A Lattice-Theoretic
Characterization of Safety
and Liveness

Pete Manolios

PODC 2003
Joint work with Richard Trefler
University of Waterloo

Georgia Tech -Formal Methods Class- April 2004

1

Safety & Liveness

Lamport classified program properties as:
Safety: nothing bad ever happens.
Liveness: something good eventually happens.
Neither: neither of the above.

Transformational systems:
Safety: type/stack/memory safety.
no reachable structures are deallocated.
partial correctness.
Liveness: termination.
unreachable structures are deallocated eventually.
Neither: total correctness.

Reactive Systems

S/L used classify properties of reactive systems.
Distributed, concurrent systems engaged in ongoing behavior.

Examples: network protocols, pipeline machines, distributed
systems, embedded systems, etc.

Safety.
Only one process is in its critical section at any point in time.
Transactions appear to be atomic.
Messages are authenticated.

Liveness.
Requests are eventually processed.
Weak/strong fairness (eventually always/ infinitely often).

Overview of Previous Work

Specification: partial/total correctness, fairness, etc.

Formal, topological characterization and decomposition theorem
of Alpern & Schneider for linear time (semantic, w-reqular).

Sistla’s syntactic characterization for linear time temporal logics.

Manolios and Trefler extension to branching time (subsumes
linear time; includes process algebra, CTL, CTL*, p-calculus).

Different proof methods employed for safety & liveness: proofs
by induction vs. construction of well-founded relations.

In some cases there are decision procedures for safety
properties, but not for liveness properties.

In the context of model checking Kupferman & Vardi show that
model checking safety is easier.

Security: Schneider arques that enforceable security properties
correspond to safety properties & security automata to Bichi

automata. ...

Lattice Theoretic Approach

Simpler and more general characterization.

Carefully analyzed conditions required to prove
decomposition & related theorems.

Led to a lattice theoretic approach, where basic results
are in ferms of complemented modular lattices.

Simpler to apply: fewer properties to check.
Applicable in more contexts (e.g., closure operators are
not required to distribute over joins).

Allow us to simplify and unify previous results.

Characterization, decomposition theorem for Biichi
automata, the main results in [AS87] follow directly.

Similarly with the semantic branching time results and
those based on Rabin tree automata [MTO1].

Outline

Linear Time Framework

Examples

Blichi Automata

Lattice Theoretic Characterization
Branching time/Rabin automata
Conclusions

Linear Time Framework

Programs and properties are sets of w-sequences.
Alpern & Schneider give a topological characterization [AS85].

¢/ is a topological-closure operator on X iff:
c/0=0
Al clA
cl(clA) = clA
cl(Au B)=clAu clB

A closure operator, /c/ P(Z®) » P(Z®), is defined as follows:
lelp = {Z0Z° : (OX02" : x< z:(Oydp i x< y)}

Note that /c/ is a topological-closure operator.

pis safe if /clp= p, e.g., Gq (q always holds).

pis live if /c/p=%2°, e.g., Fq (q eventually holds).

Decomposition Theorem

(P U - /clP) is a liveness property.
Icl.P

ZOO

Decomposition Theorem

(P U = /c/P) is a liveness property.
lcl(Pu = /clP) ol P
= { /e/ distributes over u } 2.
JelP U Iel~ IclP)
S{IclA2A)}
lclP U = /clP
= { Set theory }
ZOO

Decomposition Theorem

(P U - /clP) is a liveness property.
lc/(Pu = [clP) Icl P
= { /c/ distributes over u } 2w
lclP v [c/(-/clP)
2{IclA2A}
lclP U = [clP
= { Set theory }
ZOO
Any property is the intersection of a safe and live
property.
lelPn P u-/clP) =(c/lPnP)u(lclPn=/c/P)=Pul =P

10

Outline

Linear Time Framework

Examples

Blichi Automata

Lattice Theoretic Characterization
Branching time/Rabin automata
Conclusions

11

Examples

PO: false (corresponds to [J)

P1: The first symbol is a

P2: P1 and there is a non-a symbol
P3: The number of a's is finite
P4:. a within n steps

12

Examples

PO: false (corresponds to [J)

P1: The first symbol is a

P2: P1 and there is a non-a symbol
P3: The number of a's is finite
P4:. a within n steps

false
aAF-a

FG-a
X="a

13

Examples

PO: false (corresponds to (1) false
P1: The first symbol is a a

P2: P1 and there is a non-a symbol aAF-a
P3: The number of d's is finite FG-a
P4:. a within n steps X="a

Note that PO, P1, and P4 are safety properties.

The closure of P2 is P1, so it is not a safety
property: neither is it a liveness property.

The closure of P3 is 2% so it is a liveness property.

