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Abstract—Many tasks in computer-aided design (CAD), such as A monolithic integration of SAT and BDD-based techniques
equivalence checking, property checking, logic synthesis, and falsecould combine their individual strengths and result in a pow-
paths analysis, require efficient Boolean reasoning for problems erful solution for a wider range of applications. Additionally,

derived from circuits. Traditionally, canonical representations, by includi d imulation its effici be furth
e.g., binary decision diagrams (BDDs), or structural satisfiability ' Y INCiUding rancom simuiation iis eiiciency  can be iurner

(SAT) methods, are used to solve different problem instances. improved for problems with many satisfying solutions.
Each of these techniques offer specific strengths that make them A large fraction of practical problems derived from the

efficient for particular problem structures. However, neither ahove-mentioned applications have a high degree of structural
structural techniques based on SAT, nor functional methods using redundancy. There are three main sources for this redundancy:

BDDs offer an overall robust reasoning mechanism that works first th - tlist d d f ister t f
reliably for a broad set of applications. The authors present a IFSt, ‘e primary’ NEiSt procuced irem a fegister transier

combination of techniques for Boolean reasoning based on BDDs, level (RTL) specification contains redundancies generated by
structural transformations, an SAT procedure, and random language parsing and processing. For example, in industrial

simulation natively working on a shared graph representation of ~designs, between 30% and 50% of generated netlist gates are
the problem. The described intertwined integration of the four redundant [1]. A second source of structural redundancy is

techniques results in a powerful summation of their orthogonal . h t to th tual bl f lati = |
strengths. The presented reasoning technique was mainly devel-'"NEreNt 10 the actual problem formulation. -or exampie, a

oped for formal equivalence checking and property verification Miter structure [2], built for equivalence checking, is globally
but can equally be used in other CAD applications. The authors’ redundant. It also contains many local redundancies in terms of

experiments demonstrate the effectiveness of the approach for ajdentical substructures used in both designs to be compared. A
broad set of applications. third source of structural redundancy originates from repeated
Index Terms—BDD, Boolean reasoning, equivalence checking, invocations of Boolean reasoning on similar problems derived

formal verification, property checking, SAT. from overlapping parts of the design. For example, the indi-
vidual paths checked during false paths analysis are composed
I. INTRODUCTION of shared subpaths which get repeatedly included in subsequent

] . ) checks. Similarly, a combinational equivalence check of large
M ANY tasks in computer-aided design (CAD) Suclyesigns is decomposed into a series of individual checks of
I V'1 as equivalence or property checking, logic synthesigytput and next-state functions which often share a large part of
timing analysis, and automatic test-pattern generation, requifRir structure. An approach that detects and reuses structural
Boolean reasoning on problems derived from circuit structurggy |ocal functional redundancies during problem construction
There are two main approaches used alternatively for such agyq significantly reduce the overhead of repeated processing
plications. First, by converting the problem into a functionallyt jgentical structures. Further, a tight integration with the
canonical form such as binary decision diagrams (BDDSs), tBgtual reasoning process can increase its performance by
solution can be obtained from the resulting diagram. Secofgoyiding a mechanism to efficiently handle local decisions.
structural satisfiapility (SAT) procedures pe_rform a systemat_lc In this paper, we present an incremental Boolean reasoning
search for a consistent assignment on the circuit representatigiisroach that integrates structural circuit transformation, BDD
The search either encounters a solution or, if all cases have begReping [3], a circuit-based SAT procedure, and random sim-
enumerated, concludes that no solution exists. Both approactiggion in one framework. All four techniques work on a shared
generally suffer from exponential worst case complexitynp/inverTER graph [3] representation of the problem. BDD
However, they have distinct strengths and weaknesses Whigfeeping and SAT search are applied in an intertwined manner
make them applicable to different classes of practical problemgyth controlled by resource limits that are increased during each

iteration [4]. BDD sweeping incrementally simplifies the graph

, _ _ _ . structure, which effectively reduces the search space of the SAT
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which is shared among all reasoning mechanisms and outlirséts/e to the order in which the structure is built. If the structural
the set of transformations that are applied for its simplificatiomethod fails, we apply BDD sweeping on the circuit graph for
Section IV presents the BDD sweeping algorithm and Segchecking tautology. Due to the multiple frontier approach de-
tion V outlines the details of the circuit-based SAT proceduregcribed later, it is significantly more robust than the BED to
The random simulation algorithm and overall reasoning floBDD conversion process.

are desgribed in Sections _VI and VIII, respectively. The last There are numerous publications that proposed the applica-
two sections present experimental results and conclusions. g, multiple methods to solve difficult reasoning instances.
For example, in [14] and [3] the authors presented a random

Il PREVIOUS WORK simulation algorithm and the mentioned method based on

SAT search has been extensively researched in multiple costfuctural hashing and BDDs, respectively, and suggested their
munities. Many of the published approaches are based on &mplication in a multiengine setting. In [15], a comprehensive
Davis—Putnam procedure [5], [6], which executes a systemdiifter-based approach is described that successively applies
case split to exhaustively search the solution space. Over fRgltiple engines including structural decomposition, BDDs,
years, many search tactics improvements have been publist#tfl ATPG to solve combinational equivalence checking prob-
The most notable implementations of CNF-based SAT solvégins. All these techniques have in common that they apply
are GRASP [7] and Chaff [8]. Classical CNF-based SAT solvefultiple specialized techniques in a sequential independent
are difficult to integrate with BDD methods and dynamicallynanner. In contrast, the presented approach tightly intertwines
applied circuit transformations because they use a clause-ba$gguse of structural methods, BDD-based techniques, and an
representation of the problem. In this paper, we describe 8AT search and applies them on a single uniform data represen-
implementation of an SAT procedure that works directly offtion. The proposed setting allows an automatic adaptation of
an AND/INVERTER graph allowing a tight interaction with BDD the combined algorithm to match a given problem structure that
sweeping, local circuit graph transformations, and random sifi¢sults in a significant increase in the overall reasoning power.
ulation. We describe a modified implementation of nonchrono- Several publications have suggested an integration of SAT
logical backtracking and conflict-based learning and presentand BDD techniques for Boolean reasoning. Cutpoint-based
efficient means to statically learn implications. equivalence checking uses a spatial problem partitioning and

Trading-off compactness of Boolean function representatiooan be employed as a base to apply SAT and BDDs in distinct
with canonicity for efficient reasoning in computer-aided desigparts of the miter structure. A particular approach [16] first
(CAD) applications has been the subject of many publicatiortauilds a partial output BDD starting from the cutset where
BDDs [9], [10] map Boolean functions onto canonical graphuxiliary variables are introduced. It then enumerates the onset
representations and thus are one extreme of the spectrum. @dses of this BDD and applies an SAT search for justifying
ciding whether a function is a tautology can be done in cothose cubes from the primary inputs. This method becomes
stant time, at the possible expense of an exponential graph simractable if the BDD includes many cubes in its onset. Further,
XBDDs [11] propose to divert from the strict functional canonthe actual justification of individual cubes may timeout if the
icity by adding function nodes to the graph. The node functiarutset is chosen unwisely. A modification of this approach
is controlled by an attribute on the referencing arc and can requggests searching through all cofactors of the BDD instead of
resent ariND or OR operation. Similar to BDDs, the functionalenumerating all cubes [17]. Another proposal to combine BDD
complement is expressed by a second arc attribute and straied SAT is based on partitioning the circuit structure into a set
tural hashing identifies isomorphic subgraphs on the fly. Tkedf components [18]. As most cutpoint-based methods, all these
proposed tautology check is similar to a technique presentedaipproaches are highly sensitive to the chosen partitioning.

