Pete Manolios
Northeastern

Formal Methods, Lecture 9

SAT

October 2008

Review of SAT, NP Completeness

KSAT
Literals: variables or their negations
Clause: disjunction of literals
CNF formula (Conjunctive Normal Form): conjunction of clauses
KCNF: CNF formula w/ at most k literals per clause
KSAT: The set of satisfiable kCNF formulas

Recall: SAT (= set of satisfiable CNF formulas) is NP-complete
NP: languages whose membership can be verified in P-time
NPC:

Hardest problems in NP

P-time algorithms for an NPC problem means P-time algorithm
for every problem in NP

3SAT is NP-complete: Can reduce SAT to 3SAT (SAT <p 3SAT)
Can define a P-time function f s.t. x € SAT iff f(x) € 3SAT

SAT Remarks

Can use SAT to check validity
How?
¢ is valid iff ¢ is not SAT
¢ is SAT iff 7 is not valid
So, does that prove that validity is NPC?
Random SAT:
Phase transition phenomena, e.g., ~4.26 for 3SAT
Local search methods
Algorithms: WalkSAT, Survey propagation, ...
Special cases: 2SAT, Horn SAT, Dual-horn SAT, MAX SAT

Pete Manolios Northeastern University Fall 2008, Version 0.1

Algorithms for SAT

Modern SAT solvers accept input in CNF

Dimacs format:
1-3450
2470

Davis & Putnam Procedure (DP)

Dates back to the 50’s
Based on resolution (modern algorithms are not)
Helps to explain learning

Pete Manolios Northeastern University Fall 2008, Version 0.1

Resolution

Resolution rule:
C,v D, v
C,D

Soundness of rule: above line implies below line
Also below line is SAT, so is above line (w/ side conditions)
DP SAT algorithm

Base case: empty clause: UNSAT

Base case: no clauses: SAT

Remove clauses containing pure literals

Choose var, perform all possible resolutions, remove trivial
clauses and clauses containing x

Problem: space blow-up

av,v ¢ CuD

Pete Manolios Northeastern University Fall 2008, Version 0.1

Boolean Constraint Propagation

Unit resolution rule:
C, {
C

BCP: given a set of clauses including {{}
remove all other clauses containing £ (subsumption)

remove all occurrences of =£ in clauses (unit resolution)
repeat until a fixpoint is reached
Shannon expansion: f (x) = [x Af(1)] v [X A f(0)]

Pete Manolios Northeastern University Fall 2008, Version 0.1

Pete Manolios

DPLL SAT Algorithm

BCP
Base case: empty clause: UNSAT
Remove clauses containing pure literals
Base case: no clauses: SAT
Choose some var, say x (has to appear in both phases)
Add {x} and recursively call DPLL
Add {—~x} and recursively call DPLL
If one of the calls returns SAT, return SAT
Else return UNSAT
Correctness follows from Shannon expansion
In contrast to DP, space is not a problem

Northeastern University Fall 2008, Version 0.1

DPLL is DFS Search of SAT-Tree

Pete Manolios Northeastern University

DPLL is DFS Search of SAT-Tree

DPLL is DFS Search of SAT-Tree

DPLL is DFS Search of SAT-Tree

Pete Manolios

Modern DPLL

Decision heuristics
Many have been tried; we’ll look at VSIDS
Efficient BCP
BCP is the workhorse of modern SAT solvers
2-literal watching
Non-chronological backtracking
Can make a huge difference
Clause learning
Records non-trivial implications discovered during search
Avoids re-exploring similar parts of state space
A disciplined form of resolution, but can still lead to space blow-up

Preprocessing: limited resolution, subsumption, etc
Restarts: clause learning helps guide SAT solver to solution

Northeastern University Fall 2008, Version 0.1

12

Decision Heuristics

How do we decide what variable to split on?
Variable State Independent Decaying Sum (VSIDS)
Keeps a score for each phase of a variable

Initially: the number of occurrences of a literal

Increases score by a constant whenever an added clause
contains the variable

Periodically all the scores are divided by a constant
Choose free variable with the highest combined score

VSIDS score is a literal occurrence count with higher weight on
the more recently added clauses.

