
The Size-Change Principle for Program Termination

Chin Soon Lee
�

Department of Computer
Science and Software

Engineering
The University of Western

Australia
Nedlands 6907

Western Australia

leecs@cs.uwa.edu.au

Neil D. Jones
Datalogisk Institut

University of Copenhagen
Universitetsparken 1

DK-2100 Copenhagen
Denmark

neil@diku.dk

Amir M. Ben-Amram
Academic College of Tel-Aviv–

Yaffo
4 Antokolsky Street

Tel-Aviv 64044
Israel

amirben@mta.ac.il

ABSTRACTThe \size-
hange termination" prin
iple for a �rst-order fun
-tional language with well-founded data is: a program termi-nates on all inputs if every in�nite
all sequen
e (follow-ing program
ontrol
ow) would
ause an in�nite des
ent insome data values.Size-
hange analysis is based only on lo
al approximations toparameter size
hanges derivable from program syntax. Theset of in�nite
all sequen
es that follow program
ow and
anbe re
ognized as
ausing in�nite des
ent is an !-regular set,representable by a B�u
hi automaton. Algorithms for su
hautomata
an be used to de
ide size-
hange termination.We also give a dire
t algorithm operating on \size-
hangegraphs" (without the passage to automata).Compared to other results in the literature, terminationanalysis based on the size-
hange prin
iple is surprisinglysimple and general: lexi
al orders (also
alled lexi
ographi
orders), indire
t fun
tion
alls and permuted arguments (de-s
ent that is not in-situ) are all handled automati
ally andwithout spe
ial treatment, with no need for manually sup-plied argument orders, or theorem-proving methods not
er-tain to terminate at analysis time.We establish the problem's intrinsi

omplexity. This turnsout to be surprisingly high,
omplete for pspa
e, in spite ofthe simpli
ity of the prin
iple. pspa
e hardness is provedby a redu
tion from Boolean program termination. An in-teresting
onsequen
e: the same hardness result applies tomany other analyses found in the termination and quasi-termination literature.�This resear
h was done while visiting DIKU.

Categories and Subject DescriptorsD.2.4 [Software Engineering℄: Software/Program Veri-�
ation; D.3.4 [Programming Languages℄: Pro
essors;F.3.1 [Logi
s and Meanings of Programs℄: Spe
ifyingand Verifying and Reasoning about Programs; F.3.2 [Logi
sand Meanings of Programs℄: Semanti
s of ProgrammingLanguages
KeywordsTermination, program analysis, omega automaton, PSPACE-
ompleteness, partial evaluation.
1. INTRODUCTION
1.1 MotivationThere are many reasons to study automati
 methods toprove program termination, in
luding:� Program veri�
ation: typi
ally dedu
tive methods areused to show partial
orre
tness (the input-output spe
-i�
ation is satis�ed provided the program terminates),followed by a separate proof of termination [11℄.� Automati
 program manipulation: termination has tobe ensurable when dealing with ma
hine-generated pro-grams, or ones imported from a possibly untrustworthy
ontext.� Broad interest: termination has been studied in �eldsin
luding fun
tional programming [8℄, logi
 program-ming [7, 15, 17, 19, 14℄, term rewriting systems [3,20℄ and partial evaluation. Dis
ussion of related workappears at the end of this paper.� Interesting analysis: termination is not just an \ab-stra
t interpretation" of program values, but rathermore subtle.� Use in partial evaluation: this is a step towards abinding-time analysis that will guarantee terminationof program spe
ialization [12, 2, 9, 10℄ and still allowan a

eptably high degree of spe
ialization in an o�inepartial evaluator su
h as Similix [5℄.We emphasize here a
areful and pre
ise formulation of asimple but powerful prin
iple to de
ide termination. It isowing to this
lear statement of the termination
riterion

that the pspa
e hardness result has been a
hieved. Theresult should interest resear
hers working with related anal-yses of
omparable power [12, 2, 14, 7, 9℄, as our
omplexityresult (pspa
e hardness) also applies to their methods. Fur-ther, it suggests striving for a ptime approximation to thepresent
riterion that is suÆ
iently strong on pra
ti
al pro-grams.
1.2 This AnalysisWe do termination analysis in two distin
t phases. Phase 1 isto extra
t a set of size-
hange graphs from the program. Forea
h fun
tion
all that may o

ur during a
tual exe
ution,there is a size-
hange graph that safely approximates thesize relations between sour
e and destination parameters inthis
all. We assume that the measure of size gives rise to awell-founded order, so that the following prin
iple applies:If every in�nite
omputation would give rise toan in�nitely de
reasing value sequen
e (a

ord-ing to the size-
hange graphs), then no in�nite
omputation is possible.Phase 2 is to apply this
riterion. It
an be de
ided pre
iselygiven a safe set of size-
hange graphs.De�nition 1. For any set A, de�ne A� to be the set of all�nite sequen
es over A; and A! to be the set of all in�nitesequen
es over A; and A�! = A� [A!. We use the samenotation: as = a1a2a3 : : : for elements of either A� or A!,and write as = a1a2a3 : : : an for elements of A�.
1.3 Syntax and notationsA �rst order fun
tional language L with the following syntaxis
onsidered.p 2 Prog ::= def1 : : : defmdef 2 Def ::= f(x1; : : : ; xn) = efe 2 Expr ::= xj if e1 then e2 else e3j op(e1; : : : ; en)j
: f(e1; : : : ; en)x 2 Parameter ::= identi�erf 2 F
nName ::= identi�er not in Parameterop 2 Op ::= primitive operatorThe de�nition of fun
tion f has form f(x1; : : : ; xn) = ef,where ef is
alled the body of f. The number n � 0 ofparameters in the de�nition of f is
alled its arity , writtenarity(f). Notation: Param(f) = ff(1); : : : ; f(n)g is the setof f's parameters. In examples the f(i)'s may be named byidenti�ers, e.g., f(i)
orresponds to xi in the grammar above.Parameters are assumed to be in s
ope when they are used.This
an be
he
ked synta
ti
ally. The entry fun
tion is the�rst fun
tion in the program's list of de�nitions, denotedfinitial . Call sites are labeled with numbers prepended tothe
all expression, e.g.,
 : f(e1; : : : ; en).Without loss of generality, all fun
tion names, parameternames and
all site labels are distin
t from one another.Constants are regarded as 0-ary operators.

1.4 Programs and their semanticsPrograms in L are untyped, and are interpreted a

ordingto the (very standard
all-by-value) evaluation semanti
s inFigure 5.1. The semanti
 operator E is de�ned as usual fora fun
tional language: E [[e℄℄~v is the value of expression e inenvironment ~v = (v1; : : : ; vn) { a tuple
ontaining values ofparameters f(1); : : : ; f(n).E has type Expr ! Value� ! Value℄, where Value� is the
at domain of �nite value sequen
es. Domain Value℄ =Value [f?;Errg in
ludes values, plus Err to model runtimeerrors, and ? to model non-termination. Fun
tion lift :Value ! Value℄ is the natural inje
tion.Program p is terminating on input ~v i� E [[efinitial ℄℄~v 6= ?.De�nition 2.1. We write
 : f! g, or alternatively, f
! g for a
all
to fun
tion g o