[12] and is based on recursive inspection of all cofactors. ThisA common problem with the mentioned integration ap-
scheme effectively checks the corresponding BDD branchipgoaches is the insertion of BDD operations into the inner loop
structure sequentially, resulting in exponential runtime for prolaf a structural SAT search. Structural SAT is efficient if the
lems for which BDDs are excessively large. underlying problem structure can be exploited for effective

Another form of a noncanonical function graph representlbbcal search heuristics. BDDs work well if redundancy of
tion are BEDs [13]. BEDs use a circuit graph with six posthe problem structure eludes an exponential growth during
sible vertex operations. The innovative component of BEDs @®nstruction. A spatial partitioning of the application space for
the application of local functional hashing, which maps arBDDs and SAT blurs their individual global scope and sepa-
four-input substructure onto a canonical representation. Taates the application of their orthogonal strengths to different
tology checking is based on converting the BED structure infarts. In this paper, we apply BDD sweeping and structural
a BDD by moving the variables from the bottom of the diagrarSAT search, both working in an interleaved manner on the
to the top. Similar to many pure cutpoint-based methods, théstire problem representation. This keeps both mechanisms
approach is highly sensitive to the ordering in which the varfiecused on the global structure without being constrained by
ables are pushed up. In our approach, we apply an extend@darbitrary prepartitioning. In this setting, BDD sweeping
functional hashing scheme to aRD/INVERTER graph represen- incrementally reduces the search space for the SAT solver until
tation. Since our graph preserves e clustering, the hashing the problem is solved or the resource limits are exhausted.
can take advantage of its commutativity which makes it less se8tructural transformations are used to facilitate local decisions.
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Algorithm create_and2(p1,p2) { Algorithm new_and_vertex (p1,p2) {

/* constant folding */ /* reschedule vertex for BDD sweeping */

if (p1 == CONST_0) return CONST_0; put_on_heap (bdd_from_vertex (p1 ) , upper_size_limit) ;

if (p2 == CONST_0) return CONST_O; put_on_heap (bdd_from_vertex (p2) , upper_size_limit) ;

if (py == CONST_1) return py; /* learn implication shortcuts for SAT */

i: zpz fi COi\IST_l) re:urn Plf if (hash_lookup (—p1,p2)) learn(py,p2);

if <gi == 1-7'2112) i:t::: Iéloiqs”r 0; if (hash_lookup (p1,—p2)) learn(pz,p1);

- . = all rt ;

/* rank order inputs to catch commutativity */ gdd tz:)ohc;sv: t:ﬁl(ep(lz;l;)zl) p2);

if (rank(pi1) > rank(p2)) swap(p1,p2); return p; R

/* check for isomorphic entry in hash table */ }

if ((p = hash_lookup (p1,p2)) == NULL)

r etﬁ r: m?w_andJertex(p L,P2) i Fig. 2. Algorithm new_and_vertex for allocating a new graph vertex,
} pi including restarting of BDD sweeping (Section V) and static learning

(Section V).

Fig. 1. Algorithmcreate_and2for the AND constructor.
trivial expressions in the graph structure. Next a hash-lookup
I1l. PROBLEM REPRESENTATION ANDSTRUCTURAL identifies isomorphic graph structures and eliminates them
TRANSFORMATIONS during construction. For this the procedutash_lookup
. . . . checks whether aanD vertex with the requested input arcs
In this section, we describe the bagigD/INVERTER graph . .
has been created before. If found the existing ver2ptex is

representation that is employed as an underlying data StrUCt}JerSsed, otherwise a new vertex is created using the function

for all Boolean reasoning algorithms described in the foIIowinrq .
. . ew and_vertex Before applying the hash-lookup the two
sections. We also present several hashing schemes that remove-

structural and local functional redundancies during graph ¢ o_grator@l andp, are ordergd using a unique ranking criteria.
struction. his assures that commutative expressions, suph a%- and
p2 A p1, are merged onto the same graph vertex.
The algorithrnew_and_vertexis shown in Fig. 2. It is used
to allocate a new graph vertex and add a corresponding entry to

) . ] the hash table. This procedure also handles the reactivation of
A directed acyclic graph is used as a structural representatigg Bpp sweeping algorithm and static learning as described in

of the functions to be reasoned about. There are three typesgtiions IV and V, respectively.

graph vertices: a uniq_u_e terminal vertex represents the constanfne construction of thenD/INVERTER graph for a simple ex-

“0” ("1") value when it is referenced by a noncomplemented e s illustrated in Fig. 3. Fig. 3(a) represents a circuit built

(complemented) arc. A second type of vertex has no incomifg yroving equivalence of netsandsy, which are functionally

arcs and models primary inputs. The third vertex type has tgantical but have different structural implementations. Func-

incoming arcs and represents thied of the vertex functions onaly equivalent nets are labeled using identical numbers with

referenced by the two arcelVERTER attributes on the graph gne or more apostrophes. Fig. 3(b) shows the result of the graph

arcs indicate Boolean complementation. Using this graph repsnstruction using the algorithreate_and2of Fig. 1. The

resentation, a _reasoning problem is expressed as an obligatj@Rices of the graphs represesnp functions and the filled

to prove a particular graph vertex to be constant *0” or 1. gots on the arcs symbolize tievERTER attributes. Note that
Similar to the construction of BDDs, thenD/INVERTER  j several cases structurally isomorphic nets are mapped onto

graph is built from the inputs toward the outputs using a sgfe same graph vertices. For example, the functions (net 1

of construction operators. There are three basic constructqysine upper circuit) and A b (net 1” of the lower circuit) are

(1) create_input, (2) create_andz and (3)create_inverter. jgentified as structurally equivalent and represented by a single
Other operators for alternative or more complex operations ggrtex.

composed of these basic constructors. Intermediate functions
are passed between constructors by arc handles, which CorEiSLunctional Hashin
of a reference to the source vertex and a posstlERTER ‘ 9
attribute. The same handles are applied by the reasoninghe simple two-level hashing scheme of algorithm
application to refer to functions that are stored by the graph. create_and2 can eliminate structurally isomorphic graph
The implementation of the construction operationertices but cannot handle functionally identical vertices that
create_input is straightforward. It allocates and initial-are implemented by different structures. For example, the
izes a corresponding vertex data structure and returns a haretjgivalence of vertices andy of the circuit in Fig. 3 cannot
pointing to it. Similarly, the operationreate_inverter simply be shown by simple hashing. In this section, we present a
toggles the attribute of the handle. Fig. 1 shows the pseudo-cagmeralized hashing scheme that identifies functionally iden-
for the operati2porcreate_and2 The algorithm takes two tical subcircuits of bounded size independent of their actual
arc handles as input parameters and returns an arc handle straictural implementation.
represents the output of theND operation. In the code, the A natural way to increase the scope of structural hashing
symbol “=" denotes Boolean complemention using the procevould be to divert from the two-input graph model and use ver-
durecreate_inverter. The first part of the algorithm performstices with higher fanin degree. The set of possible functions of a
constant folding, which automatically simplifies redundant angertex with more than two inputs cannot be encoded efficiently

A. AND/INVERTERGraph Representation and Structural
Hashing
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Algorithm create_and (p1,p2) {
/* constant folding */
if (p; == CONST_0) return CONST_O;

if (p2 == CONST_0) returmn CONST_0;
if (p1 == CONST_1) return ps;
if (p2 == CONST_1l) return p;;
if (p1 == p2) return p;;
if (p1 == -p2) return CONST_O;

/* rank order inputs */
if (rank(pi1) > rank(p2)) swap(p1,p2);

/* check for isomorphic entry in hash table */

if ((p = hash_lookup (p1,p2)) == NULL) {

/* 3 cases depending on position in graph */
if (is_var(p;) && is_var(p2))

new_and_vertex (p1,p2) ;

create_and3 (p1,p2) ;

create_and3 (p2,p1) ;

create_and4 (p1,p2) ;

else if (is_var(p2)
else

p
else if (is_var(p1))p
p
p

}

return p;

}

Fig. 4. Algorithm create_and for an AND constructor that includes local
functional hashing.

vertices with a maximum fanin degree of four. Note that this
method can identify the equivalence of the net pair (5, 5’) but
still fails to show the same for pair (7, 7°), and therefore for
andy.

