing with machine-generated pro-
grams, or ones imported from a possibly untrustworthy
context.

e Broad interest: termination has been studied in fields
including functional programming [8], logic program-
ming [7, 15, 17, 19, 14], term rewriting systems [3,
20] and partial evaluation. Discussion of related work
appears at the end of this paper.

e Interesting analysis: termination is not just an “ab-
stract interpretation” of program values, but rather
more subtle.

e Use in partial evaluation: this is a step towards a
binding-time analysis that will guarantee termination
of program specialization [12, 2, 9, 10] and still allow
an acceptably high degree of specialization in an offline
partial evaluator such as Similix [5].

We emphasize here a careful and precise formulation of a
simple but powerful principle to decide termination. It is
owing to this clear statement of the termination criterion

that the PSPACE hardness result has been achieved. The
result should interest researchers working with related anal-
yses of comparable power [12, 2, 14, 7, 9], as our complexity
result (PSPACE hardness) also applies to their methods. Fur-
ther, it suggests striving for a PTIME approximation to the
present criterion that is sufficiently strong on practical pro-
grams.

1.2 This Analysis

We do termination analysis in two distinct phases. Phase 1 is
to extract a set of size-change graphs from the program. For
each function call that may occur during actual execution,
there is a size-change graph that safely approximates the
size relations between source and destination parameters in
this call. We assume that the measure of size gives rise to a
well-founded order, so that the following principle applies:

If every infinite computation would give rise to
an infinitely decreasing value sequence (accord-
ing to the size-change graphs), then no infinite
computation is possible.

Phase 2 is to apply this criterion. It can be decided precisely
given a safe set of size-change graphs.

Definition 1. For any set A, define A to be the set of all
finite sequences over A; and A“ to be the set of all infinite
sequences over A; and A = A* U A“. We use the same
notation: as = ajazas... for elements of either A* or A%,
and write as = ai1a2as...a, for elements of A*.

1.3 Syntax and notations

A first order functional language L with the following syntax
is considered.

p € Prog = def;...def,,
def € Def = f(x1,...,%,) =¢&f
e € Ezpr = X
| if e; then es else e3
| op(e17"' :en)
| ¢ fler,...,en)
x € Parameter ::= identifier
f € FenName := identifier not in Parameter
op € Op ;= primitive operator

The definition of function £ has form f(xi,...,x,) = e,

where ef is called the body of £. The number n > 0 of
parameters in the definition of f is called its arity, written
arity(f). Notation: Param(f) = {£) ... £(™} is the set
of £’s parameters. In examples the £(’s may be named by
identifiers, e.g., £¥) corresponds to x; in the grammar above.

Parameters are assumed to be in scope when they are used.
This can be checked syntactically. The entry function is the
first function in the program’s list of definitions, denoted
finitiat. Call sites are labeled with numbers prepended to
the call expression, e.g., c: f(e1,... ,en).

Without loss of generality, all function names, parameter
names and call site labels are distinct from one another.
Constants are regarded as 0-ary operators.

1.4 Programs and their semantics

Programs in L are untyped, and are interpreted according
to the (very standard call-by-value) evaluation semantics in
Figure 5.1. The semantic operator £ is defined as usual for
a functional language: E[e]]7 is the value of expression e in
environment ¥ = (v1,... ,v,) — a tuple containing values of
parameters £, ... £,

£ has type Ezpr — Value® — Value*, where Value® is the
flat domain of finite value sequences. Domain Value! =
Value U{L, Err} includes values, plus Err to model runtime
errors, and L to model non-termination. Function [ift :
Value — Value® is the natural injection.

Program p is terminating on input ¥ iff £[efmitia]|F #£ L.
Definition 2.

1. We write ¢ : £ — g, or alternatively, £ = g for a call ¢
to function g occurring in ef. The set of all call sites
inpis C.

2. A call sequence is a finite or infinite sequence cs =
cicecs ... € C*™¥. It is well-formed (for the current
program) if and only if there is a sequence of functions
fo, f1, ..., such that fo 3 £; 3 £, 3 ..

3. We write cs : £ — g, or alternatively, f =3 g if cs =
cica...c, and fo 3f1 =2 ... 3>fk where £ = £f¢ and
g = fg.

4. A state is a pair in FenName x Value™. A state tran-
sition (£,7) — (g,4) is a pair of states connected
by a call ¢ : g(e1,...,e,) in £’s body ef, such that
4= (u1,...,u,) and Efex]v = lift(ur), k=1,... ,n.

5. A state transition sequence is a sequence (finite or in-
finite) of form:

sts = (fo,70) = (£1,71) 3 (£2,2) 3 ...,

where (£, U¢) o (ft41, Ur+1) is a state transition for
eacht=0,1,... .

6. The call sequence of sts is calls(sts) = cicacs

A size ordering on values.

We assume given a fixed well-founded partial ordering < on
the Value domain. Remark: the partial order < is com-
pletely distinct from the “definedness” order C for the se-
mantic domain Value®, and should not be confused with it.

Base operators are interpreted by the auxiliary function O :
Op — Value® — Value*, which is assumed never to yield
1. Thus base operations always terminate, but may cause
runtime errors. Typical examples of base operators are the
list operators hd and tl1 and the predecessor on IV. Since
< is a well-founded ordering on Value, any sequence of base
operations that appear to decrease values infinitely must
eventually cause abortion, i.e., failure with Err.

A destructor is defined to be a base operator op such that
O[lop](¥) < v, for each i, provided OJop]|(¥) # Err, where
¥ = (v1,...,vn). We use the element Err for the result
of operations like t1 [] or pred 0; note that the common
definition t1 [] = [] contradicts the destructor property.

Some examples of terminating programs.
The following examples, mostly tail-recursive, will serve to
illustrate the power of the size-change principle.

1. Reverse function, with accumulating parameter:
rev(ls) = 1:r1(1s,[1)
ri(ls,a) = if 1ls=[] then a
else 2:r1(tl 1ls, cons (hd 1ls) a)

2. Program with indirect recursion:

£(i,x)
g(a,b,c)

if i=[] then x else 1:g(tl i,x,1)
2:f(a, cons b c)

3. Function with lexically ordered parameters:

a(m,n) = if m=0 then n+l else
if n=0 then 1:a(m-1, 1)
else 2:a(m-1, 3:a(m,n-1))

4. Program with permuted parameters:

p(m,n,r) = if r>0 then 1:p(m, r-1, n) else
if n>0 then 2:p(r, n-1 ,m)
else m

5. Program with permuted and possibly discarded pa-
rameters:

f(x,y) = if y=[] then x else
if x=[] then 1:f(y, tl y)
else 2:f(y, tl x)

6. Program with late-starting sequence of descending pa-
rameter values:

f(a,b) = if b=[] then 1:g(a,[])

else 2:f(cons (hd b) a, tl b)
if c=[] then d

else 3:g(tl c, cons (hd c) d)

g(c,d)

Claim: all these programs must terminate, for a common
reason: any infinite call sequence (regardless of test out-
comes) causes infinite descent in one or more values.