urring in ef. The set of all
all sitesin p is C.2. A
all sequen
e is a �nite or in�nite sequen
e
s =
1
2
3 : : : 2 C�!. It is well-formed (for the
urrentprogram) if and only if there is a sequen
e of fun
tionsf0, f1, : : : , su
h that f0
1! f1
2! f2
3! : : :3. We write
s : f ! g, or alternatively, f
s! g if
s =
1
2 : : :
k and f0
1! f1
2! : : :
k! fk where f = f0 andg = fk.4. A state is a pair in F
nName �Value�. A state tran-sition (f; ~v)
! (g; ~u) is a pair of states
onne
tedby a
all
 : g(e1; : : : ; en) in f's body ef, su
h that~u = (u1; : : : ; un) and E [[ek℄℄~v = lift(uk); k = 1; : : : ; n.5. A state transition sequen
e is a sequen
e (�nite or in-�nite) of form:sts = (f0; ~v0)
1! (f1; ~v1)
2! (f2; ~v2)
3! : : : ;where (ft; ~vt)
t+1! (ft+1; ~vt+1) is a state transition forea
h t = 0; 1; : : : .6. The
all sequen
e of sts is
alls(sts) =
1
2
3 : : : .
A size ordering on values.We assume given a �xed well-founded partial ordering < onthe Value domain. Remark: the partial order < is
om-pletely distin
t from the \de�nedness" order v for the se-manti
 domain Value℄, and should not be
onfused with it.Base operators are interpreted by the auxiliary fun
tion O :Op ! Value� ! Value℄, whi
h is assumed never to yield?. Thus base operations always terminate, but may
auseruntime errors. Typi
al examples of base operators are thelist operators hd and tl and the prede
essor on IN . Sin
e< is a well-founded ordering on Value, any sequen
e of baseoperations that appear to de
rease values in�nitely musteventually
ause abortion, i.e., failure with Err.A destru
tor is de�ned to be a base operator op su
h thatO[[op℄℄(~v) < vi, for ea
h i, provided O[[op℄℄(~v) 6= Err, where~v = (v1; : : : ; vn). We use the element Err for the resultof operations like tl [℄ or pred 0; note that the
ommonde�nition tl [℄ = [℄
ontradi
ts the destru
tor property.

Some examples of terminating programs.The following examples, mostly tail-re
ursive, will serve toillustrate the power of the size-
hange prin
iple.1. Reverse fun
tion, with a

umulating parameter:rev(ls) = 1:r1(ls,[℄)r1(ls,a) = if ls=[℄ then aelse 2:r1(tl ls,
ons (hd ls) a)2. Program with indire
t re
ursion:f(i,x) = if i=[℄ then x else 1:g(tl i,x,i)g(a,b,
) = 2:f(a,
ons b
)3. Fun
tion with lexi
ally ordered parameters:a(m,n) = if m=0 then n+1 elseif n=0 then 1:a(m-1, 1)else 2:a(m-1, 3:a(m,n-1))4. Program with permuted parameters:p(m,n,r) = if r>0 then 1:p(m, r-1, n) elseif n>0 then 2:p(r, n-1 ,m)else m5. Program with permuted and possibly dis
arded pa-rameters:f(x,y) = if y=[℄ then x elseif x=[℄ then 1:f(y, tl y)else 2:f(y, tl x)6. Program with late-starting sequen
e of des
ending pa-rameter values:f(a,b) = if b=[℄ then 1:g(a,[℄)else 2:f(
ons (hd b) a, tl b)g(
,d) = if
=[℄ then delse 3:g(tl
,
ons (hd
) d)Claim: all these programs must terminate, for a
ommonreason: any in�nite
all sequen
e (regardless of test out-
omes)
auses in�nite des
ent in one or more values.
1.5 The remainder of the articleSe
tion 2 des
ribes the use and derivation of size-
hangegraphs to model size
hanges observed at fun
tion
alls.Se
tion 3 shows two solutions to the problem of de
idingwhether every in�nite
all sequen
e
auses an in�nitely de-
reasing sequen
e of parameter values. One is based on!-automata that dire
tly
hara
terize the phenomenon ofin�nite des
ent. The other solution (probably more pra
ti-
al) employs only elementary graph manipulation. Se
tion4 proves that the problem of de
iding whether every in�-nite
all sequen
e has in�nite des
ent is pspa
e hard in thesize of the subje
t program. Se
tion 5
on
ludes with relatedwork and open problems. The Appendix
ontains additionalproofs and disussions.
2. TRACING SIZE CHANGES
2.1 Size-change graphsDe�nition 3. Let f, g be fun
tion names in program p.A size-
hange graph from f to g, written G : f ! g, is abipartite graph from f parameters to g parameters, withlabeled-ar
 set E:

G = (Param(f);Param(g); E);E � Param(f)� f#; #=g � Param(g)where E does not
ontain both f(i) #! g(j) and f(i) #=! g(j).The size-
hange graph is used to
apture \de�nite" informa-tion about a fun
tion
all. An f(i) #! g(j) ar
 indi
ates thata data value must de
rease in this
all, with respe
t to the< ordering, while an f(i) #=! g(j) ar
 indi
ates that a valuemust either de
rease or remain the same. The absen
e of anar
 between a pair of parameters means that none of theserelations is asserted to be true for them.Note: For given f, g in program p there are only �nitelymany possible size-
hange graphs G : f! g.De�nition 4. Hen
eforth G = fG
 j
 2 Cg denotes a setof size-
hange graphs asso
iated with subje
t program p, onefor ea
h of p's
alls.
Examples of size-change graphs.Following are size-
hange graphs for example programs 1and 3 seen earlier.Example 1ls -#= lsa lsa -# lsaG1 : rev! r1 G2 : r1! r1

Example 3mn -# mn mn --#=# mnG1; G2 : a! a G3 : a! aRemarks: In Example 3, there is no arrow in G1 to n sin
e itsvalue is
onstant; and none in G2 sin
e the se
ond argumentof
all 2 may ex
eed m and n.
2.2 MultipathsDe�nition 5. A multipath M is a �nite or in�nite se-quen
e G
1 ; G
2 ; : : : of size-
hange graphs. This sequen
emay be viewed as a
on
atenated (possibly in�nite) graph,as illustrated by:Program p:f(a,b,
) = 1: g(
ons a b, tl
)g(d,e) = ... 2: h([℄, tl e, d)... 4:k(tl e)h(u,v,w) = 3: g(u, tl w)k(x) = ...Multipath M des
ribing the
alls in p:

G4 : g! kG3 : h! gG2 : g! hG1 : f! g : : :: : :
: : :#ed#=#PPPPPqwvu##=�����:ed#�����:
ba QQQQQsQQQQQs �����:�����: --

De�nition 6.1. A thread th in multipath M = G
1 ; G
2 ; : : : is a
on-ne
ted path of ar
s:th = f(it)t rt+1�! f(it+1)t+1 rt+2�! : : :An example is marked by heavy lines in the example.Remarks: a thread need not start at t = 0. An in-stan
e is the thread starting in d. A thread need notbe in�nite even ifM is in�nite, for instan
e the threadfrom
 ending in v.A thread is maximal if the
onne
ted path of ar
s ismaximal in the multipath.2. Thread th is des
ending if the sequen
e rt+1; rt+2; : : :has at least one #. The thread is in�nitely des
endingif it
ontains in�nitely many o

urren
es of #.
2.2.1 Multipaths of a state transition sequence and of

a call sequenceA size-
hange graph
an be used to des
ribe the parametersize
hanges in one
on
rete state transition sequen
e, or itmay be used abstra
tly, to depi
t size
hanges following a
all sequen
e
s.De�nition 7. Consider state transition sequen
ests = (f0; ~v0)
1! (f1; ~v1)
2! (f2; ~v2)
3! : : : ;De�ne M(sts) to be the multipath G1; G2; : : : , su
h thatfor ea
h t, Gt+1 is a size-
hange graph from ft to ft+1, withar
s f(i)t r! f(j)t+1 satisfying r = # if uj < vi, and r = #= ifuj = vi, where ~vt = (v1; : : : ; vm); ~vt+1 = (u1; : : : ; un).De�nition 8. Suppose G = fG
 j
 is a
all in pg is a setof size-
hange graphs for p. Given a
all sequen
e
s =
1
2
3 : : : , the G-multipath for
s is de�ned by MG(
s) =G
1 ; G
2 ; G
3 ; : : : .Note that M(sts) displays the a
tual size relations amongparameter values along a state transition sequen
e, whileMG(
s) displays the information provided by the size-
hangegraphs in G.
2.2.2 Safety of a setG of size-change graphsDe�nition 9. Suppose G = fG
 j
 is a
all in pg is a setof size-
hange graphs for p.1. Let f's de�nition
ontain
all
 : g(e1; : : : ; en). Thephrase \ar
 f(i) r! g(j) safely des
ribes the f(i)-g(j)size relation in
all
" means: For every v 2 Value and~v = (v1; : : : ; varity(f)) su
h that E [[ej ℄℄~v = lift v:r = # implies v < vi ; and r = #= implies v � vi.2. Size-
hange graph G
 is safe for
all
 : f! g if everyar
 in G
 is a safe des
ription as just de�ned.3. Set G of size-
hange graphs is a safe des
ription ofprogram p if graph G
 is safe for every
all
.It is easy to see that all the size-
hange graphs given ear-lier for examples 1 and 3 are safe for their respe
tive
alls.Consider the
all 2:a(m-1, 3:a(m,n-1)) in example 3, and