A more comprehensive approach denoted fasctional
hashing[1] is based on the presented two-input graph and
an extension of the structural analysis that includes the two
graph levels preceding a vertex. As a result, the granularity
of identifying functionally identical vertices is comparable to
the granularity of the hashing technique based on four-input
vertices. Moreover, by applying this method on all intermediate
vertices in an overlapping manner, this approach can take
advantage of additional structural similarities that otherwise
remain internal to four-input vertices.

Fig. 4 outlines the overall flow of the functional hashing
scheme. The first part, which performs constant folding and
structural hashing, is identical to the algorittoreate_and2
of Fig. 1. In case of a hash miss, the second part includes an
extended two-level lookup scheme, which converts the local
function of the four grandchildren into a canonical representa-
tion. During graph construction from the primary inputs, the
first level of vertices does not have four grandchildren and,
thus, must be treated specially. If both immediate children are
primary inputs, the algorithm creates a new vertex using the

(d) procedurenew_and_vertex which is shown in Fig. 2. If only
Fig. 3. Example for the construction of amND/INVERTER graph: (a) one of the Ch.”dren Is a primary.input, a canonical three-input
functionally redundant structure generated to check functional equivaler®dPstructure is created by applying the procedueate_and3
of outputsz andy; (b) corresponding two-inpusND/INVERTER graph built and for the remaining case the procedwreate_and4 is
by al_gorithmcteatg_andZOf Fig. 1 (c) altgrnative graph represe_ntation Wit.hcalled. Since the algorithms of the procedunesate_and3
fogr-lnput vertices; and (d) resultlng two-input graph after functional hashlné; d . . .. .
using the algorithnzreate_andof Fig. 4. nd create_and4are fairly similar, we limit the description

to the latter. Its pseudo-code is given in Fig. 5. The procedure

using uniform vertex operations and arc attributes only. Insteameate _and3simply implements a subset of the shown cases.
the vertex function should be represented by an attributeThe algorithmcreate_and4 first analyzes the local sub-
which is hashed in conjunction with the input references &iructure using the procedummnalyze case It computes a
find structurally identical circuit parts. Since the number afignature which reflects: 1) the equality relationship of the
possible vertex functions grows exponentially, this method fsur grandchildren and 2) the inverter attributes of the six arcs.
only practical for vertices with up to four inputs. For the circuifThis signature is mapped to one of 235 different cases (for
example of Fig. 3(a), part (c) shows the graph model based dhe algorithmcreate_and3 the signature is mapped to one of
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Algorithm create_and4 (l,7) { !
i l->left;
Ir l->right; vl

a o\
; b ’ b e
rl r->left; \/ £ /
c
(b)

T r->right; -
inder = analyze_case(l,T); c /

switch (index) {

case 98: /* function g in Fig. 6 */ a
p1 = —create_and(ll,lr); /* recursive */
p2 = —create_and(-!ll, -lr); g
return create_and2(p;,p2); /* not recursive */ b \/ <

case 123: /* function h in Fig. 6 */ o

p1 = —create_and(ll,lr);
p2 = —create_and(—ll, —Ir); ©

return —create_and2(p1,p2); Fig. 7. Example of local rewriting: (a) original graph that cannot be reduced

by functional hashing, (b) result of rewriting using case 236 of algorithm
create_and4(Fig. 8), and (c) result after recursive application of case 144 of
algorithmcreate_and4(Fig. 5).

case 144: /* example of Fig. 7 */
return create_and (rl,7r7) ;

}...

/* remaining cases with no reduction */
return new_and_vertex ([, 7) ;

} Functional hashing, as described in the previous subsection,
has the potential to compact graph representations for structures
Fig. 5. Sketch of the algorithmcreate_and4 which handles vertex With shared grandchildren. However, if all four grandchildren of
construction for substructures with four grandchildren. the two operands are distinct, the hashing does not result in any
structural reduction. Still, in some cases where the operand’'s
grand-grandchildren are shared, the local structure can be re-
arranged such that they share at least one grandchild. This re-
arrangement will enable a following functional hashing step.
For example, the expressign= (a V b) A ((a A b) A ¢) cannot

C. Local Rewriting

2 5 be simplified with functional hashing because it has four dis-
b h tinct grandchildren, ¢, b, a A b, c}. However, after rewriting the
6 expression intg = ((a vV b) A (a A b)) A ¢) functional hashing
can simplify the structure t9 = a A b A ¢. The corresponding
4 step-wise graph transformations are illustrated in Fig. 7.

(@) (b) To handle local rewriting, the algorithntreate_and4
Fig. 6. Example for merging the structures of functigns XOR(a, b) and is enhanced by recognlzmg more case.s 'n_ the procedure
h = XNOR(a,b) using the algorithncreate_and4 (a) Resulting structure analyze_caseand adding the corresponding indexes to the
without functional hashing. (b) Structure with functional hashing. implementation cases. In essence. the mentioned rewriting
mechanism is applicable if: 1) at least one operand ot

44 cases). By construction, the topology of the substructuredgeration is complemented and 2) the grandchildren and/or
uniquely identified by this signature. Its value is then mappédhildren of the operands are shared. Fig. 8 shows a modified
onto an implementation index such that all structures witf@rsion of the algorithnereate_and4that includes the addi-
identical functions get projected onto the same index. For edégnal three cases for local rewriting. The procedsharetests
distinct index a new canonical implementation is then gené¥hether two given vertices share any children. In the given
ated. Because of this canonicity and the applied vertex hashf@gimple of Fig. 7, the left child of vertex is inverted and
this method merges all functionally equivalent substructured)ares its children with the right-left grandchildgofHere the
effectively removing local functional redundancies. Fig. gepicted case 236 of the modified algorithm of Fig. 8 is applied
provides pseudo-code examples to handle cases 98 and f@Rrewriting. During the implementation step the procedure
which represent the structures of #0rR and XNOR function create_andis called recursively after which case 144 shown
as shown in Fig. 6(a). Fig. 6(b) demonstrates how function'sl Fig. 5 is applicable and simplifies the graph to the structure
hashing maps both functions onto the same vertex referen&é¢en in Fig. 7(c).

by complemented arcs.

Note that functional hashing is applied recursively as showh
in the implementation of the intermediate functignsandp, The previously described methods, including structural
of cases 98 and 123 of Fig. 5. However, to ensure terminatidrashing, functional hashing, and local rewriting, restructure
the final vertex must be constructed with the nonrecursive pritie AND/INVERTER graph only locally by examining a limited
cedurecreate_and2shown in Fig. 2. The recursive applicatiomnumber of fanin vertices. A further compression of the graph
of functional hashing often results in a significant graph reducan be achieved by analyzing larger symmetric graph clusters.
tion. For example, the two outputs in Fig. 3(a) can be mergddhe idea is that expression trees utilizing a uniform symmetric
by functional hashing resulting in the graph shown in (d).  vertex function (e.g.AND or XOR) represent the same Boolean

Symmetric Cluster Hashing
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Algorithm create_andd (I,7) { The sweeping method builds BDDs for the individual graph

ﬁlr - f:lflg,tlt vertices starting from inputs and multiple cut frontiers toward
rl = r->left; the outputs. By maintaining cross references between the graph
rr = r->right;

vertices and its BDD nodes, functionally identical vertices can
be found constructively during the sweep. There are several key
ideas that make BDD sweeping robust and efficient.

index = analyze_case (l,r) ;
switch (indez) {

/* rewriting cases */

L i I i i -
case 235: /% 1 and r are inverted */ As soon as two functionally equivalent vertices are iden

tified, their output structures are merged and rehashed
using the algorithms described in the previous section.
The instantaneous application of structural simplification
can solve reasoning problems without building BDDs
for the entire problem structure, resulting in a significant
increase in the overall reasoning power and performance.

case 236: /* only 1 is inverted */
if (share(l,rl) || share(ll,rl) || share(lr,rl)) {
return create_and (create_and (/,7l) ,77));

if (share(l,rr) || share(ll,rr) || share(r,rr)) {
return create_and (create_and (I,rr) ,rl)) ;

} e )
if (share(ll,7) || share(r,r)) { » The BDD propagation is prioritized by the actual size of

return —create_and (—create_and (—ll,r),
—create_and (—lr,7) ) ;
}

break;
case 237: /* only r is inverted */

the input BDDs using a heap as processing queue. As a
result, the sweeping algorithm focuses first on inexpen-
sive BDD operations and avoids the construction of large
BDDs unless they are needed for solving a problem.