14

Outline

Linear Time Framework

Examples

Blchi Automata

Lattice Theoretic Characterization
Branching time/Rabin automata
Conclusions

15

Blichi Automata

Bichi automata recognize reqular languages over w-sequences.
A Bichi automaton Bis a tuple (Z,Q,¢,,0,F) where:
2 is a finite alphabet
Q is a finite set of states
g, is the start state
0: Ax*xZ - P(Q) is the transition relation (notice non-deterministic)
F is a set of accepting states
ris arunof #(0Z%) on Bif ris a Q-labeled sequence such that:
r0 is labeled by g0
Forall /0w, A7+1) 0 8(r.7, t.1)
A run is accepting iff some state of Foccurs infinitely oftenin r.

L.B = {t: there is an accepting run of fon B}.
[AS87] shows (OB::(0Bs B i LB=LB;NLEB)Y) ...

16

B::(0Bs, B, i LB= L.BsN LB)))

The idea is to define a closure operator on Biichi automata

The operator removes states that cannot reach an accepting state.

It then makes every state accepting.

In this way, the fairness condition is made frivial.
It can be shown that a plyingL‘rhe operator to Bresults in an automaton
whose language is the /c/of the language of B.
Since Biichi automata are closed under complementation, union, the
liveness automaton is as before (decomposition theorem).
This is the main result in [AS87].
It required different proofs than those in [AS85] as Biichi automata do
not define a topology.
Model checking LTL: Turn into Biichi automaton, negate, intersect with
the automaton for the Kripke structure and check for non-emptiness.

Bichi automata are more expressive than LTL and, for some, easier to
use and understand, so they are used to specify properties.

17

Bichi Automata Examples

true

@ (9@

Bichi Automata Examples

true true true
ORI C 0

19

Bichi Automata Examples

true true true
ORI C 0

True a True
o (PO

20

Biichi Automata Examples

true true true
ORI C 0

Pre A Done A Post

/_QDone A Post
> QI :
Pre A =Done~—" Done A Post

Total
Correctness

21

Outline

Linear Time Framework

Examples

Blichi Automata

Lattice Theoretic Characterization
Branching time/Rabin automata
Conclusions

22

Lattice Theory

A latticeis a poset (L, <) such that every pair has a
glb, a meet (A) and a lub, a join (V).

Equivalently, a lattice is a triple (£, A, V) such that:

(avb)vcec=av(bVvo (associative law)
avb=5bva (commutative law)
avaz=a (idempotency law)
aVv(anb)=a (absorption law)

Each law also has a dual (interchange A, V).
We define ax b=(an b)=a (thus,a< b=(av b) = b).

23

Lattice Theory

A latticeis a poset (L, <) such that every pair has a
glb, a meet (A) and a lub, a join (V).

Equivalently, a lattice is a triple (£, A, V) such that:

(av b)vec=av(bVvo) (associative law)
avb=5bva (commutative law)
avaz=a (idempotency law)
aVv(anb)=a (absorption law)

Each law also has a dual (interchange A, V).
We define ax b=(an b)=a (thus,a< b=(av b) = b).

Lemmal: (1)a<x b > avesbve
(2)a<xb > anckbArc
aVv ¢ s{Absorption (x< xV y)} avcv b ={ax b} bV

24

Lattice Theory

A lattice-closureon L is a function ¢/: L - L s.t.

(1) axcla (2) cla= cl(cla) ()a<x b = cla <clb
Lemma 2: c/(aVv b) > claVv cl.b

cllav b)= cltav b)v clav b)={avb =a, c/ L1} clav clb

25

Lattice Theory

A lattice-closureon L is a function ¢/: L - L s.1.

(1) axcla (2) cla= cl(cla) (3)ax b > cla <clb
Lemma 2: c/(av b) = clav clb

cllav b)= clav b)Vv cl(av b)={aVvb=a, c/ L1} clav clb

A lattice has a unitelement, 1, if (OaOL :: anl = a).

A lattice has a zero element, O, if (OalL :: av O = a).

If L has 1,0, then bis a complement of a (bl cmp.a)

iff bAa=0and bva-=1.

Complemented lattice. every element has a complement.

A lattice is modulariff a»c = an (bvc) = (anb)v(anc)
Henceforth, (L, A, Vv, O, 1) is a complemented, modular lattice.
Notice that a Boolean algebra is a special case.

26

Decomposition Theorem

A c/-safety property is one where cla= a.
A c/-liveness property is one where c/a=1.

Lemma: If 60 cmp(cl.a) then av bis a cl-liveness element.

Theorem: Every element is the meet of a c/~safety and ¢/
liveness element.

Let 60 cmp(cla)
clan (av b)
= {cla* a, Modularity}
(clan a)V (clan b)
={a<x cla}
aVv (clan b)
={cOcmp(b)na<x b => anc=0}
a

27

Decomposition Theorem

A c/-safety property is one where cla= a.
A c/-/iveness property is one where c/a= 1.

Lemma: If 60 cmp(cl.a) then av bis a cl-liveness element.

Theorem: Every element is the meet of a c/~safety and ¢/
liveness element.