the size-
hange graph G2 : a ! a shown earlier. Call 2
learly de
reases the
urrent value of m, a

ounting for thear
 m #! m. No size relation
an be safely asserted about ar-gument n, sin
e 3:a(m,n-1) may ex
eed the
urrent valuesof m and n. A

ording to De�nition 9, G2 safely models theparameter size-
hanges
aused by
all 2.
2.2.3 Choice ofGThe analysis is highly dependent on the
hoi
e of set G. Ingeneral, we
annot insist that ea
hG
 be the most pre
ise setof ar
s possible, as this is generally unde
idable. However,it is safe to in
lude only relations that must always hold(assuming su

essful argument evaluation).In general, it is possible to build G around any size measurethat is well-founded, for instan
e, the absolute value of aninteger, the number of nodes in a tree, or the length of alist. Lo
al properties of base fun
tions hd, tl, -1 suÆ
e toyield suitable graph sets for Examples 1{6.It may be ne
essary to perform global size-analysis [6, 9,10, 14, 15, 19℄ to make the best use of size
onsiderations.For instan
e, global size analysis is needed to handle sortingalgorithms automati
ally.By the de�nition of safety of G, it is always valid to omitan ar
, but if an ar

an be safely in
luded it should be:greater pre
ision may be obtained sin
e more threads maybe dis
overed to have in�nite des
ent. Although a maximalsafe G is in general non
omputable, the size-
hange prin
ipleseparates the
on
erns of approximating G and analyzing it;and in this paper we fo
us on the analysis phase.
2.3 Termination analysis based on a safeG
2.3.1 Basis of the analysisIf G is a safe set of size-
hange graphs and sts is a statetransition sequen
e, then M(sts) is safely des
ribed by theG-multipath MG(
s) that follows the
alls
s in sts:Lemma 1. Suppose G is a safe des
ription of program p,and state transition sequen
e sts = (f0; ~v0)
1! (f1; ~v1)
2!(f2; ~v2)
3! : : : has
all sequen
e
s =
alls(sts). Considermultipaths MG(
s) = G1; G2; : : : and M(sts) = G01; G02; : : : .Then1. if Gt+1 has ar
 f(i)t #! f(j)t+1, then G0t+1 has the samear
; and2. if Gt+1 has f(i)t #=! f(j)t+1, then G0t+1 has an ar
 f(i)t r!f(j)t+1 for r = #= or r = #.Proof. Immediate by
omparing de�nitions 9 and 7.Corollary 1. If MG(
s) has an in�nite thread th, and
s =
alls(sts), then M(sts) also has an in�nite thread th0.Furthermore, thread th0 has at least as many #-labeled ar
sas th.Proof. Immediate from Lemma 1 and De�nition 9.

2.3.2 The analysis, abstractlyWe next de�ne two sets of in�nite
all sequen
es: thosethat are possible a

ording to the program's
ow graph, andthose that ne
essarily
ause an in�nite des
ent.De�nition 10.FLOW ! = f
s =
1
2 : : : 2 C! j
s is well-formed and
1 : finitial ! f1gDESC! = f
s 2 FLOW ! j some thread th in MG(
s)has in�nitely many #-ar
s gThe result ?
an only arise from an in�nite state transi-tion sequen
e. This holds even though
alls may be nested(and even in a higher-order extension of the programminglanguage). Two lemmas prove this property:Lemma 2. Assume that E [[e℄℄~v = ?. Then there exists a
all
 : g(e1; : : : ; en) in e su
h that E [[g(e1; : : : ; en)℄℄~v = ?but E [[ei℄℄~v 6= ? for ea
h i.Proof. Suppose indu
tively that the result holds for allsubexpressions of e and for every ~v 2 Value�. Referring tothe semanti
s of Figure 5.1:Case e = x: The result is trivial.Case e = if e01 then e02 else e03: The result holds by indu
-tion, sin
e E [[e℄℄~v = E [[e0i℄℄~v where i = 1 if E [[e01℄℄~v 2 f?;Errg,i = 2 if E [[e01℄℄~v = True, else i = 3.Case e = op(e01, : : : ,e0m): Sin
e O[[op℄℄(~u) 6= ? for all~u 2 Value�, by de�nition of stri
tapply, E [[e℄℄~v is equal tothe least i for whi
h E [[e0i℄℄~v 2 f?;Errg. For this value ofi, E [[e0i℄℄~v = ?, so the result follows from the indu
tive hy-pothesis.Case e =
 :h(e01, : : : ,e0m): If E [[e0i℄℄~v = ? for some i, thenthe result follows from the indu
tive hypothesis. Other-wise, E [[e0i℄℄~v 6= ? for i = 1; : : : ;m, so the result holds withg(e1; : : : ; en) = h(e01, : : : ,e0m).Lemma 3. Suppose E [[efinitial ℄℄~v0 = ?. Then there existsan in�nite state transition sequen
e: sts = (finitial ; ~v0)
1!(f1; ~v1)
2! (f2; ~v2)
3! : : : :Proof. It follows from the previous result that given anyprogram state (f; ~v) where E [[ef℄℄~v = ?, there exists a
all
 : g(e1; : : : ; en) in ef su
h that E [[ei℄℄~v 6= ? for ea
h i.Let E [[ei℄℄~v = lift(ui) for ea
h i, and ~u = (u1; : : : ; un). Byde�nition, (f; ~v) ! (g; ~u) is a state transition, su
h thatE [[eg℄℄~u = ?.Starting with the one-state transition-sequen
e (finitial ; ~v0),where E [[efinitial ℄℄~v0 = ?, and extending indu
tively, the exis-ten
e of the in�nite state transition sequen
e is dedu
ed.Example 3 revisited:
onsider the three
alls 1:a(m-1,1),2:a(m-1, 3:a(m,n-1)) and 3:a(m,n-1). Lemma 2 assertsthat for a
all to fun
tion a to be non-terminating, either
all 1 is non-terminating; or
all 3 is non-terminating; or