* The maximum size of the processed BDDs is limited by
/* no reduction or rewriting */ a threshold, which effectively controls the computing re-
) return new_and_vertex (I,r) ; sources and reasoning power. BDDs that exceed the size
of the threshold are “hidden” in the processing heap and
will reappear when the sweeping is restarted with a suf-
ficiently large limit. This mechanism is used to interleave
BDD sweeping with structural SAT search. By incremen-
tally increasing the resources of the individual algorithms
during each iteration, their reasoning power continues to
For identifying identical symmetric cluster functions, a spe-  grow until the problem can be solved by either one of
cial cluster hashing algorithm is applied whenever a new them.
vertex is built. The algorithm traverses the transitive fanin of « Multiple BDD frontiers are concurrently propagated in the
the vertex, determines the boundaries of the symmetric expres- heap controlled manner. This approach effectively handles
sion tree, and collects the set of source vertices. This set is then |ocal redundancies without the need to always build large
hashed using a special cluster hash table. If identical entries are BDDs from the graph inputs.
found, the corresponding vertices are merged and their fanoute When the BDD processing reaches any of the target
structures are rebuilt. vertices that represent a proof obligation (i.e., it must
The symmetric cluster hashing is done for two functiontypes.  be shown to be constant, or not) one of the following
AND clusters are simple to identify by just traversing the fanin  steps is applied: if the corresponding BDD represents a
structure until inverted arcs are encountered. Due to their du- constant, the vertex gets merged with the constant graph
ality, or clusters are automatically handled by the same algo- vertex and the reasoning result is obvious (depending on
rithm. XOR/XNOR clusters are found by recursively searchingfor  the problem either SAT or UNSAT). Otherwise, if the
the canonicakor structure (shown in Fig. 6). Only one of the support of the BDD contains only primary input variables,
two possiblexor/XNOR needs to be identified, since the other  satisfiability is proven and any paths from the BDD root
structure gets rewritten by functional hashing. to the corresponding constant BDD node can serve as
Note that an alternative approach to handle symmetric counterexample. If the support contains variables from
clusters would be to buildND andXOR expression trees in a intermediate cutsets, false negative resolution is applied.
canonical manner, for example, by always building a balanced
tree structure using the source vertices in some Iexicographi/q\al
order. However, our experience is that such an approach is
inferior to the presented method since it destroys up-font largeFig. 9 shows the self-explanatory pseudo-code for the basic
parts of the existing (empirically useful) circuit structure and &8DD sweeping algorithnibdd_sweep It does not include the
a result prevents many matchings that are otherwise possibl@rocessing of multiple BDD frontiers, which is described in the
next subsection. The heap structure is initialized in the overall
procedure (see Section VIII). For this, primary inputs are initial-
ized at the beginning of the reasoning flow using the procedure
In this section, we describe the BDD sweeping algorithm,sweep_init whereas cutset vertices are declared and initialized
method that systematically identifies and merges functionalygtween the individual sweeping iterations.
equivalentaND/INVERTER graph vertices that are not found to The invocation of the sweeping algorithm processes all
be equivalent by the previously described structural methodsheap BDDs that have a smaller size than the given threshold

Fig. 8. Sketch of improved algorithoreate_and4with local rewriting.

function if they have identical sets of source vertices. This
equivalence is independent of the actual tree structure and
permutation of sources.

Basic Sweeping Algorithm

IV. BDD SWEEPING
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Algorithm sweep_init (vertez) { satisfiable since the BDD support includes only primary input
heap = new_heap () ; iabl
for all input vertices v;, do { variables.
bdd = create_bdd_variable() ; The following remarks further explain particular details of the
store_vertex_at_bdd (bdd, v;, ) ; Sweeping al g orithm.

put_on_heap (heap, bdd, bdd_upper_size_limit) ; ) o
* The sequence by which the cross referencing is performed

return heap; and checked using the procedget_bdd from_vertex
store_bdd_at vertex get vertex from_bdd and
Ms/’gri;::kbﬁ_sgle:rpéh:ﬁ ”:,’{te"’;’m{s on heap with store_vertex_at _bdd ensures that all vertices are han-
size(bdd) < bdd_zower_zize_umit */ dled exactly once, unless new graph vertices are added to
while (!is_heap_empty (heap, bdd_lower_size_limit)) do { the fanout of an already processed vertex. In this case, the
f)dd z g:::i':;::ﬁ‘f—rg:ld_g;f,“&é); procedureew_and_vertexrestarts the sweeping process
/* check if previously encountered */ for these vertices.
if (get_bdd_from_vertex (v)) continue; « If one of the two BDD operands is missing, the BDD op-
store_bdd_at_vertex (v, bdd) ; eration is skipped and processing continues with the next
fo:ddall fan:)ut;tve;t(;ﬁesf rz;‘tv::t e:)‘ (:o {->left) ) BDD from the heap. Note that as soon as this operand is
bddlr?;;t et bdd_from_vertex (ves ->right) ; available, the same BDD operation will be reinvoked.
res = bdd_and (bddje sy, bddyright) ; * The merging of two vertices is done in a forward manner,
S o {ge‘—ve“e"—fmm—"dd (bddres) ; i.e., the fanouts of the vertex, which is topologically farther
me;;se_verﬁm (Vres, Vout) ; from the primary inputs, must be reconnected to the vertex
/* return if problem solved */ that is topologically closer to the inputs. Otherwise, the
if (verter == CONST_1) return SAT; merge operation may cause structural loops in the graph,
} eise(fe’t“ == CONST_0) return UNSAT; which would invalidate its semantic.
store_vertex_at_bdd (bddres, Vout) ; Fig. 10 illustrates the mechanism of BDD sweeping for
/* BDD for vpes cannot be constant */ proving equivalence of two functionally identical but struc-
if (Vout == vertez) return SAT; turally different circuit cones. Fig. 10(a) and (b) show the
put_on_heap (heap, bddres, bdd_upper_size_limit) ; miter structure of the two cones 5 and 5’ to be compared with
} } an XNOR gate and the correspondimgND/INVERTER graph,
return UNDECIDED; respectively. The following figures show the progress of the
} sweeping until equivalence is proven. It is assumed that the
Fig. 9. Initialization proceduresweep_init and basic BDD sweeping BDDs are processed m_the Orde_r of thelrcorrespondlng vertices
algorithmbdd_sweepfor decidingSATvertes. 1,2,3,4,3', and 2'. The first four iterations create the BDDs for

vertices 1,2,3, and 4. In the next iteration, the resulting BDD
) o o ] node for vertex 3’ already points to the functionally equivalent
bdd_lower_size_limitAll larger BDDs remain hidden in the \erex 3. Therefore, vertices 3’ and 3 are merged as depicted
heap and get processed when the algorithm is called again Wifhrig  10(c). The next figure shows the graph after vertex 2’
a suffic_iently large thresh_old. During each iteration of the inng{55 peen processed and merged with vertex 2. The subsequent
sweeping loop, the algorithm removes the smallest BDD frofgnyard rehashing identifies that 5 and 5 are isomorphic and
the heap, processes the Boolean operations for the immedigigqes them, which further causes 6 to be merged with the
fanout structure of the corresponding circuit graph vertex, agdhstant vertex. Note that for simplicity we used only structural
reenters the resulting BDDs onto the heap, if their size is belqyyshing in this example. The resulting graph structure is shown
the thresholddd_upper_size_limit in Fig. 10(e). At this point functional equivalence is proven and