1.5 The remainder of the article

Section 2 describes the use and derivation of size-change
graphs to model size changes observed at function calls.
Section 3 shows two solutions to the problem of deciding
whether every infinite call sequence causes an infinitely de-
creasing sequence of parameter values. One is based on
w-automata that directly characterize the phenomenon of
infinite descent. The other solution (probably more practi-
cal) employs only elementary graph manipulation. Section
4 proves that the problem of deciding whether every infi-
nite call sequence has infinite descent is PSPACE hard in the
size of the subject program. Section 5 concludes with related
work and open problems. The Appendix contains additional
proofs and disussions.

2. TRACING SIZE CHANGES
2.1 Size-change graphs

Definition 3. Let £, g be function names in program p.
A size-change graph from f to g, written G : £ — g, is a
bipartite graph from f parameters to g parameters, with
labeled-arc set E:

G = (Param(f), Param(g), E),
E C Param(f) x {},T} x Param(g)
where E does not contain both £() % g and £® EN g,

The size-change graph is used to capture “definite” informa-

tion about a function call. An £ % g% arc indicates that
a data value must decrease in this call, with respect to the

< ordering, while an £(*) =N g(j) arc indicates that a value
must either decrease or remain the same. The absence of an
arc between a pair of parameters means that none of these
relations is asserted to be true for them.

Note: For given f, g in program p there are only finitely
many possible size-change graphs G : f — g.

Definition 4. Henceforth G = {G. | ¢ € C} denotes a set
of size-change graphs associated with subject program p, one
for each of p’s calls.

Examples of size-change graphs.
Following are size-change graphs for example programs 1
and 3 seen earlier.

Example 1 Example 3

G1:rev—rl G1,G2:a—a

m ¥, m
H—‘L>Il

lsi Is ISJL> Is m_L>m

a a a n n

Gy:rl—>ri Gz:a—a
Remarks: In Example 3, there is no arrow in GG to n since its
value is constant; and none in G since the second argument
of call 2 may exceed m and n.

2.2 Multipaths

Definition 5. A multipath M is a finite or infinite se-
quence G, Ge,,... of size-change graphs. This sequence
may be viewed as a concatenated (possibly infinite) graph,
as illustrated by:

Program p:

f(a,b,c) = 1: g(cons a b, tl c)

g(d,e) = . 2: h([], tl e, d)... 4:k(tl e)
h(u,v,w) = 3: g(u, t1 w)

k(x) = .

Multipath M describing the calls in p:

Definition 6.

1. A thread th in multipath M = G,.,,Ge,, ...
nected path of arcs:

is a con-

th = £/ 1 glop) Ty

An example is marked by heavy lines in the example.
Remarks: a thread need not start at ¢t = 0. An in-
stance is the thread starting in d. A thread need not
be infinite even if M is infinite, for instance the thread
from c ending in v.

A thread is mazimal if the connected path of arcs is
maximal in the multipath.

2. Thread th is descending if the sequence 7¢41, 742, . ..
has at least one |. The thread is infinitely descending
if it contains infinitely many occurrences of |.

the size-change graph G» : a — a shown earlier. Call 2
clearly decreases the current value of m, accounting for the

arc m % m. No size relation can be safely asserted about ar-
gument n, since 3:a(m,n-1) may exceed the current values
of m and n. According to Definition 9, G safely models the
parameter size-changes caused by call 2.

2.2.3 Choice of

The analysis is highly dependent on the choice of set G. In
general, we cannot insist that each G. be the most precise set
of arcs possible, as this is generally undecidable. However,
it is safe to include only relations that must always hold
(assuming successful argument evaluation).

In general, it is possible to build G around any size measure
that is well-founded, for instance, the absolute value of an
integer, the number of nodes in a tree, or the length of a

2.2.1 Multipaths of a state transition sequence and of list. Local properties of base functions hd, t1, -1 suffice to

a call sequence
A size-change graph can be used to describe the parameter
size changes in one concrete state transition sequence, or it
may be used abstractly, to depict size changes following a
call sequence cs.

Definition 7. Consider state transition sequence
sts = (£o, ¥o) = (f1,71) 3 (f2,72) 2. ,

Define M(sts) to be the multipath G1,G2,..., such that
for each ¢, G¢41 is a size-change graph from f; to f¢41, with
arcs fgi) 5 fg_)l satisfying r = if u; < v;, and r = T if
uj = vi, where 0y = (v1,... ,Um), Te41 = (U1,... , un).

Definition 8. Suppose G = {G.|cis a call in p} is a set
of size-change graphs for p. Given a call sequence cs =
cicacs ..., the G-multipath for cs is defined by Mg(cs) =
Gei,Gey, Gegy - -

Note that M (sts) displays the actual size relations among
parameter values along a state transition sequence, while
MY (cs) displays the information provided by the size-change
graphs in G.

2.2.2 Safety of a setof size-change graphs

Definition 9. Suppose G = {Gc|cis a call in p} is a set
of size-change graphs for p.

1. Let f’s definition contain call ¢ : g(er,... ,e,). The
phrase “arc £® 5 gl safely describes the £(*-gl¥)
size relation in call ¢” means: For every v € Value and
T=(V1,.-. , Varity(e)) Such that Ee;]7 = lift v:

r =] implies v < v; ; and r = T implies v < v;.

2. Size-change graph G, is safe for call ¢ : £ — g if every
arc in G. is a safe description as just defined.

3. Set G of size-change graphs is a safe description of
program p if graph G. is safe for every call c.

It is easy to see that all the size-change graphs given ear-
lier for examples 1 and 3 are safe for their respective calls.
Consider the call 2:a(m-1, 3:a(m,n-1)) in example 3, and

yield suitable graph sets for Examples 1-6.

It may be necessary to perform global size-analysis [6, 9,
10, 14, 15, 19] to make the best use of size considerations.
For instance, global size analysis is needed to handle sorting
algorithms automatically.

By the definition of safety of G, it is always valid to omit
an arc, but if an arc can be safely included it should be:
greater precision may be obtained since more threads may
be discovered to have infinite descent. Although a mazimal
safe G is in general noncomputable, the size-change principle
separates the concerns of approximating G and analyzing it;
and in this paper we focus on the analysis phase.