all 3 is terminating, but
all 2 is non-terminating. By thede�nition of safety, there is a size-
hange graph in G to a
-
ount for ea
h of these possibilities.Theorem 1. If FLOW ! = DESC! then program p ter-minates for all inputs.Proof. It will be proved that if p is not terminating,there is a
s in FLOW ! but not in DESC!. Suppose pdoes not terminate on ~v. Then by Lemma 3, there existsan in�nite state transition sequen
e sts = (finitial ; ~v0)
1!(f1; ~v1)
2! (f2; ~v2)
3! : : : :Call sequen
e
s =
alls(sts) 2 C! is
learly in FLOW !.Suppose
s 2 DESC!. Then multipathMG(
s) has a threadwith in�nitely many #-labeled ar
s. By Corollary 1, thesame is true of M(sts). By de�nition of M(sts), there ex-ists a
orresponding sequen
e of values, in�nitely de
reasingin a well-founded domain. This is impossible.De�nition 11. Program p is size-
hange terminating (forthis
hoi
e of G) if and only if FLOW ! = DESC!.
2.3.3 The examples revisitedTheorem 1
an be used, as is, for termination by provingthat any
s 2 FLOW ! must be in DESC!. However, thereasoning
an be tri
ky for some programs (for instan
e,see Examples 4, 5 below, whi
h seem to possess no natu-ral lexi
al des
ent). We prove later that the reasoning isne
essarily tri
ky, sin
e the problem is pspa
e-hard. In thenext se
tion, we will give two algorithms to perform the testautomati
ally.In the following, we extend the regular-expression notationto allow a single (�nal) use of !, e.g., 12! = 1222 : : : .Example 1: FLOW ! is the singleton set f12!g. Call se-quen
e
s = 12! gives in�nite des
ent in parameter ls, soFLOW ! = DESC!.Example 2: FLOW ! = f(12)!g. Call sequen
e
s = (12)!gives in�nite des
ent in i.Example 3: FLOW ! = (1+ 2+ 3)! (the set of all in�nitestrings
omposed of 1, 2 and 3). If
s 2 FLOW ! ends in 3!,then n des
ends in�nitely. Otherwise
s 2 FLOW !
ontainsin�nitely many 1's or 2's, so m des
ends in�nitely.Example 4: Consider multipath MG(
s) for any
s 2FLOW ! = (1 + 2)!. The threads starting at m,n,r all
ontinue regardless of
all sequen
e, and at least one # o
-
urs for ea
h
all. Now MG(
s) has 3 maximal threads andin�nitely many #, so at least one thread must
ontain in-�nitely many #. That thread is thus in�nitely des
ending,so
s 2 DESC!.Example 5: Any �nite sequen
e in (12�) has a thread fromy to y
ontaining at least one #. If
s 2 FLOW!
ontainsin�nitely many 1's, then y des
ends in�nitely. Otherwise
sends in 2!, and both x and y des
end in�nitely.Example 6: In�nite
all sequen
es must have form 2! or

2�13!. Both
ause in�nite des
ent, of parameter b in the�rst
ase, and
 in the other.
3. DETECTING THREADS OF INFINITE

DESCENTThe �rst solution to size-
hange termination analysis is basedon the theory of !-automata. These automata
an dire
tly
hara
terize the in�nite-des
ent phenomenon.
3.1 An analysis based on!-automataDe�nition 12. A B�u
hi automaton A = (In; S; S0; �; F) isa tuple where In is a �nite set
alled input symbols, S is a�nite set
alled states, S0 � S is the set of initial states, andF � S is the set of a

epting states. The state transitionrelation is a set of transition triples � � S � In � S.De�nition 13. Behavior of a B�u
hi automaton A.1. A run of A on an in�nite word w = a1a2a3 : : : 2 In!is a sequen
e s0a1s1a2s2a3s3 : : : 2 S(InS)! su
h thats0 2 S0, and (st; at+1; st+1) 2 � for t = 0; 1; 2; 3; : : : .2. The run r is a

epting if and only if for some s 2 F , so

urs in�nitely often among s0s1s2s3 : : : .3. L!(A) = fw 2 In! j some run on w is a

eptinggA set A � In! is
alled !-regular i� it is a

epted by someB�u
hi automaton.Theorem 2. [18℄ The following problem is
omplete forpspa
e: Given B�u
hi automata A and A0, to de
ide whetherL!(A) = L!(A0).Lemma 4. FLOW ! is an !-regular subset of C!.Proof. FLOW ! = L!(A) for B�u
hi automaton A =(C;F
nName ; ffinitialg; �;F
nNameg). The transition rela-tion is: � = f(f;
; g) j
 : f! gg.Explanation: A is just the program's
all graph, with fun
-tion names as states, the initial fun
tion as initial state, and
alls as transitions. Any in�nite
all sequen
e must enter atleast one fun
tion in�nitely often. Thus, de�ning all statesas a

epting puts every well-formed in�nite
all sequen
e inL!(A).
A Büchi automaton to acceptDESC!We �rst des
ribe the
onstru
tion informally by an example,before stating the formal
onstru
tion.STAGE 1: Build a B�u
hi automaton to a

ept
all sequen
e
s i� its asso
iated multipath MG(
s) has an in�nite de-s
ending thread from the start of
s. The states of thisautomaton represent fun
tion parameters x; y and the tran-sitions
orrespond to
alls
 whose asso
iated size-
hangegraph G
 in
ludes an ar
 x r! y.In order to tra
k size
hanges that o

ur in the thread, thestates are de�ned as pairs of fun
tion parameters and size
hanges: y#= or y#, a

ording to the size-
hange r on thein
oming ar
. An in�nitely des
ending thread from the start

of the multipath then
orresponds to a run of the automatonwhi
h enters in�nitely many states of form x#.For Example 3, the automaton
an be seen in the diagrambelow. (Ignore state a, treated in Stage 2.) The statesare m#=; m#; n#=; n#. Size-
hange graphs G1 and G2 (shown inSe
tion 2.1) de
rease m, a

ounting for the ar
s labeled 1,2in the �gure (entering m#). Size-
hange graph G3 de
reases nand
opies m, explaining the ar
s labeled 3. A

epting statesare m#; n#, and initial states are m#=; n#=.����m#=?QQk��33 -1; 2� 3 ����m#����?QQk��3 1; 2Æ
��a ?QQk��3 1; 2; 3��I��	1; 2; 31; 2; 3Initial -����n#= -3 ����n#����?QQk��3 3STAGE 2: Stage 1 tra
es size
hanges only in threads thatstart at the beginning of exe
ution. To deal with late-starting threads, add to the automaton of Stage 1 a
opyof the program's
all graph: the automaton of Lemma 4.Further, for every
all
 : f ! g, allow a
-transition fromfun
tion-name state f to any parameter-name state g(i)#=.For Example 3 the
all graph has only node a and
alls 1,2,3from a to itself, so the result is as above.Se
tion 2.3.3 had an argument to justify FLOW! = DESC!for this example. That reasoning
an
learly be applied tothe automaton's behavior on words
s in (1 + 2 + 3)!. If
sends in in�nitely many 3's, the automaton
an
y
le in statea until the last symbol in f1; 2g is read and then pro
eed toa

epting state n# and stay there. If on the other hand
s
ontains in�nitely many symbols in f1; 2g, a transition tothe top half
auses the automaton to enter a

epting statem# in�nitely often.Lemma 5. DESC! is an !-regular subset of C!.Proof. Stage 1 of the
onstru
tion just sket
hed leads toautomaton A1 = (C; S1; S0; �1; F) whereS1 = Parameter � f#; #=gS0 = Param(finitial)� f#=g�1 = f (xr;
; x0r0) j x r0! x0 2 G
; r 2 f#; #=g;
 2 C gF = fx# j x 2 ParametergThe program's
all graph in automaton form was seen inLemma 4 to be (C;F
nName ; ffinitialg; �;F
nNameg). Com-bining this with A1, we obtainA = (C; S1 [F
nName; S0 [ffinitialg; �1 [� [�2; F)where �2 = f(f;
; x#=) j
 : f ! g; x 2 Param(g)g. Corre
t-ness of this
onstru
tion is straightforward.Theorem 3. Size-
hange termination
an be de
ided inspa
e polynomial in the size of program p.