VSIDS scores do not depend on the variable assignment
Cheap to maintain (takes small percentage of the total run time)

Pete Manolios Northeastern University Fall 2008, Version 0.1

13

Pete Manolios

(X X)
m - - 0000
Conflict Driven Learning and 434
. . o0
Non-chronological Backtracking :
x1+ x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
X7’ + x3’ + x9
X7’ + x8 + x9’
x7 + x8 + x10’
X7 +x10 + x12’
Lintao Zhang %I’d‘

Northeastern University Fall 2008, Version 0.1

14

X X)
m - - 0000
Conflict Driven Learning and 434
- . o0
Non-chronological Backtracking :
x1 + x4 @ x1=0
x1 + x3’ + x8’ /
x1 + x8 + x12 »
x2 + x11
X7’ + x3’ + x9
X7’ + x8 + x9’
x7 + x8 + x10’
X7 +x10 + x12’
O x1=0
Lintao Zhang %I’d‘

Pete Manolios Northeastern University Fall 2008, Version 0.1

15

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x3’ + x8’ ///
x1 + x8 + x12 »

x2 + x11

X7’ + x3’ + x9
X7’ + x8 + x9’
X7 + x8 + x10’
X7 +x10 + x12’

O x4=1

(41=o

Lintao Zhang %I’d‘

Pete Manolios Northeastern University Fall 2008, Version 0.1

000
" . - 0000
Conflict Driven Learning and 434
- . o0
Non-chronological Backtracking |
x1 + x4 x1=0, x4=1
x1 + x3’ + x8’ ///
x1 + x8 + x12 »
2+ x11 x3=1
17’ +xx3’+x9 \
X7’ + x8 + x9’ 2
x7 + x8 + x10’
x7 + x10 + x12’
O x4=1
(41=o O x3=1
Lintao Zhang %I’d‘

Pete Manolios Northeastern University Fall 2008, Version 0.1

17

Pete Manolios

000
" . - 0000
Conflict Driven Learning and 434
- . o0
Non-chronological Backtracking |
x1 + x4 x1=0, x4=1
x1 + x3’ + x8’ ///
x1 + x8 + x12 »
2+ x11 x3=1, x8=0
17’ +xx3’+x9 \
X7’ + x8 + x9’ 2
X7 + x8 + x10’
x7 + x10 + x12’
Lintao Zhang %I’d‘

Northeastern University Fall 2008, Version 0.1

18

Conflict Driven Learning and 434
Non-chronological Backtracking |

1 + x4 Q x1=0, x4=1
7/

x1 + x3’ + x8’ ’

x1+ x8 +x12 »
x2 + x11 @ x3=1, x8=0, x12=1

X7’ + x3’ + x9 N
\

X7’ + x8 + x9’ 4
X7 + x8 + x10’
X7 +x10 + x12’

Pete Manolios

Lintao Zhang %I’d‘

Northeastern University Fall 2008, Version 0.1

19

Conflict Driven Learning and

Non-chronological Backtracking

x1 + x4 Q x1=0, x4=1
x1 + x3’ + x8’ P
x1 + x8 + x12 »
x2 + x11 @ x3=1, x8=0, x12=1
X7’ + x3’ + x9 N
X7’ + x8 + x9’ N
X7 + x8 + x10’ @ x2=0
X7 + x10 + x12’ P

‘/

@x12=1 o

Omsahang "Research

Pete Manolios Northeastern University

Fall 2008, Version 0.1

20

Conflict Driven Learning and

Non-chronological Backtracking |

x4=1

x1 + x4 Q x1=0,
/

x1 + x3’ + x8’ ’

x1 + x8 + x12 »
x2 + x11 @

x3=1, x8=0, x12=1

X7’ + x3’ + x9 N

X7’ + x8 + x9’
x7 + x8 + x10’ @
V4

x2=0, x11=1

X7 +x10 + x12’ ,

Pete Manolios Northeastern University

‘V\ﬁl 0soft rm

Fall 2008, Version 0.1

21

Conflict Driven Learning and 434
Non-chronological Backtracking |

1 + x4 Q x1=0, x4=1
7/

x1 + x3’ + x8’ ’
X1 + x8 + x12 »
x2 + x11

X7+ x3’ +x9

X7’ + x8 + x9’