2.3 Termination analysis based on a safe

2.3.1 Basis of the analysis

If G is a safe set of size-change graphs and sts is a state
transition sequence, then M (sts) is safely described by the
G-multipath M9 (¢s) that follows the calls cs in sts:

LEMMA 1. Suppose G is a safe description of program p,

and state transition sequence sts = (fo,%) — (£1,71) 3
(f2,72) 3 ... has call sequence cs = calls(sts). Consider
multipaths MY (¢s) = G1,Gs,... and M(sts) = G, G5, ...
Then

1. if Gi41 has arc fgi) RN fEQl, then Gy, has the same
arc; and

2. if Giy1 has £V 5 fg_)l, then Gy, has an arc £ 5
fg-)l forr=TF orr=|.
Proor. Immediate by comparing definitions 9 and 7. [
COROLLARY 1. If MY(cs) has an infinite thread th, and
cs = calls(sts), then M(sts) also has an infinite thread th'.

Furthermore, thread th' has at least as many |-labeled arcs
as th.

Proor. Immediate from Lemma 1 and Definition 9. [

2.3.2 The analysis, abstractly

We next define two sets of infinite call sequences: those
that are possible according to the program’s flow graph, and
those that necessarily cause an infinite descent.

Definition 10.

FLOW® = {cs =cic2... € C¥ | cs is well-formed and
c1: finitiat = £1}

DESC¥ = {cs € FLOW* | some thread th in MY (cs)
has infinitely many |-arcs }

The result L can only arise from an infinite state transi-
tion sequence. This holds even though calls may be nested
(and even in a higher-order extension of the programming
language). Two lemmas prove this property:

LEMMA 2. Assume that E[e]]d = L. Then there exists a
call ¢ : g(e1,... ,en) in e such that E[gle1,... ,en)]0 = L
but Ee;]|v # L for each i.

PrROOF. Suppose inductively that the result holds for all
subexpressions of e and for every ¥ € Value®. Referring to
the semantics of Figure 5.1:

Case e = x: The result is trivial.

Casee = if e} then e} else ej: The result holds by induc-
tion, since £[e]]v = £[e;]|7 where i = 1if £[e}]|7 € {L, Err},
i =2 if E[[e1]T = True, else : = 3.

Case e = op(ey, ... ,em): Since Ofop](¥) # L for all
@ € Value™, by definition of strictapply, E[e]v is equal to
the least ¢ for which E[e;]¢ € {1, Err}. For this value of
i, E[ei]¥ = L, so the result follows from the inductive hy-
pothesis.

Case e = c :h(el, ... ,e},): If £[e;]]¥ = L for some i, then
the result follows from the inductive hypothesis. Other-
wise, E[ei]v # L for i = 1,... ,m, so the result holds with
glei,...,ep) =h(el, ... e). O

LEMMA 3. Suppose E[efmitia]|ty = L. Then there ewists
an infinite state transition sequence: sts = (finitial, To) 2N

(£1,1) 3 (f2, o) 3.

ProoF. It follows from the previous result that given any
program state (£, %) where £[e’]¥ = L, there exists a call
¢ : gler,...,en) in ef such that £fe;|¥ # L for each i.
Let Efe;]|v = lift(u;) for each i, and @ = (u1,...,un). By
definition, (f,7) — (g, @) is a state tramsition, such that
Elef]a = L.

Starting with the one-state transition-sequence (fnitial, U0),
where el]|gy = L, and extending inductively, the exis-
tence of the infinite state transition sequence is deduced. [

Example 3 revisited: consider the three calls 1:a(m-1,1),
2:a(m-1, 3:a(m,n-1)) and 3:a(m,n-1). Lemma 2 asserts
that for a call to function a to be non-terminating, either
call 1 is non-terminating; or call 3 is non-terminating; or

call 3 is terminating, but call 2 is non-terminating. By the
definition of safety, there is a size-change graph in G to ac-
count for each of these possibilities.

THEOREM 1. If FLOWY = DESC¥ then program p ter-
minates for all inputs.

Proor. It will be proved that if p is not terminating,
there is a ¢s in FLOW® but not in DESC¥. Suppose p
does not terminate on . Then by Lemma 3, there exists
an infinite state transition sequence sts = (finitial, ¥0) 2N

(£1,71) 3 (f2, ¥o) =

Call sequence cs = calls(sts) € C¥ is clearly in FLOW®.
Suppose cs € DESC*. Then multipath MY (cs) has a thread
with infinitely many |-labeled arcs. By Corollary 1, the
same is true of M(sts). By definition of M(sts), there ex-
ists a corresponding sequence of values, infinitely decreasing
in a well-founded domain. This is impossible. []

Definition 11. Program p is size-change terminating (for
this choice of G) if and only if FLOW® = DESC".

2.3.3 The examples revisited

Theorem 1 can be used, as is, for termination by proving
that any ¢s € FLOW® must be in DESC*. However, the
reasoning can be tricky for some programs (for instance,
see Examples 4, 5 below, which seem to possess no natu-
ral lexical descent). We prove later that the reasoning is
necessarily tricky, since the problem is PSPACE-hard. In the
next section, we will give two algorithms to perform the test
automatically.

In the following, we extend the regular-expression notation
to allow a single (final) use of w, e.g., 12¥ =1222....

Example 1: FLOW® is the singleton set {12“}. Call se-
quence c¢s = 12“ gives infinite descent in parameter ls, so
FLOW® = DESC*.

Example 2: FLOW® = {(12)“}. Call sequence cs = (12)“
gives infinite descent in i.

Example 3: FLOW® = (14 2+ 3)“ (the set of all infinite
strings composed of 1, 2 and 3). If cs € FLOW® ends in 3*,
then n descends infinitely. Otherwise cs € FLOW® contains
infinitely many 1’s or 2’s, so m descends infinitely.

Example 4: Consider multipath M9(cs) for any cs €
FLOW® = (1 + 2)“. The threads starting at m,n,r all
continue regardless of call sequence, and at least one | oc-
curs for each call. Now M9 (cs) has 3 maximal threads and
infinitely many |, so at least one thread must contain in-
finitely many |. That thread is thus infinitely descending,
so ¢s € DESC*.

Example 5: Any finite sequence in (12*) has a thread from
y to y containing at least one |. If cs € FLOW™ contains
infinitely many 1’s, then y descends infinitely. Otherwise cs
ends in 2“, and both x and y descend infinitely.

Example 6: Infinite call sequences must have form 2 or

2713“. Both cause infinite descent, of parameter b in the
first case, and c in the other.