Proof. By de�nition 11, p is size-
hange terminating ifand only if FLOW ! = DESC!. The automata
onstru
tedin Lemmas 4 and 5 to a

ept FLOW ! and DESC! have sizethat is polynomially bounded in the length of the programp from whi
h they were
onstru
ted. By Theorem 2, theirequivalen
e
an be tested in pspa
e.In algorithmi
 pra
ti
e, tests for equivalen
e of atomata in-volve determinization of the (nondeterministi
) automata.While in prin
iple this
an be done in pspa
e, the bestknown algorithm (due to Safra [16℄) seems to give large au-tomata and thus slow
omputations.
3.2 A graph-based algorithmAn alternative algorithm uses graph manipulation ratherthan !-automata.De�nition 14. The
omposition of two size-
hange graphsG : f ! g and G0 : g ! h is G;G0 : f ! h with ar
 set Ede�ned below. Notation: we write x r! y r0! z if x r! y andy r0! z are respe
tively ar
s of G and G0.E = fx #! z j 9y; r : x #! y r! z or x r! y #! zgS fx #=! z j (9y : x #=! y #=! z) and8y; r; r0 : x r! y r0! z implies r = r0 = #=gLemma 6. Graph
omposition is asso
iative.De�nition 15. For a well-formed nonempty
all sequen
e
s =
1 : : :
n, de�ne the size-
hange graph for
s , denotedG
s , as G
1 ; : : : ;G
n .Lemma 7. Multipath M = G1; : : : ; Gn has a thread fromx to y over its entire length,
ontaining at least one #-labeledar
, if and only if x #! y 2 G1; : : : ;Gn.De�nition 16. De�ne the set S byS = fG
s j
s;
s0 are well-formed and finitial
s0! f
s! ggThe set S is �nite sin
e there are �nitely many possiblegraphs. However, its size may be exponential in the pro-gram's size (in fa
t, the
onstru
tion in the following se
tion
an be used to
reate su
h examples).The
entral idea in the graph-based algorithm:Theorem 4. Program p is not size-
hange terminatingi� S
ontains G : f ! f su
h that G = G;G and G has noar
 of form x #! x.Proof. For the forward impli
ation, suppose p is notsize-
hange terminating. Then there is an in�nite
all se-quen
e
s =
1
2 : : : su
h that MG(
s) has no in�nitelydes
ending thread.De�ne a 2-set to be a 2-element set ft; t0g of positive integers.Without loss of generality, t < t0. Now for ea
h G 2 S,de�ne the
lass PG of 2-sets yielding G by:PG = f(t; t0) jG = G
t ;G
t+1 ; : : : ; G
t0�1g

This set fPG jG 2 Sg of
lasses is mutually disjoint, every2-set belongs to exa
tly one of them, and it is �nite sin
eS is �nite. By Ramsey's theorem, there is an in�nite set ofpositive integers, T , su
h that all 2-sets ft; t0g with t; t0 2 Tare in the same
lass. Call this
lass PGÆ .Thus for any t; t0 2 T with t < t0, G
t ; : : : ;G
t0�1 is equalto the same GÆ. This implies that GÆ : f ! f for some f,and for t; t0; t00 2 T , with t < t0 < t00,GÆ = G
t ; : : : ;G
t00�1= (G
t ; : : : ;G
t0�1); (G
t0 ; : : : ;G
t00�1)= GÆ;GÆ:If GÆ has an ar
 x #! x, then by Lemma 7, ea
h multipathse
tion G
t ; : : : ; G
t0�1 , where t 2 T , and t0 is the nextbigger integer after t in T , would have a des
ending threadfrom x to x, andMG(
s) would have an in�nitely des
endingthread, violating the assumption about
s. Therefore, GÆhas no ar
 of form x #! x. This establishes the forwardimpli
ation.For the reverse impli
ation, let GÆ 2 S be su
h that GÆ =GÆ;GÆ and suppose GÆ has no ar
 of form x #! x. By de�ni-tion of S, there exist
s0 and
s1 su
h that
s =
s0(
s1)! 2FLOW !, and G
s1 = GÆ. Suppose, for a
ontradi
tion, thatp is size-
hange terminating. Then (
s1)! has an in�nitelydes
ending thread. Consider the position of this thread atthe start of ea
h
s1-se
tion. Some parameter x must bevisited by the thread at these points in�nitely often, sin
eParameter is �nite. Given suÆ
iently many repeats of
s1,we
an �nd a #-labeled ar
 in a thread from x to x. In otherwords, there is a number n su
h that MG((
s1)n) has a de-s
ending thread from x to x. By Lemma 7, ar
 x #! x is inG(
s1)n = (G
s1)n = (GÆ)n = GÆ, whi
h gives the required
ontradi
tion.
An algorithmic realization of Theorem 4.1. Build the set S by a transitive
losure pro
edure:� In
lude every G
 : f ! g where
 : f ! g isa
all in program p, and f is rea
hable by somewell-formed
s0 : finitial ! f.� For any G : f ! g and H : g ! h in S, in
ludealso G;H in S.2. For ea
h G : f ! f in S, test whether G = G;G andx #! x =2 G for ea
h x 2 Param(f).The test in step 2 takes low-order polynomial time; so thebottlene
k in this algorithm is the
ardinality of S, i.e., thenumber of di�erent
ompositions of rea
hable size-
hangegraphs. This number
an be exponential in the input pro-gram's size, hen
e our algorithm has exponential time andspa
e
omplexity.However, spa
e usage
an be redu
ed to polynomial by not
reating all of the set S at any time, but generating it \on the
y" as demanded by step 2. We omit the details, whi
h arestandard. For pra
ti
al usage, the in
rease in time requiredto make the spa
e polynomial is probably a waste, and thesimple algorithm seems more promising than the pspa
eversion, or the solution based on !-automata.

4. COMPLEXITY OF SIZE-CHANGE TER-
MINATIONAs the previous se
tion shows, given the set G, size-
hangetermination
an be de
ided in polynomial spa
e (and ex-ponential time) using either of the given approa
hes. Itmay surprise the reader, as it did the authors, to �nd thatsize-
hange termination, in spite of its simpli
ity, is a
om-plete problem for pspa
e, hen
e intra
table in general, un-less ptime = pspa
e. The proof is, as usual, by redu
tionfrom a known pspa
e-
omplete problem. Note that equiva-len
e of B�u
hi automata is known to be pspa
e-
omplete, asmentioned earlier, but our problem is a spe
ial
ase, hen
ea spe
i�
 hardness proof is ne
essary.De�nition 17. A Boolean program is an instru
tion se-quen
e b = 1:I1 2:I2 : : : m:Im spe
ifying a
omputationon variables X1, : : : ,Xk, ranging over truth values true, false.Instru
tions I` have two formats: Xi := not Xi, and ifXi then goto `0 else `00. Here 1 � i � k and `; `0; `00 2f0; 1; 2; : : : ; mg.Semanti
s: the
omputation by b is a �nite or in�nite statesequen
e b ` (`1; �1) ! (`2; �2) ! : : : , where ea
h store �assigns a truth value in ftrue ; falseg to ea
h of b's variables,and `t is the
ontrol point at time t.Initially `1 = 1 and �1 assigns false to every variable. In-du
tively, given state (`t; �t), if `t = 0 then the
omputationhas terminated, else the following rules apply.If instru
tion I`t is Xi := not Xi, then �t+1 is identi
al to�t ex
ept that �t+1(Xi) = :�t(Xi). Further, `t+1 = (`t +1) mod (m+ 1).If instru
tion I`t is if Xi then goto `0 else `00, then �t+1is identi
al to �t. Further, `t+1 = `0 if �t(Xi) = true , and`t+1 = `00 if �t(Xi) = false.Finally, program b terminates, written [[b℄℄#, i� for some t:b ` (`1; �1)! : : :! (`t; �t) = (0; �t).Lemma 8. The following set is
omplete for pspa
e:B = fb j b is a Boolean program and [[b℄℄#gProof. B is in pspa
e by a simple simulation, using a
ounter to de
lare nontermination if the
omputation hastaken more that (m + 1) � 2k steps. For pspa
e-hardness,see [13℄; or redu
e QBF (truth of quanti�ed Boolean formu-las) to membership in B.Theorem 5. Size-
hange termination is pspa
e-hard.Let SCT stand for the set of all G's that satisfy the size-
hange termination
riterion FLOW ! = DESC!, and SCTbe its
omplement. The theorem will be proved by redu
tionfrom B to SCT. Con
retely, given a Boolean program b, wewill
onstru
t a program p of size polynomial in the size of b,with asso
iated set of size-
hange graphs G, and prove thatb 2 B if and only if G =2 SCT.