x7 + x8 + x10’ @ x2=0, x11=1
X7 + x10 + x12’ e

x3=1, x8=0, x12=1

O x4=1

‘V\ﬁl 0soft rm

Pete Manolios Northeastern University Fall 2008, Version 0.1

Conflict Driven Learning and 434
Non-chronological Backtracking |

1 + x4 Q x1=0, x4=1
7/

x1 + x3’ + x8’ ’

x1 + x8 + x12 »

x2 + x11 @ x3=1, x8=0, x12=1
X7’ + x3’ + x9 N

X7’ + x8 + x9’ 4

x7 + x8 + x10’ @ x2=0, x11=1
X7 + x10 + x12’ /7

@ xd=1 Q x7=1, x9= 0, 1

‘V\ﬁl 0soft rm

Pete Manolios Northeastern University Fall 2008, Version 0.1

23

Conflict Driven Learning and 434
Non-chronological Backtracking |

1 + x4 Q x1=0, x4=1
7/

x1 + x3’ + x8’ ’

x1+ x8 +x12 »
x2 + x11 @ x3=1, x8=0, x12=1

X7’ + x3’ + x9 N

X7’ + x8 + x9’ 4

x7 + x8 + x10’ @ x2=0, x11=1
V4

X7 +x10 + x12’ P
@ x7=1, x9=1

x3=1Ax7=1Ax8=0 — conflict

‘V\ﬁl 0soft rm

Pete Manolios Northeastern University Fall 2008, Version 0.1

24

Pete Manolios

Contra-proposition:

e If a implies b, then b’ implies a’

x3=1Ax7=1Ax8=0 — conflict
Not conflict — (x3=1Ax7=1aAx8=0)’
true — (x3=1Ax7=1Ax8=0)’
(x3=1AX7=1Ax8=0)

Lintao Zhang %I’d‘l

Northeastern University Fall 2008, Version 0.1

25

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

X1 + x8 + x12

x2 + x11

X7’ + x3’ + x9

X7’ + x8 + x9’

x7 + x8 + x10’
x7 +x10 + x12’

Pete Manolios

Q x1=0, x4=1
/7

@ x3=1, x8=0, x12=1
@ x2=0, x11=1
V4

Q x7=1, x9=1

x3=1Ax7=1Ax8=0 — conflict

Add conflict clause: x3’+x7’+x8

Northeastern University

Fall 2008, Version 0.1

26

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4

x1 + x3’ + x8’

X1 + x8 + x12

x2 + x11

X7’ + x3’ + x9

X7’ + x8 + x9’

x7 + x8 + x10’
x7 +x10 + x12’

Pete Manolios

> X3’ +x7’+x8

Q x1=0, x4=1
/7

@ x3=1, x8=0, x12=1
@ x2=0, x11=1
V4

Q x7=1, x9=1

x3=1Ax7=1Ax8=0 — conflict

Add conflict clause: x3’+x7’+x8

Northeastern University

Fall 2008, Version 0.1

27

DLL with Non-Chronological
Backtracking and Learning

x1 + x4

x1 + x3’ + x8’

X1 + x8 + x12

x2 + x11

X7’ + x3’ + x9

X7’ + x8 + x9’

x7 + x8 + x10’

x7 +x10 + x12’
x3’ + x8 + x7’

x3=1, x8=0, x12=1

Backtrack to the decision level of x3=1:

N Os0TT
Lintao Zhang "Research
Pete Manolios Northeastern University Fall 2008, Version 0.1

28

DLL with Non-Chronological | 3:::

o006

- = o0
Backtracking and Learning :
X1 + x4 (x1) | x1=0, x4=1
x1 + x3’ + x8’ /
x1 + x8 + x12 ‘,’
S D ErE
X7’ + x8 + x9’ N
x7 + x8 + x10’ e

x7 +x10 + x12’
x3’ + x8 + x7’

O x2=0 Ox12=1

Lintao Zhang %I’d‘

Pete Manolios Northeastern University Fall 2008, Version 0.1