3. DETECTING THREADS OF INFINITE
DESCENT

The first solution to size-change termination analysis is based
on the theory of w-automata. These automata can directly
characterize the infinite-descent phenomenon.

3.1 An analysis based on-automata

Definition 12. A Bichi automaton A = (In, S, So, p, F) is
a tuple where In is a finite set called input symbols, S is a
finite set called states, So C S is the set of initial states, and
F C S is the set of accepting states. The state transition
relation is a set of transition triples p C .S x In x S.

Definition 13. Behavior of a Bichi automaton A.

1. A run of A on an infinite word w = aiazas ... € In®
is a sequence soais1a252a383 ... € S(InS)* such that
So € So, and (st,at+1, St+1) eEp for t = 0,]., 2,3, e

2. The run r is accepting if and only if for some s € F', s
occurs infinitely often among sgsis2ss3. ...

3. L,(A) = {w € In¥ | some run on w is accepting}

A set A C In® is called w-regular iff it is accepted by some
Biichi automaton.

THEOREM 2. [18] The following problem is complete for
PSPACE: Given Biichi automata A and A', to decide whether
L,(A) =L, (A").

LEMMA 4. FLOW® 14s an w-reqular subset of C*.

Proor. FLOW® = L,(A) for Biichi automaton A4 =
(C, FenName, {£initiat }, p, FenName}). The transition rela-
tion is: p ={(f,c,g) | c: £ — g}

Ezplanation: A is just the program’s call graph, with func-
tion names as states, the initial function as initial state, and
calls as transitions. Any infinite call sequence must enter at
least one function infinitely often. Thus, defining all states
as accepting puts every well-formed infinite call sequence in

Lo(A). O

A Buchi automaton to acceptesc®

We first describe the construction informally by an example,
before stating the formal construction.

STAGE 1: Build a Biichi automaton to accept call sequence
es iff its associated multipath MY (cs) has an infinite de-
scending thread from the start of cs. The states of this
automaton represent function parameters x,y and the tran-
sitions correspond to calls ¢ whose associated size-change
graph G. includes an arc x = y.

In order to track size changes that occur in the thread, the
states are defined as pairs of function parameters and size
changes: y§ or yl, according to the size-change r on the
incoming arc. An infinitely descending thread from the start

of the multipath then corresponds to a run of the automaton
which enters infinitely many states of form x|.

For Example 3, the automaton can be seen in the diagram
below. (Ignore state a, treated in Stage 2.) The states
are m,m|, nf,n). Size-change graphs G and G2 (shown in
Section 2.1) decrease m, accounting for the arcs labeled 1,2
in the figure (entering m}). Size-change graph G3 decreases n
and copies m, explaining the arcs labeled 3. Accepting states
are m|, n|, and initial states are m}, nf .

STAGE 2: Stage 1 traces size changes only in threads that
start at the beginning of execution. To deal with late-
starting threads, add to the automaton of Stage 1 a copy
of the program’s call graph: the automaton of Lemma 4.
Further, for every call ¢ : £ — g, allow a c-transition from
function-name state £ to any parameter-name state g(i)f.

For Example 3 the call graph has only node a and calls 1,2,3
from a to itself, so the result is as above.

Section 2.3.3 had an argument to justify FLOW® = DESC*
for this example. That reasoning can clearly be applied to
the automaton’s behavior on words csin (1 +2+3)“. If ¢s
ends in infinitely many 3’s, the automaton can cycle in state
a until the last symbol in {1, 2} is read and then proceed to
accepting state n] and stay there. If on the other hand cs
contains infinitely many symbols in {1,2}, a transition to
the top half causes the automaton to enter accepting state
m| infinitely often.

LEMMA 5. DESC? is an w-regular subset of C*.

PRrOOF. Stage 1 of the construction just sketched leads to
automaton A; = (C, S1, So, p1, F') where

S1 = Parameter x {l,f}
So = Param(finitiar) X {T}
o= {(xr,c,x’r')|xl’>x'€Gc7T€{¢7T}’CEC}

F

{xl | x € Parameter}

The program’s call graph in automaton form was seen in
Lemma 4 to be (C, FenName, {£finitiat }, p, FenName}). Com-
bining this with 4;, we obtain

A= (C,S1 U FenName, So U {£initiar }, p1 UpU p2, F)

where p» = {(£f,¢,5) | ¢: £ — g,x € Param(g)}. Correct-
ness of this construction is straightforward. [

THEOREM 3. Size-change termination can be decided in
space polynomsial in the size of program p.

ProOF. By definition 11, p is size-change terminating if
and only if FLOW® = DESC®. The automata constructed
in Lemmas 4 and 5 to accept FLOW® and DESC* have size
that is polynomially bounded in the length of the program
p from which they were constructed. By Theorem 2, their
equivalence can be tested in PSPACE. [

In algorithmic practice, tests for equivalence of atomata in-
volve determinization of the (nondeterministic) automata.
While in principle this can be done in PSPACE, the best
known algorithm (due to Safra [16]) seems to give large au-
tomata and thus slow computations.

3.2 A graph-based algorithm

An alternative algorithm uses graph manipulation rather
than w-automata.

Definition 14. The composition of two size-change graphs
G:f >gand G : g > his G;G' : £ = h with arc set E
defined below. Notation: we write x — y T—; zif x 5y and
y s 2 are respectively arcs of G and G'.

E= {x—l>z | Ely,r.x—l>y—r>zorx—r>y—l>z}
U {xgz | (Ely.nyE)z) and

!
Vy,r,r' . x5y z implies r = =T}
LEMMA 6. Graph composition is associative.

Definition 15. For a well-formed nonempty call sequence
¢s = c1...cCn, define the size-change graph for cs, denoted
Ges, as Gey;. .. ;Ge,, -

LEMMA 7. Multipath M = G1,...,Gy has a thread from
x to y over its entire length, containing at least one |-labeled

are, if and only ifx—i>y€ Gi;...;Gyp.

Definition 16. Define the set S by

S ={Gcs | cs,cs0 are well-formed and f£initial O g}

The set S is finite since there are finitely many possible
graphs. However, its size may be exponential in the pro-
gram’s size (in fact, the construction in the following section
can be used to create such examples).

The central idea in the graph-based algorithm:

THEOREM 4. Program p is not size-change terminating
iff S contains G : £ — £ such that G = G;G and G has no

arc of form x 5 x.

Proor. For the forward implication, suppose p is not
size-change terminating. Then there is an infinite call se-
quence ¢s = cicz... such that Mg(cs) has no infinitely
descending thread.