Using cross referencing between graph vertices and the c@fs aigorithm terminates without having to build BDDs for the
responding BDD nodes, functionally equivalent vertices can R@ire miter structure.

identified. An equivalent vertex pair is found if the resu

of a BDD operation already refers to another vertex that was . . . .
processed Eefore. In this Zase, both vertices are merged %._Ephanced Sweeping Algorithm With Multiple BDD
mediately and their subsequent parts of the graph are rehasE%’cTt'ers

by the procedurenerge_vertices The rehashing is applied in  The basic sweeping algorithm as described in the previous
depth-first order starting from the merged vertices toward tisection starts the BDD propagation from the input vertices only.
primary outputs and stops if no further reconvergency occudss aresult, the size threshold of the BDD processing precludes a
As a result, the forward rehashing may merge the reasoniiul penetration of deepexND/INVERTER graphs. An enhanced
target vertexertexwith the constant vertex, effectively decidingsweeping approach is based on a multilayered propagation of
the problem. The corresponding two checks in the inner lo&DDs that start from the primary inputs as well as intermediate
test for these cases. Before the BDD is reentered onto the heayt,frontiers. Using this scheme, the graph vertices are gener-
another check tests whether the target vertex was reachedallyiassociated with multiple BDDs that represent their function
this case, the target vertex must be nonconstant, otherwiséam different cuts of their fanin logic.

would have been merged with a constant vertex and one of thé-or the multilayer BDD propagation, the overall algorithm,
previous tests would have succeeded. Therefore, the problemwisch is described in Section VIII, declares cutpoints between
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(e)

o—
CONST 1 6

Algorithm bdd_sweep (heap,vertex) {
while (!is_heap_empty (heap, bdd_lower_size_limit)) do {

bdd = get_smallest_bdd (heap) ;
v = get_vertex_from_bdd (bdd) ;
level = get_level_from_bdd (bdd) ;

if (get_bdd_from_vertex (v, level)) continue;
store_bdd_at_vertex (v, bdd, level) ;

for all fanout_vertices vout of v do {
bdde 5t = get_bdd_from_vertex (vovt->left,level) ;

bdd,ight = get_bdd_from_vertex (vout->right,level) ;
res = bdd_and (bddjcs¢,bddright) ;
Vres = get_vertex_from_bdd (bddres) ;

if (vres) {
merge_vertices (Vres, Vout) ;

if (vertex == CONST_1l) return SAT;
if (vertex == CONST_0) return UNSAT;
} else {

store_vertex_at_bdd (bddres, Vout) ;
store_level_at_bdd (bdd,.s,level) ;

}
if (Vout == vertex) {
resolve_false_negative (v) ;
if (vertex == CONST_1) return SAT;
if (vertex == CONST_0) return UNSAT;
/* non-constant level-0 BDD */
if (get_bdd_from_vertex (vertex,0)) return SAT;
} .
put_on_heap (heap, bdd,es, bdd_upper_size_limit) ;
}
}
return UNDECIDED;

}

Fig.11. Enhanced BDD sweeping algorithm with multilayered BDD frontiers
for decidingSATvertey.

individual sweeping steps. There are several heuristics to iden-
tify vertices that represent effective cutpoints, including the use
of:

* vertices that have a large fanout;

« vertices that have multiple paths to the reasoning vertex;

* in case of equivalence checking, vertices that are on the

border of the intersection of the two cones that form the
miter structure.

Based on the declared cutpoints, the cut leveékvel(v) of
a circuit graph vertex is recursively defined as shown in the
equation at the bottom of the page.

The cut level is used to define cut frontiers and to align
the BDD propagation with these frontiers. Fig. 11 shows
the modified sweeping algorithm that supports the handling
of multiple BDD frontiers. As shown, the additions mainly
involve a level-specific handling of BDDs. The procedure
get_bdd_from_vertexreturns the BDD stored for a specified
level at a vertex. If the given level exceeds the cut level of the

Fig. 10. Example for BDD sweeping: (a) miter for two functionally identicaVertex, the BDD of the maximally available cut level is taken.
circuit cones, (b) originaAND/INVERTER graph, (c) BDDs are computed for ~ Similar to the basic algorithm, special checks are applied
vertices 1,2,3,4,3’, which causes 3’ and 3 to be merged, (d) BDD is compu\ﬁféen the BDD processing reachesthe target vertebex How-

S

for 2" which causes 2’ and 2 to be merged, and (e) forward hashing caus

e

and 5' to be merged and 6 be merged with the constant vertex thus solving @€', Since the BDDs of the vertices do not necessarily originate

reasoning problem.

from the primary inputs, it cannot be decided immediately if the

0,

if v is primary input

c_level(v) = { max(c_level(v— > left),c_.level(v— > right)) + 1, ifw is cutpoint
max(c_level(v— > left),c_level(v— > right)), otherwise
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Algorithm resolve_false_negatives (vi) { Algorithm sat_init (verter) {
for level =0 to c_level (vy) do { stack = new_stack () ;
bdd = get_bdd_from_vertex (vy, level); assign (verter, 1) ;
put_on_heap (compose_heap, bdd) ; if (imply (vertez)) {
d_level = push_on_stack (stack,NULL) ;
limit = bdd_lower_size_limit; d_level->mark = 0;
while (!is_heap_empty (compose_heap,limit)) do { d_level->queue = justification_queue;
bdd = get_smallest_bdd (compose_heap) ; d_level->v = dequeue_vertex (d_level->queue) ;
v = get_vertex_from_bdd (bdd) ;
bddyar= get_cutvar_from_bdd (bdd) ; return stack;
if (bddyar) { }

get_vertex_from_bdd (bddyar) ;

Vyar

Algorithm justify (stack) {

level = c_level (vyar);

bddfyn. = get_bdd_from_vertex (vyar, level —1); while (1) {

bddres = bdd_compose (bdd, bddyar, bddfync); if (backtracks++ > sat_backtrack_limit)

Vres = get_vertex_from_bdd (bdd,es) ; return UNDECIDED;

if (vres) { X d_level = pop_from_stack (stack) ;
merge_vertices (Vres . V) ; if (!d_level) return UNSAT; /* exhausted */

} else { label:
i:l?:eo_l‘llel:::;?zszigsébzi;?’ l:}d)d;,es) ; if (!'d_level->v) returm SAT; /* justified */

o : /* try all values one by one;
} continue from last value after
} returning from higher decision level */
} for all values for d_level->value do {

assign (d_level->v->left,d_level->value) ;
Fig. 12. Algorithm to eliminate false negatives. if (imply (d_level->v->left)) {

d_level = push_on_stack (stack, d_level) ;

. . . . d_level->mark = tail_pointer (assignment_list) ;
problem is solved. First, false negative resolution attempts to | d_level->queue = justification_queue;
substitute cutpoint variables of the BDD with the BDDs driving d_level->v = dequeue_vertex (d_level->queue) ;

R . . . N goto label;

the corresponding vertices (see Section IV-C). This may cat }
the target vertex tp get_m_erged with a go_nstant vertex in whi /* failed undo assignments and reset queue */
case the problem is satisfiable or unsatisfiable for a merger w undo_assignments (d_level->mark) ;

the constant “1” or constant “0”, respectively. Furthermore, justification_queue = d_level->queue;

all cutpoint variables have been resubstituted the resulting BL
originates only from the primary inputs. The problem must the }
be satisfiable.
Fig. 13. General Davis—Putnum SAT procedure for decidAdvertey.
C. False Negative Resolution