Construction.Suppose program b = 1:I1 2:I2 : : : m:Im has k variablesX1, : : : , Xk. Without loss of generality, ea
h variable hasvalue false after exe
ution, if b terminates (just add at theend of b one test and one assignment for ea
h variable.)Program p will have fun
tions fF0; F1; : : : ; Fmg, ea
h one of2k + 1 parameters named X1, X1, : : : , Xk, Xk, Z. It will usea single operator tl, assumed to be a unary destru
tor.De�nition of initial fun
tion F0:F0(X1; X1; : : : ; Xk; Xk; Z) =0 : F1(tl X1; X1; : : : ; tl Xk; Xk; Xk)De�nition of F`, for instru
tion ` : Xi := not Xi:F`(X1; X1; : : : ; Xi; Xi; : : : ; Xk; Xk; Z) =` : F(`+1)mod(m+1)(X1; X1; : : : ; Xi; Xi : : : ; Xk; Xk; tl Z)De�nition of F`, for instru
tion` : if Xi then goto `0 else `00:F`(X1; X1; : : : ; Xk; Xk; Z) = if some-testthen `+ : F`0(X1; X1; : : : ; Xi; tlXi; : : : ; Xk; Xk; tl Z)else `� : F`00(X1; X1; : : : ; tl Xi; Xi; : : : ; Xk; Xk; tl Z)For some-test we use whatever the language permits; ouranalysis
onsiders every possible
ow sequen
e anyway. Theprogram's set of
alls isC = f0g [f` j I` = \X := not X"g [f`+; `� j I` = \if X goto `0 else `00"g
Example of the construction.Suppose b is the Boolean program:1: X := not X2: if Y then goto 5 else 33: Y := not Y4: if X then goto 2 else 35: X := not X6: Y := not YWe
onstru
t the following program p:F0(X, X, Y, Y, Z) = 0: F1(tl X, X, tl Y, Y, Y)F1(X, X, Y, Y, Z) = 1: F2(X, X, Y, Y, tl Z)F2(X, X, Y, Y, Z) = if...then 2+: F5(X, X, Y, tl Y, tl Z)else 2�: F3(X, X, tl Y, Y, tl Z)F3(X, X, Y, Y, Z) = 3: F4(X, X, Y, Y, tl Z)F4(X, X, Y, Y, Z) = if...then 4+: F2(X, tl X, Y, Y, tl Z)else 4�: F3(tl X, X, Y, Y, tl Z)F5(X, X, Y, Y, Z) = 5: F6(X, X, Y, Y, tl Z)F6(X, X, Y, Y, Z) = 6: F0(X, X, Y, Y, tl Z)

XXYYZ
XXYYZ-�

��#-���#��R
G0 :

F0 0! F1
XXYYZ

XXYYZ
��R���---#
G1 :

F1 1! F2
XXYYZ

XXYYZ
--#---#
G2� :

F2 2�! F3
XXYYZ

XXYYZ
- #-��R���-#
G3 :

F3 3! F4
XXYYZ

XXYYZ
-#----#
G4+ :

F4 4+! F2
XXYYZ

XXYYZ
---#--#
G2+ :

F2 2+! F5
XXYYZ

XXYYZ
��R���---#
G5 :

F5 5! F6
XXYYZ

XXYYZ
--��R���-#
G6 :

F6 6! F0
XXYYZ

XXYYZ
-#----#
G4� :

F4 4�! F3Figure 4.1: Size-
hange graphs for program p.Figure 4.1
ontains the size-
hange graphs for all of the
allsin p, starting with those that appear within b's
omputationand ending with
all G4� (this is \dead
ode"). To avoid
luttering the diagram, #= labels have been omitted.Boolean program b's
omputation is (writing stores
om-pa
tly by abbreviating true, false to T; F):b ` 1FF ! 2TF ! 3TF ! 4TT ! 2TT !5TT ! 6FT ! 0FFSequen
e
s = 12� 3 4+ 2+ 5 6 is a \tra
e" of b's
omputa-tion, where +;� indi
ate whether respe
tively the positiveor negative bran
h of a
onditional was taken.Now
onsider the sequen
e 0
s = 01 2� 3 4+ 2+ 5 6, obtainedby prepending 0 to b's
omputation. Within p,
all sequen
e0
s is a \loop" from fun
tion F0 ba
k to itself, so (0
s)! 2FLOW !. As the reader may verify, there are no in�nitedes
ending threads in the
orresponding multipath. ThusDESC! 6= FLOW !, so p is not size-
hange terminating, asdesired (indeed, for appropriate
hoi
es of some-test, p reallyis a non-terminating program).Appendix A
ompletes the
orre
tness proof.Corollary 2. The termination and quasi-termination
ri-teria of [2, 7, 9, 10, 12, 14, 17℄ all are pspa
e-hard.Proof. Point: These analyses all give
orre
t results whenapplied to programs whose data
ow is similar to that ofp above. The proof is essentially the same, with the
on-stru
tion modi�ed as ne
essary to make the program failthe
ondition tested by the respe
tive method, just whenthe Boolean program terminates.
Termination analysis in polynomial time?The redu
tion shows that the pspa
e hardness of termina-tion analysis holds for very simple programs. In parti
u-lar, the only expressions we have used are a variable andunary operators applied to a variable. This indi
ates thatthe root of the
omplexity is in the ways values move aroundamong parameter positions. Con
lusion: the problem willbe less diÆ
ult if these ways are restri
ted. We have an algo-rithm (as yet unpublished) that de
ides SCT in worst-
ase

ubi
 time for restri
ted programs in
luding the followingtwo
ases:1. Programs whose size-
hange graphs have in- and out-degrees bounded by 1 (Examples 1, 3, 4 and 6).2. Programs whose fun
tion parameters
an be \strati-�ed," i.e., dependen
ies among
all parameters
an bepartially ordered by position (for example in Example2, parameter x indire
tly depends on i, while i onlydepends on itself).
5. CONCLUDING REMARKS

5.1 Related workOur pspa
e lower bound is the �rst su
h result of whi
h weare aware. The algorithms to dete
t termination, though,have some
ounterparts in other programming language ar-eas.� Typed fun
tional programs: Abel and Altenkir
h [1℄have developed a system
alled foetus that a

epts asinput mutual re
ursive fun
tion de�nitions over stri
tpositive datatypes. It returns a lexi
al ordering on thearguments of the program's fun
tions, if one exists. Aswe have seen (program examples 3, 4, 5), our handlesprograms with or without su
h a lexi
al ordering.� Logi
 programs: the Termilog [14℄ approa
h is as pow-erful as ours, if applied to the result of
onverting afun
tional program into Horn
lause form. Graphsanalogous to ours are used in that method, but theoverall development is
onsiderably more
omplex.� Term rewriting: Arts and Giesl [4, 3℄ translate a sub-je
t program into a TRS whose termination impliestermination of the program. This approa
h requiresextending existing te
hniques for TRS termination. Au-tomati
 TRS termination also involves expensive sear-
hes for suitable orderings.� Quasi-termination: It
an be seen, by adapting thepspa
e hardness
onstru
tion, that the in-situ des
ent
riterion used to de
ide quasi-termination in [12, 2, 10℄is pspa
e hard.Glenstrup [9℄ shows one way that quasiterminationanalysis te
hniques
an be used for termination. Sim-pli�ed version: add a \re
ursion depth" parameter to