Define a 2-set to be a 2-element set {¢, '} of positive integers.
Without loss of generality, t < ¢'. Now for each G € S,
define the class Pa of 2-sets yielding G by:

Po ={(t,t)|G =Ge;;Geryrs---,Ge,_,}

This set {Pg |G € S} of classes is mutually disjoint, every
2-set belongs to exactly one of them, and it is finite since
S is finite. By Ramsey’s theorem, there is an infinite set of
positive integers, T, such that all 2-sets {¢,#'} with ¢,¢' € T
are in the same class. Call this class Pgo.

Thus for any t,t' € T with t < t', G¢,;... ;Ge,,_, is equal
to the same G°. This implies that G° : £ — £ for some f,
and for t,¢',t" € T, with t <t < ¢,

G° = Geysoo5Geyr
= (Ge5---5Ge,)i (Geysenn
= G°%G°.

iGeyn_y)

If G° has an arc x 5 x, then by Lemma 7, each multipath
section Ge,,...,Ge, _,, where t € T, and t' is the next
bigger integer after ¢ in T, would have a descending thread
from x to x, and MY (cs) would have an infinitely descending
thread, violating the assumption about c¢s. Therefore, G°

has no arc of form x i) x. This establishes the forward
implication.

For the reverse implication, let G° € § be such that G° =

G°; G° and suppose G° has no arc of form x 5 . By defini-
tion of S, there exist cso and cs1 such that c¢s = cso(cs1)” €
FLOW®Y, and G.s, = G°. Suppose, for a contradiction, that
p is size-change terminating. Then (cs1)“ has an infinitely
descending thread. Consider the position of this thread at
the start of each csi-section. Some parameter x must be
visited by the thread at these points infinitely often, since
Parameter is finite. Given sufficiently many repeats of csi,
we can find a |-labeled arc in a thread from x to x. In other
words, there is a number n such that M9 ((cs1)™) has a de-

scending thread from x to x. By Lemma 7, arc x 5 xisin
Gesyn = (Gesy)™ = (G°)" = G°, which gives the required
contradiction. [

An algorithmic realization of Theorem 4.
1. Build the set S by a transitive closure procedure:

e Include every G, : £ — g where ¢ : £ — g is
a call in program p, and f is reachable by some
well-formed c¢so : finitiar — £.

e Forany G:f - gand H: g — hin S, include
also G;H in S.

2. For each G : f — f in S, test whether G = G; G and
x5 x ¢ G for each x € Param(f).

The test in step 2 takes low-order polynomial time; so the
bottleneck in this algorithm is the cardinality of S, i.e., the
number of different compositions of reachable size-change
graphs. This number can be exponential in the input pro-
gram’s size, hence our algorithm has exponential time and
space complexity.

However, space usage can be reduced to polynomial by not
creating all of the set S at any time, but generating it “on the
fly” as demanded by step 2. We omit the details, which are
standard. For practical usage, the increase in time required
to make the space polynomial is probably a waste, and the
simple algorithm seems more promising than the PSPACE
version, or the solution based on w-automata.

4. COMPLEXITY OF SIZE-CHANGE TER-
MINATION

As the previous section shows, given the set G, size-change
termination can be decided in polynomial space (and ex-
ponential time) using either of the given approaches. It
may surprise the reader, as it did the authors, to find that
size-change termination, in spite of its simplicity, is a com-
plete problem for PSPACE, hence intractable in general, un-
less PTIME = PSPACE. The proof is, as usual, by reduction
from a known PSPACE-complete problem. Note that equiva-
lence of Biichi automata is known to be PSPACE-complete, as
mentioned earlier, but our problem is a special case, hence
a specific hardness proof is necessary.

Definition 17. A Boolean program is an instruction se-
quence b = 1:I; 2:I, ... m:I,, specifying a computation
on variables Xi, ... ,Xi, ranging over truth values true, false.

Instructions I, have two formats: X; := not X;, and if
X; then goto (' else ¢’. Here 1 < i < k and £,¢ 0" €
{0,1,2,...,m}.

Semantics: the computation by b is a finite or infinite state
sequence b - (¢1,01) — (€2,02) — ..., where each store o
assigns a truth value in {true, false} to each of b’s variables,
and /; is the control point at time ¢.

Initially 1 = 1 and o1 assigns false to every variable. In-
ductively, given state (¢, o), if £ = 0 then the computation
has terminated, else the following rules apply.

If instruction I,, is X; := not X;, then o041 is identical to
o except that O't+1(xi) = ﬁUt(Xi). Further, €t+1 = (Kt +
1) mod (m + 1).

If instruction Iy, is if X; then goto ¢ else ¢, then oy41
is identical to o;. Further, ¢;41 = ¢ if 0(X;) = true, and
£t+1 =0"if O't(xi) = false.

Finally, program b terminates, written [b]J, iff for some ¢:
bt (51,01) - ... (Kt,at) = (O,Ut)-

LEmMMA 8. The following set is complete for PSPACE:

B ={b | b is a Boolean program and [b]|}

PROOF. B is in PSPACE by a simple simulation, using a
counter to declare nontermination if the computation has
taken more that (m + 1) - 2% steps. For pSPACE-hardness,
see [13]; or reduce QBF (truth of quantified Boolean formu-
las) to membership in B. O

THEOREM b. Size-change termination is PSPACE-hard.

Let SCT stand for the set of all G’s that satisfy the size-
change termination criterion FLOW®* = DESC*, and SCT
be its complement. The theorem will be proved by reduction
from B to SCT. Concretely, given a Boolean program b, we
will construct a program p of size polynomial in the size of b,
with associated set of size-change graphs G, and prove that
b € B if and only if G ¢ SCT.

Construction.
Suppose program b = 1:I; 2:I> ... m:I,, has k variables
X1, ..., Xx. Without loss of generality, each variable has

value false after execution, if b terminates (just add at the
end of b one test and one assignment for each variable.)

Program p will have functions {Fy, F1, ... , Fin }, each one of
2k + 1 parameters named X1, Xi, ... , Xk, Xi, Z. It will use

a single operator t1, assumed to be a unary destructor.