The algorithm to resolve false negatives in shown in Fig. 18Ssignment must be found. The algorithm attempts to sequen-
To fully explore BDDs constructed for the different levels of th&ially justify these vertices using a branch-and-bound case enu-
target vertex without memory explosion, the elimination proce§aeration. Note that due to their unifornb functionality, only
is also controlled by a heap. In each iteration, the smallest BDY8rtices that are to be justified to “0” need to be scheduled on
is taken and its topmost cut variable resubstituted by the corfBat queue. A required logical “1” at a vertex output implies a
sponding driving function. The resulting BDD is then checked at both ofits inputs and is handled directly by the procedure
for a functionally equivalent vertex that has been processed 8PlY . Further, if the value of a vertex output is not yet specified
fore. If found, both vertices are merged and the subsequent pars) it does not need to be justified since any value setting at
of the circuit graph are rehashed. Otherwise, if the size of the #i& inputs will lead to a consistent setting.
sulting BDD is smaller than the given limit, it is reentered onto The proceduresat_init first assigns the target vertex to “1”

the heap for further processing. and propagates all implications using the procediuy . Un-
less the target assignment results in an immediate conflict, it
V. STRUCTURAL SAT SOLVER creates the first stack entry for the procedustify . This entry

. contains all “to-be-justified” vertices that have been collected by

A. Basic SAT Procedure imply . The following call of the procedujastify then performs

The structural SAT solver is based on the Davis—Putnam pie@systematic case search by recursively processing all queue ver-
cedure working on the presentedD/INVERTER graph. It at- tices and enumerating for them all valid input assignments (two
tempts to find a set of consistent value assignments for the v Boolean logic). In the case that the assignments of a search
tices such that the target vertex evaluates to a logical “1”. Usubtree result in a conflict, a marking mechanism allows un-
satisfiability is proven if an exhaustive enumeration does ndbing all assignments up to that decision level.
uncover such an assignment. The tight integration of the SAT solver into the overall

Fig. 13 provides the top level view of the SAT algorithm conframework requires an execution control by providing resource
sisting of two routines, the procedusat_init, and the proce- limits such as the number of backtracks. If during the current
durejustify , which handles the case splitting and backtrackingpplication ofjustify this number exceeds a given threshold,
The overall SAT search is based on a processing queiie the SAT solver interrupts its search and returns control to the
fication_queuehat contains all vertices for which a consistentalling procedure. This supports an interleaved application
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Algorithm imply (vertez) { .
for all fanout_vertices voyut of verter do { current_state| next_state action
if (! imply_aux(voyt)) return O0; ; ;
- -~ ,
return imply_aux (vertex) ; X . o> X X d - X STOP
}
Algorithm imply_aux (vertex) { 0 Ao 0 Ao CONFLICT
value = get_value (vertez) ; X e X d
lvalue = get_value (vertex->left) ;
rvalue = get_value (vertex->right) ; X X
current_state = (value,lvalue,rvalue); X >°_>0 X w0 CASE_SPLIT
next_state = lookup (current_state) ; 0 0
switch (action) { ~a ~a
case STOP: ¥ IO—VX ¥ /0—>() PROP_FORWARD
return 1;
case CONFLICT: X ~ 1 ~, n
return 0, L #° 1 |, #° 1 | PROPLEFT RIGHT
case CASE_SPLIT:
enqueue_vertex (vertex, justi fication_queue) ; . .. . .. . ..

return 1;
case PROP_FORWARD:
assign (vertex, next_state->value) ;
for all fanout_vertices voyut of verter do {
if (!limply_aux (vout)) return 0;

Fig. 15. Excerpt of the lookup table for fast implication propagation applied
in the procedurémply of Fig. 14.

return 1; The lookup table is programmable for different logics. For ex-
ample, using a different table the procedimply can equally

case PROP_LEFT_RIGHT: . . . .
be applied to implement a parallel, one-level recursive learning

assign (vertex->left, next_state->lvalue) ;

assign (vertex->right, next_state->rvalue) ; scheme using nine-valued logic [19]. Due to its uniformity and
if (timply(vertez->left))  return 0; low overhead, the presented implication algorithm is highly ef-
if (!imply (vertex->right)) return 0; - . . . . .
return 1, ficient. As an indication, on a Pentium Il class machine it can
= execute several hundred thousand backtracks per second on typ-
leturn 1 ical circuit structures. For being beneficial for the overall per-
} formance, any gain that is potentially achieved through addi-
tional structural analysis must offset the resulting slowdown of
Fig. 14. Implication procedure to theud/INVERTER graph. theimply function. In [8] and [20], a similar reasoning is given

for efficient implementations of SAT and ATPG algorithms, re-

of the SAT search with BDD sweeping as described in Se:épectlvely.
tion VIII. Furthermore, by preserving the state of the decision
stack between subsequent invocations, the SAT algorithm En
continue its search from the point it stopped earlier without 1) Conflict Analysis: Advanced SAT solvers use con-
repeatedly searching previously handled subtrees. This relitt analysis to skip the evaluation of assignments which
trant functionality is implemented in the procedyustify by are symmetric to previously encountered conflicts [7]. Two
checking the backtrack limit each time the search returns framechanisms are used for this purpose: first, nonchronological
a higher decision level. If the limit is exceeded, the control isacktracking skips the evaluation of case alternatives if the
returned to the calling, overall process and the backtrackingcsrresponding case splitting vertex was not involved in any
postponed untijustify is called again. Note that the setup ofower level conflict. Second, conflict-based learning creates
sat_init ensures a correct initialization of the first stack entry.additional implication shortcuts, which reflect the assignments
The details of the algorithimply for implication processing that caused a conflict. These redundant structures result in
are shown in Fig. 14. Its implementation takes specific advaadditional implications, which detect subsequent, symmetric
tage of the underlyingA\ND/INVERTER graph structure by ap- conflicts earlier.
plying an efficient table-lookup scheme for propagating logic Conflict analysis requires tracking the logical impact of case
implications. The routinegnply andimply_aux iterate over split assignments on the conflict points. Other implementations
the AND/INVERTER graph and determine at each vertex all imfe.g., [7]) apply an implication graph for which the nodes cor-
plied values and the directions for further processing. respond to variables and edges reflect single implication steps.
Fig. 15 gives an excerpt from the implication lookup table. Al the given setting, the conflict graph manipulation during each
described above, for Boolean logic only one case, a justificatistep of themply routine would severely impact its performance.
request for a logical “0” at the output of anD vertex requires To reduce this penalty, we apply a scheme that directly collects
scheduling a new vertex on thestification_queueAll other as- the responsible case assignments as a side function of the impli-
signments result in one of three cases: 1) a conflict occurreddation process. This mechanism uses a conflict bit-vector where
which case the algorithm returns and backtracks; 2) further imach bit represents a case vertex in the decision tree. In other
plications are triggered, which are processed recursively; orn@prds, the bits of this vector represent the source vertices from
the vertex is fully justified, in which case the procedure returnghich implication sequences were started. The table lookup in
for processing the next element from flstification_queue  functionimply is expanded to also determine the controlling

Improvements to the SAT Procedure
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Algorithm simulate (vertez) {
for all input vertices v;, do {

P set_value (v;, , random_word () ) ;
p simulate_aux () ;
2 if (get_value(vertex) !'= 0) return SAT;
(a) (b) else return UNDECIDED;