Domains v 2 Value (a
at domain).u;w 2 Value℄ = Value [f?;Errg, where ? v w for all w.Types E : Expr ! Value� ! Value℄O : Op ! Value� ! Value℄lift : Value ! Value℄ (the natural inje
tion)stri
tapply : (Value� ! Value℄)! (Value℄)� ! Value℄Semanti
 operator E [[f(i)℄℄(v1; : : : ; vn) = lift viE [[if e1 then e2 else e3℄℄~v = E [[e1℄℄~v ! E [[e2℄℄~v; E [[e3℄℄~vE [[op(e1; : : : ; en)℄℄~v = stri
tapply (O[[op℄℄) (E [[e1℄℄~v; : : : E [[en℄℄~v)E [[f(e1; : : : ; en)℄℄~v = stri
tapply (E [[ef℄℄) (E [[e1℄℄~v; : : : E [[en℄℄~v)Auxiliary operations u! w;w0 = 8<: u; if u = ? or u = Err ,w; if u = True ,w0; otherwise.stri
tapply (w1; : : : ; wn) = 8<: (v1; : : : ; vn) if wi =2 f?;Errg for i = 1; : : : ; n;and wi = lift vi for ea
h i; elsewi where i = least index su
h that wi 2 f?;ErrgAssumption O[[op℄℄~v 6= ?Figure 5.1: Semanti
s of L programs. True is a distinguished element of Value.ea
h fun
tion, in
remented at every
all. If depth pa-rameters are bounded in every exe
ution, then the pro-gram is terminating. This approa
h is weaker thansize-
hange termination. And it appears that quasi-termination is in general a more diÆ
ult problem thantermination.For further dis
ussion of related work see Appendix B.
5.2 Future workA number of interesting problems to be investigated:1. The pspa
e hardness result suggests trying to derivegood approximations. A
urrent goal is a ptime ap-proximation of SCT, whi
h subsumes lexi
al orders,and handles permuted arguments and indire
t re
ur-sion.2. An analogue of SCT for binding-time analysis(to guarantee termination of partial evaluation) is be-ing developed, generalizing the \in-situ"
riterion usedin [2, 9℄.3. Size analysis should be in
orporated for a pra
ti
alanalyzer, to
onstru
t more pre
ise size-
hange graphs.Something based on the integer programming methodsof [6, 19℄ may be appropriate.4. An extension of the present approa
h for high-orderprograms seems possible, although the semanti
 anal-yses
an be
ome quite
ompli
ated if we wish to tra
esize relations involving arguments
aptured in
losures.
6. ACKNOWLEDGEMENTSThe �rst author would like to express his gratitude to Pro-fessor Neil Jones for his generous and patient guidan
e, andto TOPPS for a rewarding a
ademi
 visit in 1999.

APPENDIX
A. PROOF OF PSPACE-HARDNESS OF SCTHere we prove that the redu
tion in Se
tion 4 is
orre
t,implying Theorem 5. First, some observations about a mul-tipath of form MG(0
s):1. Call 0 begins exa
tly two threads (to X and X) at ev-ery X other than Xk. Parameter Xk begins two su
hthreads, and as well as one with initial ar
 dire
ted toZ.For ea
h parameter X of F0, let us say that ar
 X #! Xbegins its \high thread", and that ar
 X ! X beginsits \low thread".2. Both high thread and low thread
ontinue the lengthof 0
s , and end in either X or X. The (unique) Z-threadremains in Z after the initial ar
 for the whole of 0
s .By the way p is
onstru
ted, no thread is ever lost ordupli
ated, ex
ept at
all 0.3. Either the high or the low thread from X must end atX, so 0
s has a thread from every X to itself.Lemma 9. Suppose b ` (`1; �1) ! : : : ! (`t; �t) withtra
e
s =
1
2 : : :
t�1. Then for any variable X, multipathMG(0
s) has a nondes
ending thread from parameter X toparameter X if �t(X) = false, and from X to X if �t(X) = true.Proof. Immediate if t = 1, sin
e �1(X) = false for all X.Indu
tively, if true for t� 1, inspe
tion of the
ases in
on-stru
tion of p based on the form of instru
tion I`t�1 showsthat the property is preserved.To prove that the redu
tion is
orre
t, we must show thatBoolean program b terminates if and only if program p isnot size-
hange terminating.

Only if: Suppose b terminates with (�nite) tra
e
s. Then0
s is a valid
all sequen
e for p, from F0 ba
k to F0. ByLemma 9 the \low thread" starting at any F0 parameterXi is nondes
ending. By the assumption that all variablesare false when exe
ution ends, the low thread returns to Xi.Thus the high thread ends in Xi, and fails to be
ontinuedif
all 0 is repeated following 0
s . The Z-thread will alsobe dis
ontinued. Consequently (0
s)! =2 DESC!, whi
h im-plies DESC! 6= FLOW !.If: we show that if b fails to terminate, any
s 2 FLOW !must have in�nite des
ent. Now
s must begin with
all0 : F0 ! F1 from p's initial fun
tion F0. If
s
ontainsonly a �nite number of
alls to F0, then after the last one,parameter Z will de
rease in every
all, so
s 2 DESC!.Suppose
s
ontains an in�nite number of
alls to F0. Thismeans we
an de
ompose it into
s = 0
s10
s20
s3 : : : whereea
h
s i is free of 0's. We
laim that ea
h 0
s i has a de-s
ending thread from at least one parameter X to X (the
laim is proved below). By Observation 3, every
si has
ontinuous threads beginning and ending in every parame-ter Y, so
all sequen
e
s = 0
s10
s20
s3 : : : has exa
tly kin�nite maximal threads. In�nitely many # must o

ur inthis set of threads. Consequently at least one thread within
s
ontains in�nitely many #, so
s 2 DESC!.Proof of
laim: Let
s i =
1
2 : : :
n; sin
e 0
s i0 is part of avalid
all sequen
e from FLOW !, but is not a
orre
t tra
eof the program (whi
h does not terminate), we
on
lude thatit in
ludes a
all that represents the in
orre
t bran
h of anif statement. Consider the �rst su
h
all. Being in
orre
tmeans that the else-bran
h is followed when the tested vari-able X has value true, or the then-bran
h is followed whilethe value is false. By Lemma 9 the low thread starting atX rea
hes X if X has value false and rea
hes X if X has valuetrue. In ea
h
ase, the size-
hange graph
reated by our
onstru
tion for the wrong bran
h extends this thread witha #-labeled ar
.Sin
e the high thread from X always
ontains a #-labeled ar
,we
on
lude that the thread from X that happens to returnto X at the end of 0
s i (being one of these two) must bedes
ending, as desired.
B. MORE ON RELATED WORK
Logic programsThere has been extensive resear
h on automati
 terminationanalysis for logi
 programs. As explained in [17℄, it is not al-ways obvious that a predi
ate will terminate when exe
utedwith unusual instantiation patterns, or that a predi
ate al-ways terminates on ba
ktra
king. For interpreters that havea
hoi
e of evaluation orders, termination analysis is espe-
ially important.Some analyses that have been des
ribed for logi
 programs(e.g., in [15, 19℄) use a simple
riterion: for every re
ursiveinvo
ation of a predi
ate, determine that the sum over asubset of input �elds (�xed for ea
h predi
ate) is stri
tlyde
reased. This does not allow handling of lexi
al des
ent.