Definition of initial function Fj:

Fo(X1,X1, ... , X, Xk, 2) =
0: Fi(t1Xy, X1,... ,t1 Xg, Xk, Xi)
Definition of Fj, for instruction ¢:X; := not X;:
Fg(xl,il,... D O35 T ,Xk,xk,Z) =
l: F([+1)m0d(m+1)(xl,xl, coo Xy X oo Xk, Xk, t1 Z)

Definition of F, for instruction
¢: if X; then goto V¢ else 0":

Fy(X1,%1,... , Xk, X, Z) = if some-test
then £*: Fp(X1,%1,...,%,t1%;,... , Xk, Xk, t1Z)
else (™ : Fyu(X1,X1,... ,t1%;,X;, ... , Xk, Xg, t1 Z)

For some-test we use whatever the language permits; our
analysis considers every possible flow sequence anyway. The
program’s set of calls is

C={0} U {£|I;=% := not X"} U
{€T,¢7 | I, = “if X goto (' else '}

Example of the construction.
Suppose b is the Boolean program:

1: X := not X
2: if Y then goto 5 else 3
3: Y :=not Y
4: if X then goto 2 else 3
5: X := not X
6: Y :=not Y

We construct the following program p:

FO(X, X, Y, Y, Z) =0: F1(t1 X, X, t1 Y, Y, Y)
Fi(X, X, Y, Y, Z) =1: F2(X, X, Y, Y, t1 Z)
F2(X, X, Y, Y, 2) = if...
then 21: F5(X, X, Y, t1 Y, t1 Z)
else 27: F3(X, X, t1l Y, ¥, tl1 Z)
F3(X, X, Y, Y, Z) = 3: Fa(X, X, Y, Y, t1 Z)
F4a(X, X, Y, Y, 2) = if...
then 41: F2(X, t1 X, Y, Y, tl Z)
else 47 : F3(tl1 X, X, Y, Y, tl1 Z)
F5(X, X, Y, Y, Z) =5: F6(X, X, Y, Y, t1 Z)
F6(X, X, Y, ¥, 2) = 6: FO(X, X, ¥, Y, t1 2)

Go : Gy G- Gs3: Gyt : Goyt : Gs : Ge : G-
X i:X X><X X—X X—X X—X X—X X><X X—X xi»x
X—X X7 X X—X X—X X—X X—X X7 XX X—X X—X
v Y —Y y oy Y><Y Y —Y YTY Y —Y Y><Y Y —Y
Y<Y Y—Y Y—Y Y Y Y—Y Y—Y Y—Y Y7 Y Y—Y
l l l l { l 1 1
Z Z Z—*Z Z—*Z Z—*Z Z—*Z Z—Z Z—*Z Z—*Z Z—*Z
0 1 2~ 3 4t 2t 5 6 4~
Fo —> F F1 = F, Fy = F3 F3 = Fy Fy — Fy Fy = F5 F5 — Fg Fs — Ey Fy — Fjs

Figure 4.1: Size-change graphs for program p.

Figure 4.1 contains the size-change graphs for all of the calls
in p, starting with those that appear within b’s computation
and ending with call G4~ (this is “dead code”). To avoid
cluttering the diagram, { labels have been omitted.

Boolean program b’s computation is (writing stores com-
pactly by abbreviating true, false to T, F):

b 1FF = 2TF = 3TF = 4TT — 2TT —
5TT — 6FT — OFF

Sequence ¢s = 1273472756 is a “trace” of b’s computa-
tion, where +, — indicate whether respectively the positive
or negative branch of a conditional was taken.

Now consider the sequence 0cs = 012~ 34" 2% 56, obtained
by prepending 0 to b’s computation. Within p, call sequence
Ocs is a “loop” from function Fp back to itself, so (0cs)” €
FLOW®. As the reader may verify, there are no infinite
descending threads in the corresponding multipath. Thus
DESC* # FLOW?, so p is not size-change terminating, as
desired (indeed, for appropriate choices of some-test, p really
is a non-terminating program).

Appendix A completes the correctness proof.

COROLLARY 2. The termination and quasi-termination cri-

teria of [2, 7, 9, 10, 12, 14, 17] all are PSPACE-hard.

PrOOF. Point: These analyses all give correct results when
applied to programs whose data flow is similar to that of
p above. The proof is essentially the same, with the con-
struction modified as necessary to make the program fail
the condition tested by the respective method, just when
the Boolean program terminates. [

Termination analysis in polynomial time?

The reduction shows that the PSPACE hardness of termina-
tion analysis holds for very simple programs. In particu-
lar, the only expressions we have used are a variable and
unary operators applied to a variable. This indicates that
the root of the complexity is in the ways values move around
among parameter positions. Conclusion: the problem will
be less difficult if these ways are restricted. We have an algo-
rithm (as yet unpublished) that decides SCT in worst-case

cubic time for restricted programs including the following
two cases:

1. Programs whose size-change graphs have in- and out-
degrees bounded by 1 (Examples 1, 3, 4 and 6).

2. Programs whose function parameters can be “strati-
fied,” i.e., dependencies among call parameters can be
partially ordered by position (for example in Example
2, parameter x indirectly depends on i, while i only
depends on itself).

5. CONCLUDING REMARKS
5.1 Related work

Our PSPACE lower bound is the first such result of which we
are aware. The algorithms to detect termination, though,
have some counterparts in other programming language ar-
eas.

e Typed functional programs: Abel and Altenkirch [1]
have developed a system called foetus that accepts as
input mutual recursive function definitions over strict
positive datatypes. It returns a lexical ordering on the
arguments of the program’s functions, if one exists. As
we have seen (program examples 3, 4, 5), our handles
programs with or without such a lexical ordering.

e Logic programs: the Termilog [14] approach is as pow-
erful as ours, if applied to the result of converting a
functional program into Horn clause form. Graphs
analogous to ours are used in that method, but the
overall development is considerably more complex.

e Term rewriting: Arts and Giesl [4, 3] translate a sub-
ject program into a TRS whose termination implies
termination of the program. This approach requires
extending existing techniques for TRS termination. Au-
tomatic TRS termination also involves expensive sear-
ches for suitable orderings.

e Quasi-termination: It can be seen, by adapting the
PSPACE hardness construction, that the in-situ descent
criterion used to decide quasi-termination in [12, 2, 10]
is PSPACE hard.

Glenstrup [9] shows one way that quasitermination
analysis techniques can be used for termination. Sim-
plified version: add a “recursion depth” parameter to

Domains v € Value (a flat domain).

E[ED](v1, ... ,vn) =
E[if e1 then es else e3]|¥ =
Elop(er,...,en)]v
Elf(er,... en)]0 =

Semantic operator

strictapply ¢ (w1, ... ,wy) =

Assumption Oflop]ld # L

u,w € Value* = Value U {L, Err}, where | C w for all w.