Fig. 16. Learning fo(p:p> = 0) A (p:1pz = 0) = (p: = 0): (a) original .
structure and (b) structure with learned implication shortcut. Algorithm simulate_aux() {
for all vertices v in topological order do {
lvalue = get_value (v->left) ;

sources for the propagation of the conflict bit-vectors. The ac rvalue = get_value (v->right) ;

o . " if (is_inverted (v->left)) lvalue = word_not (lvalue) ;
tual propagation is done by word-wid® operations of these if (is_inverted (v->right)) rvalue = word_not (rvalue) ;
vectors during the implication sequence. As a result, when value = word_and (lvalue,rvalue) ;
conflict is reached, the active positions of the bit-vector reflec set_value (v, value) ;

the decisions vertices that are responsible for this assignmel} }
This scheme reduces the speed of the implication process by
typically less than 50%, a penalty that is easily offset by the awg. 17. Random simulation algorithsimulate.
erage gain.
The resulting conflict bit-vectors are used to control the back-

) . . . .~ The presentedAND/INVERTER is highly suitable for an
tracking mechanism. If all choices of a decision level result in,,. . . . . X
eﬂluent word-parallel implementation of random simulation.

a conflict, the backtrack level is determined by the lowest Ievnle e pseudo-code for the corresponding algorithmic flow is

that was involved in a conflict. This is implemented efficiently o O )
) . : S shown in Fig. 17. After assigning random values to the primary
by bit-vector operations. The combined conflict bit-vector re- . ; . . .
. . ._.Input vertices, a levelized processing using word-wisde and

flects all responsible assignments for that part of the decisig

. . NOT instructions propagates the resulting assignments toward
tree and is passed upward to the next backtracking level. propag 9 g

Further, the conflict bit-vector is examined for compactthe target vertices. A check for satisfiability of a target vertex

) . is simply done by a parallel comparison of its value with the
clauses to learn. Its function is directly mapped onto a . :
Zzero word. Note that by applying proper reference counting,

AND_/INVERTERT graph structure representing that conflict. -T%Ply a single value frontier needs to be stored during their
avoid excessively large learned structures, we apply a variable

limitation similar to [7]. However, instead of just restrictinngfagatlon’ which results in a sublinear memory complexity
the maximum number of conflict variables, we also take the[lr '

assignment into account, effectively estimating the size of the

eliminated decision subtrees. VII. INPUT CONSTRAINTS

t2) tStatu; tIF]earm/ng:An effectlv?] _mﬁlchf;mltsrg _toFe_xpllog tBhe Many Boolean reasoning problems require an efficient han-
structure OTth@ND/INVERTER graph IS lflustrated in F1g. 16. By dling of input constraints, typically referred to as “don’t cares.”

reus_ing the yertex hgsh table applied dur_ing graph constructi example, in combinational equivalence checking, input con-
apalrofvemceg that|mplementthefunct|'qn$2 a‘_”dP@ €an  straints express the Boolean subspace for which the two de-
be deltected using t\l\_/o hash lookups. Thls cqnflguratlon OCCWiBns under comparison have to be functionally identical. The
often in practical designs, for example in multiplexer-based d aining input combinations represent “don't cares” for which

exchange circuits that switch data streams between two SOUMESfunctions may differ. Other problems that require efficient

and two de_stln:_:ltlons. By adding two g(_jdltlonal vgru_ces to trb‘?’ocessing of input constraints occur during synthesis and ver-
graph, an implication shortcut can utilize the existingply ification of incompletely specified functions.

function. If a logical 0 is scheduled for both output vertices, the Input constraints split the set of values at the primary in-
implication procedure can immediatelyqutify thg entire Strujiuts into two parts, the “valid” or “care” set and the “invalid”
ture and bypass the two case splits. This learning structur IS<don’t care” set. The problem of Boolean reasoning under
created statically and integrated into the vertex allocation zﬁl1

ith d . hich is sh 1 Fia. 2. Note that put constraints is to find a consistent assignment within the
gonthmnew_and_vertex which Is shown in Fig. 2. Noté that ., .o et A convenient method for expressing and storing input
the learned vertices are built using the regelaate _androu-

. . . 2 . . constraints in the given setting is based on characteristic func-
tine which may cause additional circuit restructuring orlearnln[%ns that can be stored and manipulated as part of the overall
events. AND/INVERTER graph. The graph representation for the charac-
teristic function can be built using the standard constructor op-
erations, which are described in Section Ill. Its result is then as-
serted to be logical “1,” meaning that all input values that eval-
Many problem instances of Boolean reasoning are satisfiabiate this function to “1” are considered to be the care set.

and have dense solution spaces. The most effective approach fdrhe simplest method for handling input constraints is based
finding a satisfying assignment for such problem is often based a scheme that first conjoins the constraint vertices with the
on pure random simulation. The design of a random simulatitarget vertex and then applies the reasoning algorithms on the re-
algorithm is straightforward. In this section, we briefly describsultingAnD vertex. However, for structural simplification, BDD
the details of its implementation in the given setting. sweeping, and random simulation, this approach would resultin

VI. RANDOM SIMULATION
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Algorithm assert_to_l (vertez) { BDD to the care set before it is checked for a pre-existing vertex
if (is_var (vertez) { /* leaf vertex */ .. .
merge_vertices (vertez, CONST_1) ; referen_ces. an_d put onto the heap. The BDD restriction is d.one
} else if (is_inverted (vertez->left) && by ANDing it with the set of BDDs generated for the constraint
is_inverted (vertez->right)) { vertices, which are asserted to “1.” Since the constraint handling
/> search for XNOR and XOR structures */ is conservative and cannot produce false negatives, this restric-
if (vertex->left->left == -wertex->right->left && . . .
(vertez->left->right == -wertex->right->right) { tion can be done dynamically. As soon as the BDDs for the in-
if (is_inverted (vertez)) { /* XNOR */ dividual constraint vertices become available through the heap
merge_vertices (vertez->left->left, controlled processing, they can be used to restrict all existing
vertex->left->right) ;
and future vertex BDDs.
else { /* XOR */
merge_vertices (vertex->left->left, C. Structural SAT Solver
—wertex->left->right) ; ] ] ) ) )
} The existence of input constraints implies for the structural
letum. SAT search that the values of all asserted constraint vertices
' must be preset to constant “1.” Furthermore, these values need
/* recursive conjunctive decomposition */ to be fully justified, which is accomplished by adding the corre-
if (!is_inverted (vertez)) { sponding vertices to thestification_queueBoth requirements

assert_to_1 (vertex->left) ;

assert_to_1 (vertex->right) ; are implemented in a preprocessing step before the actual SAT

} else { /* no further decomposition */ search starts. Note that for structural SAT this approach is iden-
merge_vertices (vertex, CONST_1) ; tical to the method in which the asserted vertices are simply
} combined with the target vertex by conjunction. For that method
the first application of thémply function would immediately
Fig. 18. Algorithmassert_to_Ifor asserting a vertex to “1” that represents arSchedule all asserted vertices to be justified to “1.” The resulting
input constraint. search flow would then be identical to the flow produced by the

a significant performance degradation, especially if the fracti@ﬁesented approach using a separate preprocessing step.

of valid assignments is very small. A more efficient method is tB Random Simulation

keep the characteristic functions of the input constraints sepa-

rate and to handle them specifically in each reasoning algorithm To achieve high coverage in random simulation, it is essential
In the following sections, we elaborate on the mechanismst@®avoid simulating input values that are don’t cares. In partic-

handle input constraints by the individual reasoning algorithrriglar, for sparse care sets, a pure random value selection from the
entire Boolean space may resultin no coverage at all. For gener-