The strength of these methods derives from aggressive sizeanalysis, whi
h enables, in parti
ular, sorting routines (qui
k-sort and insertion sort) to be handled automati
ally. It isalso possible to in
orporate size analysis into the present ap-proa
h, but the aim of this arti
le has been to investigatethe size-
hange termination prin
iple by itself.There are also logi
 program termination analyzers using atermination
riterion
ompatible with size-
hange termina-tion [14, 7℄. The analysis in [17℄ has been extended to a ter-mination analyzer for Prolog programs
alled Termilog [14℄.It turns out that Termilog
an be used to solve size-
hangetermination problems pre
isely via a suitable en
oding. Infa
t, our graph-based algorithm, although devised indepen-dently, is in essen
e a fun
tional programming
ounterpartof the Termilog algorithm. This means that the pspa
ehardness result of Se
tion 4 applies to Termilog's Analysis.All the works on Prolog termination that we are aware ofdevote mu
h attention to orthogonal issues su
h as instan-tiation and size analysis. While these are no doubt impor-tant
onsiderations in pra
ti
e, an impression is
reated thatthe
omplexity of the termination problem for Prolog stemsfrom these
on
erns. The signi�
an
e of the
omplexity re-sult in this arti
le is pointing out that the
ore size-
hangetermination prin
iple is intrinsi
ally hard.
Term rewriting systemsOne appli
ation for term rewriting systems is to model thesemanti
s of fun
tional programs. A fun
tional program iseasily translated into a TRS su
h that termination of theTRS implies termination of the subje
t program. Unfortu-nately, the resulting TRS is often non-simply-terminating,whi
h means the usual approa
h to �nd an ordering forwhi
h the LHS of ea
h rewrite rule is stri
tly greater thanthe RHS, does not work. To treat su
h TRS, Arts [3℄ ap-plied programming intuition to develop methods suÆ
ientlystrong for them. For a term-rewriting perspe
tive, thesemethods are able to a handle a larger
lass of TRS. From thepoint of view of analyzing fun
tional programs, a data
owapproa
h may be less
ir
uitous.For TRS termination, it is
ommon to perform expensivesear
hes for a suitable ordering to solve a set of inequalities.For instan
e, in [20℄, a heuristi
 is given for automati
allygenerating a general
lass of orderings known as transfor-mation orderings, whi
h in
ludes the lexi
al order. In thepresent work, it has not been the aim to look for orderings.Size-
hange termination naturally subsumes an interesting
lass of orderings, in
luding the lexi
al ordering, and theordering for the example with permuted and dis
arded pa-rameters, whi
h is not obvious.Finally, for TRS
orresponding to programs, the polynomialinterpretation method for dis
overing orderings [8℄ obviatesthe need for size analysis by appropriately interpreting fun
-tion symbols in the subje
t program. The approa
h in thisarti
le has been to fa
tor out size analysis as an orthogonal
on
ern, and fo
us on the size-
hange termination prin
ipleand its appli
ation. This appears to be a natural fa
toringof
on
erns when analyzing termination of programs.

C. REFERENCES[1℄ Andreas Abel and Thorsten Altenkir
h. A semanti
alanalysis of stru
tural re
ursion. In Abstra
ts of theFourth International Workshop on TerminationWST'99, pages 24{25. unpublished, May 1999.[2℄ Peter Holst Andersen and Carsten Kehler Holst.Termination analysis for o�ine partial evaluation of ahigher order fun
tional language. In Stati
 Analysis,Pro
eedings of the Third International Symposium,SAS '96, Aa
hen, Germany, Sep 24{26, 1996, volume1145 of Le
ture Notes in Computer S
ien
e, pages67{82. Springer, 1996.[3℄ Thomas Arts. Automati
ally Proving Termination andInnermost Normalisation of Term Rewriting Systems.PhD thesis, Universiteit Utre
ht, 1997.[4℄ Thomas Arts and J�urgen Giesl. Proving innermosttermination automati
ally. In Pro
eedings RewritingTe
hniques and Appli
ations RTA'97, volume 1232 ofLe
ture Notes in Computer S
ien
e, pages 157{171.Springer, 1997.[5℄ Anders Bondorf. Similix manual. Te
hni
al Report91/9, DIKU, University of Copenhagen, Denmark,1991.[6℄ Wei Ngan Chin and Siau Cheng Khoo. Cal
ulatingsized types. In Julia Lawall, editor, ACM SIGPLANWorkshop on Partial Evaluation and Semanti
s-basedProgram Manipulation, Boston, Mass., USA. ACM,2000.[7℄ Mi
hael Codish and Cohavit Tabo
h. A semanti
 basisfor termination analysis of logi
 programs and itsrealization using symboli
 norm
onstraints. InMi
hael Hanus, Jan Heering, and Karl Meinke,editors, Algebrai
 and Logi
 Programming, 6thInternational Joint Conferen
e, ALP '97{HOA '97,Southampton, U.K., September 3{5, 1997, volume1298 of Le
ture Notes in Computer S
ien
e, pages31{45. Springer, 1997.[8℄ J�urgen Giesl. Termination analysis for fun
tionalprograms using term orderings. In Alan My
roft,editor, Pro
. 2nd Int'l Stati
 Analysis Symposium(SAS), Glasgow, S
otland, volume 983 of Le
tureNotes in Computer S
ien
e, pages 154{171.Springer-Verlag, September 1995.[9℄ Arne J. Glenstrup. Terminator II: Stopping partialevaluation of fully re
ursive programs. Master's thesis,DIKU, University of Copenhagen, Denmark, 1999.[10℄ Arne J. Glenstrup and Neil D. Jones. BTA algorithmsto ensure termination of o�-line partial evaluation. InPerspe
tives of System Informati
s, Pro
eedings of theSe
ond International Andrei Ershov Memorial

Conferen
e, Akademgorodok, Novosibirsk, Russia, Jun25{28, 1996, volume 1181 of Le
ture Notes inComputer S
ien
e, pages 273{284. Springer, 1996.[11℄ C. A. R. Hoare. An axiomati
 basis for
omputerprogramming. Communi
ations of the ACM (CACM),12(10):576{580, O
tober 1969.[12℄ Carsten Kehler Holst. Finiteness analysis. In JohnHughes, editor, Fun
tional Programming Languagesand Computer Ar
hite
ture, Cambridge,Massa
husetts, August 1991, volume 523 of Le
tureNotes in Computer S
ien
e, pages 473{495. Springer,1991.[13℄ Neil D. Jones. Computability and Complexity From aProgramming Perspe
tive. Foundations of ComputingSeries. MIT Press, 1997.[14℄ Naomi Lindenstrauss and Yehoshua Sagiv. Automati
termination analysis of Prolog programs. In LeeNaish, editor, Pro
eedings of the FourteenthInternational Conferen
e on Logi
 Programming,pages 64{77, Leuven, Belgium, Jul 1997. MIT Press.[15℄ Lutz Pl�umer. Termination Proofs for Logi
 Programs,volume 446 of Le
ture Notes in Arti�
ial Intelligen
e.Springer-Verlag, 1990.[16℄ S. Safra. On the
omplexity of omega-automata. InPro
eedings of the 29th IEEE Symposium onFoundations of Computer S
ien
e, pages 319{327,IEEE, 1988.[17℄ Yehoshua Sagiv. A termination test for logi
 programs.In Vijay Saraswat and Kazunori Ueda, editors, Logi
Programming, Pro
eedings of the 1991 InternationalSymposium, San Diego, California, USA, O
t 28{Nov1, 1991, pages 518{532. MIT Press, 1991.[18℄ A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper.The
omplementation problem for B�u
hi automatawith appli
ations to temporal logi
. Theoreti
alComputer S
ien
e, 49:217{237, 1987.[19℄ Chris Speirs, Zoltan Somogyi, and HaraldS�ndergaard. Termination analysis for Mer
ury. InPas
al Van Hentenry
k, editor, Stati
 Analysis,Pro
eedings of the 4th International Symposium, SAS'97, Paris, Fran
e, Sep 8{19, 1997, volume 1302 ofLe
ture Notes in Computer S
ien
e, pages 160{171.Springer, 1997.[20℄ Joa
him Steinba
h. Automati
 termination proofswith transformation orderings. In Jieh Hsiang, editor,Rewriting Te
hniques and Appli
ations, Pro
eedings ofthe 6th International Conferen
e, RTA-95,Kaiserslautern, Germany, April 5-7, 1995, volume 914of Le
ture Notes in Computer S
ien
e, pages 11{25.Springer, 1995.