£ . Ezpr — Value® — Value®
O ;. Op — Value® — Value

Types . i L
lift : Value — Value (the natural injection)

strictapply : (Value® — Value®) — (Value!)* — Value

u, if u=_1 or u= Err,
Auxiliary operations u — w,w’' =<{ w, if u= True,
w', otherwise.

lift v;

5[[e1]]17 — 5[[e2]]17, 5[[e3]]1_)'

strictapply (Ofop]) (E]e1]7, - - . E[en]?)
strictapply (E[e’]) (Ee1], . .. E[en]D)

Y, ... ,vp) fw; ¢ {L,Err}fori=1,...,n,
and w; = lift v; for each ¢; else
w; where ¢ = least index such that w; € {L, Err}

Figure 5.1: Semantics of L programs. True is a distinguished element of Value.

each function, incremented at every call. If depth pa-
rameters are bounded in every execution, then the pro-
gram is terminating. This approach is weaker than
size-change termination. And it appears that quasi-
termination is in general a more difficult problem than
termination.

For further discussion of related work see Appendix B.

5.2 Future work

A number of interesting problems to be investigated:

1. The PSPACE hardness result suggests trying to derive
good approximations. A current goal is a PTIME ap-
proximation of SCT, which subsumes lexical orders,
and handles permuted arguments and indirect recur-
sion.

2. An analogue of SCT for binding-time analysis
(to guarantee termination of partial evaluation) is be-
ing developed, generalizing the “in-situ” criterion used
in [2, 9].

3. Size analysis should be incorporated for a practical
analyzer, to construct more precise size-change graphs.
Something based on the integer programming methods
of [6, 19] may be appropriate.

4. An extension of the present approach for high-order
programs seems possible, although the semantic anal-
yses can become quite complicated if we wish to trace
size relations involving arguments captured in closures.

6. ACKNOWLEDGEMENTS

The first author would like to express his gratitude to Pro-
fessor Neil Jones for his generous and patient guidance, and
to TOPPS for a rewarding academic visit in 1999.

APPENDIX
A. PROOF OF PSPACE-HARDNESS OF SCT

Here we prove that the reduction in Section 4 is correct,
implying Theorem 5. First, some observations about a mul-
tipath of form M9 (0 cs):

1. Call 0 begins exactly two threads (to X and X) at ev-
ery X other than X;. Parameter X; begins two such
threads, and as well as one with initial arc directed to
Z.

For each parameter X of Fp, let us say that arc X Hx
begins its “high thread”, and that arc X — X begins
its “low thread”.

2. Both high thread and low thread continue the length
of Ocs, and end in either X or X. The (unique) Z-thread
remains in Z after the initial arc for the whole of Ocs.
By the way p is constructed, no thread is ever lost or
duplicated, except at call 0.

3. Either the high or the low thread from X must end at
X, so Ocs has a thread from every X to itself.

LEMMA 9. Suppose b + (L1,01) — ... = (b, 0r) with
trace c¢s = cicz ...ct—1. Then for any variable X, multipath
MY (0cs) has a nondescending thread from parameter X to
parameter X if o4(X) = false, and from X to X if o(X) = true.

PRrROOF. Immediate if ¢ = 1, since o1(X) = false for all X.
Inductively, if true for ¢ — 1, inspection of the cases in con-
struction of p based on the form of instruction I,,_, shows
that the property is preserved. [

To prove that the reduction is correct, we must show that
Boolean program b terminates if and only if program p is
not size-change terminating.

Only if: Suppose b terminates with (finite) trace cs. Then
Ocs is a valid call sequence for p, from Fy back to Fy. By
Lemma 9 the “low thread” starting at any Fp parameter
X; is nondescending. By the assumption that all variables
are false when execution ends, the low thread returns to X;.
Thus the high thread ends in X;, and fails to be continued
if call 0 is repeated following Ocs. The Z-thread will also
be discontinued. Consequently (0cs)” ¢ DESC*, which im-
plies DESC* # FLOW®.

If: we show that if b fails to terminate, any cs € FLOW"
must have infinite descent. Now c¢s must begin with call
0 : Fo — Fi from p’s initial function Fp. If cs contains
only a finite number of calls to Fp, then after the last one,
parameter Z will decrease in every call, so ¢s € DESCY.

Suppose cs contains an infinite number of calls to Fy. This
means we can decompose it into ¢s = 0cs10¢s20¢s3 ... where
each cs; is free of 0’s. We claim that each Ocs; has a de-
scending thread from at least one parameter X to X (the
claim is proved below). By Observation 3, every cs; has
continuous threads beginning and ending in every parame-
ter Y, so call sequence cs = 0cs10cs20¢s3 ... has exactly k
infinite maximal threads. Infinitely many | must occur in
this set of threads. Consequently at least one thread within
c¢s contains infinitely many |, so ¢s € DESC.

Proof of claim: Let ¢s; = cica ... cy; since 0cs;0 is part of a
valid call sequence from FLOW®, but is not a correct trace
of the program (which does not terminate), we conclude that
it includes a call that represents the incorrect branch of an
if statement. Consider the first such call. Being incorrect
means that the else-branch is followed when the tested vari-
able X has value true, or the then-branch is followed while
the value is false. By Lemma 9 the low thread starting at
X reaches X if X has value false and reaches X if X has value
true. In each case, the size-change graph created by our
construction for the wrong branch extends this thread with
a J-labeled arc.

Since the high thread from X always contains a |-labeled arc,
we conclude that the thread from X that happens to return
to X at the end of Ocs; (being one of these two) must be
descending, as desired.

B. MORE ON RELATED WORK

Logic programs

There has been extensive research on automatic termination
analysis for logic programs. As explained in [17], it is not al-
ways obvious that a predicate will terminate when executed
with unusual instantiation patterns, or that a predicate al-
ways terminates on backtracking. For interpreters that have
a choice of evaluation orders, termination analysis is espe-
cially important.

Some analyses that have been described for logic programs
(e.g., in [15, 19]) use a simple criterion: for every recursive
invocation of a predicate, determine that the sum over a
subset of input fields (fixed for each predicate) is strictly
decreased. This does not allow handling of lexical descent.

The strength of these methods derives from aggressive size
analysis, which enables, in particular, sorting routines (quick-
sort and insertion sort) to be handled automatically. It is
also possible to incorporate size analysis into the present ap-
proach, but the aim of this article has been to investigate
the size-change termination principle by itself.

There are also logic program termination analyzers using a
termination criterion compatible with size-change termina-
tion [14, 7]. The analysis in [17] has been extended to a ter-
mination analyzer for Prolog programs called Termilog [14].
It turns out that Termilog can be used to solve size-change
termination problems precisely via a suitable encoding. In
fact, our graph-based algorithm, although devised indepen-
dently, is in essence a functional programming counterpart
of the Termilog algorithm. This means that the PSPACE
hardness result of Section 4 applies to Termilog’s Analysis.