Let 60 cmp(cla)
clan (av b)
= {cla* a, Modularity}
(clan a)V (clan b)
={a<x cla}
aVv (clan b)
={cOcmp(b)na<x b => anc=0} cl a
a

28

Why is modularity needed?

1
This is not a modular lattice:

b>a
bn(cva)=b
(bnc)Vv (bAa)=a

Define c/la= b, identity
otherwise. a
The only liveness element is 1,

so we cannot decompose a, 0
as ais not a safety element.

29

Applications

Corollary: Alpern & Schneider semantic results [AS85].
(P(2®),n,u, O, 29 =) is a Boolean algebra and /c/is a
lattice-closure operator.

Corollary: Alpern & Schneider Bichi automata results.

Since Biichi automata are closed under union,
intersection, and complementation, they form a Boolean
algebra.

Since the Bichi closure operator corresponds to /c/, we
get the main results in [AS87].

To get these results, we had to think syntactically:
What properties did our proofs depend on?

30

Outline

Linear Time Framework

Examples

Blichi Automata

Lattice Theoretic Characterization
Branching time/Rabin automata
Conclusions

31

Branching Time Framework

Programs and properties are sets of infinite trees.
Due to the path quantifiers A and E.

We distinguish between A and E.
AGq: along all paths Gq (universally safe).
EGq: along some path Gq (existentially safe).
The branching framework is important because:

It is used in process algebra.

Model checking tools, e.g., SMV and VIS, are based on CTL,
a branching time logic.

32

Trees

A tree, 1 is a prefix-closed subset of N, labeled from
2

+0 Afet (is total) if #20 and (OxOf: (OyOF: X< p)
+ 0 Af (is finite-depth) if (CWON :: (OsTf:: #s< n)y)

A" the set of non-total frees

Aall: Atot y Ant

C: a partial order on trees analogous to < for sequences
xE yif ycan be obtained by extending xat its leafs

33

Closures

lelp={Z0%Z°: (OX02" :x< z(Oydp: x<X y N}
nclp = {ZOA™T: (OXxOAM . xE Zz (Oyp :: XE y 0}
fclp = {ZOA™ : (OXxOAT :xE Zz (Oy/p:: XE y N}

Properties of nc/and fc/
» pOnclp, pO Ffclp
* nclinelp)= nclp, fcl(fclp)= fclp

+ fcllpu s)= fclpu fcls, nclpu s)0 nclpu ncl.s
+ nclp O felp

+ fc/defines a topology: nc/does not
(ncl(p v s) 0 nclpu nel.s does not hold)

Safety

p O US (is universally safe) if p= fclp
p O ES (is existentially safe) if p= nclp

Also, AGq [ES\/ —

as ncl.p O fcl.p

35

Liveness

p O UL (is universally live) if fclp= Atot
p O EL (is existentially live) if nclp= Atet

AFq O UL cl.p
EFq O EL

[pu-(Fclp)] O UL
[pU=(nclp)] OEL

36

Decomposition Theorems

Every property is the intersection of
A universally safe/ universally live property
An existentially safe/ existentially live property
An existentially safe/ universally live property

For every property p op
p= fclp nlpu-(fclp)]
p= nclpnpu=(nclp)T
p= nclpn[pu=(felp)]

If sis safe and sn/= p, then

nclpOs, /0[pu=(nclp)]

37

Regular Languages

Rabin tree automata recognize regular
languages of A-ary w-trees.

A Rabin automaton Bis a tuple (X,Q,g,,0,P)
where

Y is a finite alphabet

Qis a finite set of states

gpis the start state

0: QXX - P(E) is the transition relation

® is the acceptance condition

38

Regular Languages

ris arunof fon Bif ris a A-ary tree whose
root is labeled by g0

For every node gin rwith successors labeled ¢,,...,g,,
(9,,...,90) in &(r.c, t.0)

A run is accepting iff all infinite paths satisfy @
® is a set of pairs (green.i, red./) O (P.Q)?, [1..m]

e = D/D[l..m][(Dng/"een./GF g) [(D/"D red.i FG - /")]
L.B = {t: there is an accepting run of Bon t}

39

Decomposition Theorems

For any Rabin automaton, B, there
exist effectively derivable automata

B.and B,such that £.B= L.B.n L.B,

L.B.is safe, and L.B,is live.

As before, B_and B,can be
Universally safe/ universally live

Existentially safe/ existentially live
Existentially safe/ universally live

40

Conclusions

Lattice theoretic characterization of safety and
liveness.

Applications to linear time and branching time
frameworks.

The key was to formalize and then study the syntactic
properties of the proof.
Future Directions.

Define subclasses of safety and liveness formulas.

Syntactically characterize safety and liveness in branching
time (Sistla has done both for the linear time case).

Is the model checking problem simpler? (Kupferman and
Vardi have looked at this, mostly for linear time)

Any consequences for security automata?

41