All the works on Prolog termination that we are aware of
devote much attention to orthogonal issues such as instan-
tiation and size analysis. While these are no doubt impor-
tant considerations in practice, an impression is created that
the complexity of the termination problem for Prolog stems
from these concerns. The significance of the complexity re-
sult in this article is pointing out that the core size-change
termination principle is intrinsically hard.

Term rewriting systems

One application for term rewriting systems is to model the
semantics of functional programs. A functional program is
easily translated into a TRS such that termination of the
TRS implies termination of the subject program. Unfortu-
nately, the resulting TRS is often non-simply-terminating,
which means the usual approach to find an ordering for
which the LHS of each rewrite rule is strictly greater than
the RHS, does not work. To treat such TRS, Arts [3] ap-
plied programming intuition to develop methods sufficiently
strong for them. For a term-rewriting perspective, these
methods are able to a handle a larger class of TRS. From the
point of view of analyzing functional programs, a dataflow
approach may be less circuitous.

For TRS termination, it is common to perform expensive
searches for a suitable ordering to solve a set of inequalities.
For instance, in [20], a heuristic is given for automatically
generating a general class of orderings known as transfor-
mation orderings, which includes the lexical order. In the
present work, it has not been the aim to look for orderings.
Size-change termination naturally subsumes an interesting
class of orderings, including the lexical ordering, and the
ordering for the example with permuted and discarded pa-
rameters, which is not obvious.

Finally, for TRS corresponding to programs, the polynomial
interpretation method for discovering orderings [8] obviates
the need for size analysis by appropriately interpreting func-
tion symbols in the subject program. The approach in this
article has been to factor out size analysis as an orthogonal
concern, and focus on the size-change termination principle
and its application. This appears to be a natural factoring
of concerns when analyzing termination of programs.

C.
[1]

2]

[4]

[7]

(8]

[9]

[10]

REFERENCES

Andreas Abel and Thorsten Altenkirch. A semantical
analysis of structural recursion. In Abstracts of the
Fourth International Workshop on Termination
WST’99, pages 24-25. unpublished, May 1999.

Peter Holst Andersen and Carsten Kehler Holst.
Termination analysis for offline partial evaluation of a
higher order functional language. In Static Analysis,
Proceedings of the Third International Symposium,
SAS 96, Aachen, Germany, Sep 24—-26, 1996, volume
1145 of Lecture Notes in Computer Science, pages
67-82. Springer, 1996.

Thomas Arts. Automatically Proving Termination and
Innermost Normalisation of Term Rewriting Systems.
PhD thesis, Universiteit Utrecht, 1997.

Thomas Arts and Jirgen Giesl. Proving innermost
termination automatically. In Proceedings Rewriting
Techniques and Applications RTA’97, volume 1232 of
Lecture Notes in Computer Science, pages 157-171.
Springer, 1997.

Anders Bondorf. Similix manual. Technical Report
91/9, DIKU, University of Copenhagen, Denmark,
1991.

Wei Ngan Chin and Siau Cheng Khoo. Calculating
sized types. In Julia Lawall, editor, ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-based
Program Manipulation, Boston, Mass., USA. ACM,
2000.

Michael Codish and Cohavit Taboch. A semantic basis
for termination analysis of logic programs and its
realization using symbolic norm constraints. In
Michael Hanus, Jan Heering, and Karl Meinke,
editors, Algebraic and Logic Programming, 6th
International Joint Conference, ALP ’97-HOA ’97,
Southampton, U.K., September 3-5, 1997, volume
1298 of Lecture Notes in Computer Science, pages
31-45. Springer, 1997.

Jiirgen Giesl. Termination analysis for functional
programs using term orderings. In Alan Mycroft,
editor, Proc. 2nd Int’l Static Analysis Symposium
(SAS), Glasgow, Scotland, volume 983 of Lecture
Notes in Computer Science, pages 154-171.
Springer-Verlag, September 1995.

Arne J. Glenstrup. Terminator II: Stopping partial
evaluation of fully recursive programs. Master’s thesis,
DIKU, University of Copenhagen, Denmark, 1999.

Arne J. Glenstrup and Neil D. Jones. BTA algorithms
to ensure termination of off-line partial evaluation. In
Perspectives of System Informatics, Proceedings of the
Second International Andrei Ershov Memorial

[15]

[16]

[17]

[19]

Conference, Akademgorodok, Novosibirsk, Russia, Jun
25-28, 1996, volume 1181 of Lecture Notes in
Computer Science, pages 273—284. Springer, 1996.

C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM (CACM),
12(10):576-580, October 1969.

Carsten Kehler Holst. Finiteness analysis. In John
Hughes, editor, Functional Programming Languages
and Computer Architecture, Cambridge,
Massachusetts, August 1991, volume 523 of Lecture
Notes in Computer Science, pages 473—495. Springer,
1991.

Neil D. Jones. Computability and Complezity From a
Programming Perspective. Foundations of Computing
Series. MIT Press, 1997.

Naomi Lindenstrauss and Yehoshua Sagiv. Automatic
termination analysis of Prolog programs. In Lee
Naish, editor, Proceedings of the Fourteenth
International Conference on Logic Programming,
pages 64-77, Leuven, Belgium, Jul 1997. MIT Press.

Lutz Plimer. Termination Proofs for Logic Programs,
volume 446 of Lecture Notes in Artificial Intelligence.
Springer-Verlag, 1990.

S. Safra. On the complexity of omega-automata. In
Proceedings of the 29th IEEE Symposium on
Foundations of Computer Science, pages 319-327,
IEEE, 1988.

Yehoshua Sagiv. A termination test for logic programs.
In Vijay Saraswat and Kazunori Ueda, editors, Logic
Programming, Proceedings of the 1991 International
Symposium, San Diego, California, USA, Oct 28-Nov
1, 1991, pages 518-532. MIT Press, 1991.

A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper.
The complementation problem for Biichi automata
with applications to temporal logic. Theoretical
Computer Science, 49:217-237, 1987.

Chris Speirs, Zoltan Somogyi, and Harald
Sgndergaard. Termination analysis for Mercury. In
Pascal Van Hentenryck, editor, Static Analysis,
Proceedings of the 4th International Symposium, SAS
’97, Paris, France, Sep 8-19, 1997, volume 1302 of
Lecture Notes in Computer Science, pages 160-171.
Springer, 1997.

Joachim Steinbach. Automatic termination proofs
with transformation orderings. In Jieh Hsiang, editor,
Rewriting Techniques and Applications, Proceedings of
the 6th International Conference, RTA-95,
Kaiserslautern, Germany, April 5-7, 1995, volume 914
of Lecture Notes in Computer Science, pages 11-25.
Springer, 1995.