A. Structural Representation ating valid input combinations in the presented random simula-

As mentioned before, input constraints are simply express&f? @Pproach, the SAT solver is applied to search for satisfying
as characteristic functions and represented as vertices in §gignments for all vertices that are asserted to “1.” However,
AND/INVERTER graph. The resulting constraint vertices aréStead of stopping the search once a solution is found, the SAT

marked for special handling for the SAT solver, BDD sweepin rocedure continues to traverse the search tree. For each encoun-
and random simulation. Fig. 18 gives the pseudo-code for t%éed solution, the input values for the satisfying assignments are

algorithm that asserts a graph vertex to constant “1.” As Shov\;(e[,corded and later simulated in the word-parallel manner pre-

the algorithm consists of two parts. First, a local analysis §ENted in Section V1.
the asserted vertex searches ¥@RrR and XNOR structures. If
found, the input vertices of these functions are asserted to VIIl. OVERALL ALGORITHM

be equal by structurally merging them with the same mergeThe overall algorithm that combines structural transforma-
function applied for BDD sweeping (see Section 1V). Secongions, BDD sweeping, SAT search, and random simulation is
if no XOR or XNOR is found, a structural conjunctive decompogytlined in Fig. 19. For each reasoning query the algorithm first
sition of the assertion function is attempted. This is done Recks if the structural hashing algorithm solved the problem.
recursively traversing thenD tree driVing the asserted VerteX.|nteresting|y' for a |arge number of queries in practica| app”ca_
The resulting individual conjuncts are then separately mergggns the structural test is successful and immediately solves the
with the constant “1” vertex. This merge has the advantage t'ﬁﬁbblem. For example, in a typical ASIC methodology, equiv-
structurally isomorphic functions, which are part of the actuglence checking is used to compare the logic before and after
reasoning problem, can be identified as constant without ajertion of the test logic. Since no logic transformations have

further processing. The forward rehashing, which is appliegtually changed the circuit, a simple structural check suffices
when this vertex is merged with the constant vertex, automagy prove equivalence.

cally simplifies the subsequent graph structure. Next random simulation is applied to quickly check for a
) satisfying assignment. If simulation cannot solve the problem,
B. BDD Sweeping SAT search and BDD sweeping are first initialized and then in-

Input constraints can be used during BDD sweeping to idewsked in an intertwined manner [4]. In the inner loop, a call to
tify additional sets of vertices that are functionally equivalent fdhe justification procedurgistify is alternated with an invoca-
the care set only. This is accomplished by restricting the vertegn of multiple sweeping iterations. After each BDD sweeping



KUEHLMANN et al. ROBUST BOOLEAN REASONING FOR EQUIVALENCE CHECKING 1389

Algorithm check_SAT (v) { Distribution of circuit sizes
if (v == CONST_1) return SAT; 45 T 5 T y :
if (v == CONST_0) return UNSAT;

/* random simulation */ “0

res = simulate (v) ;

if (res != UNDECIDED) return res;

/* initialize BDD sweeping */

heap = sweep_init (v) ;

/* initialize SAT search */

stack = sat_init (v) ;

while (!is_heap_empty (heap, bdd_upper_size_limit)) do {

w
o

[N
S

n
a

n
=]

/* try to justify */
res = justify (stack) ;
if (res != UNDECIDED) return res;

/* BDD sweeping till no more cutpoints found */
do { :
res = bdd_sweep (heap,v) ;
if (res !'= UNDECIDED) return res; 5
found = find_and_init_cutpoints (heap,v) ;
} while (found) ;
bdd_lower_size_limit += delta_bdd_limit;
sat_backtrack_limit += delta_sat_limit;

Number of examples

X X 5.5
Number of vertices (log10 scale)

}

sat_backtrack_limit = maz_sat_backtrack_limit;
return justify (stack) ;

Fig. 20. Distribution of circuit sizes for the experiments.

Circuit graph compression using Functional Hashing
80 T T T T T

Fig. 19. Overall reasoning algorithm integrating BDD sweeping, SAT seart
and random simulation. 70

step, the cutpoint selection heuristic implemented in procedt  °°f
find_and_init_cutpoints is applied to search for promising cut-_g
points. Newly found cutpoints are initialized with fresh BDEE
variables, which are then added to the processing heap. As I3
as new cutpoints are detected, BDD sweeping is restarted u"f_'>
the problem is solved or the cutpoint selection is exhausted.$
the latter case, the reasoning algorithm returns to the SAT sol‘§
to search for a satisfying assignment. Note that BDD sweepi
may merge vertices that are on the justification queue of the S
solver. This artifact is handled by preserving the merge infc
mation and explicitly processing the SAT implications for al
merged vertices. 0

During each iteration of BDD sweeping and SAT search, tt
size limit for sweeping and the backtrack limit for the SA1
solver are increased. In this setting, these algorithms do imaf 21. Comparison of graph reduction of simple versus functional hashing.
just independently attempt to solve the problem. Each BDD

sweeping iteration incrementally compressesWi®/INVERTER T4 circuits range in size from a few 100 to 1RQyates with

graph structure from the inputs toward the target vertex, whig;, o gistrinution given in Fig. 20. The number of outputs and
effectively reduces the search space for the SAT solver. This Routs per circuit range from a few 100 to more than 10000

terleaved scheme dynamically determines the minimum effqeq o, heriments were performed on a RS/6000 model 270 with

needed by the sweeping algorithm to make the SAT search SyGs, it 1wo-way Power3 processor running at 375 MHz and 8

cessful. If the iterative invocation of BDD sweeping and SAEBytes of main memory.

search was not able to solve the problem, the algorithm ap- '

plies the SAT solver with a maximum backtracking limit as &. Functional Hashing

final .atter_npt to find solutl_on ina brutg-force manner. No-te .!n the first experiment, we evaluated the effectiveness of the

that in this case the sweeping process is stopped by the limi . . )

. AR . AND/INVERTER graph structure and functional hashing. For this

bdd_upper_size_limifThis limit prevents the processing of ex- d the circui hs for the desi ificati

cessively large BDDs we constructed the circuit graphs for the design specifications

’ and compared the sizes generated by simple hashing described

in Section IlI-A with the results of the functional method pre-

sented in Section IlI-B. The histogram for the size reduction of
In order to evaluate the effectiveness of the presented alpe circuit graphs is plotted in Fig. 21. As shown, on average the

proach we performed extensive experiments using 488 circuiisen sample of circuit representations can be reduced by 50%,

randomly selected from a number of microprocessors desigtie runtime overhead for all runs was negligible. Since it is not

20

0 - 05 ] 1 2 ) .5 o 3
Ratio of number of vertices (functional hashing / simple hashing)

IX. EXPERIMENTS
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TABLE |

PERFORMANCE OFBDD SWEEPING AND SAT SEARCH FORVARIOUS BDD SizE BDD size limit: 2" )
LIMITS (HIGHLIGHTED ENTRIES CORRESPOND TOGRAPHS SHOWN IN FIG. 22) Vertices left cone only: 87 * BDD built
Vertices right cone only: 139 o no BDD built yet

BDD || BDD Sweeping | SAT Search Total Vertices shared: 170

Size Memory [kB]/ F Backtracks 7 Memory (kB1/ iL Number of backtracks: 2407939

Limit Time [sec] Time [sec] Time [sec]

20 342/0.00 2407939 /34717 | 342/347.17

2! 347/0.64 115/7.40 347/8.04

2?2 349/0.60 115/7.47 349/8.07

24 358/0.66 87/6.93 358/7.59

26 372/0.78 43/6.88 372/7.66

28 396/1.18 43/7.03 396/8.21

210 791/1.67 43/6.57 791/8.24

212 2212/4.22 43/6.30 2212/10.52

214 2219/6.98 43/6.15 2219/13.13

216 8381/12.14 271527 8381/17.41

217 8540 /19.16 0/0.00 8540/ 19.16

clear which choice of recursive branch will lead to more fun@iSR\\ oees =
tional mapping, we do observe a few cases where enlargement @)
in the circuit takes place compared to structural hashing. How-

ever, this increase is easily offset by savings in other parts of BDD size limit: 24
circuit. The results suggest that the presented hashing metf] zen@ws l?f; cone onlylr fg il
is not only useful for Boolean reasoning but can also be appli ertyces TNt cone ony: |

Vertices shared:

Number of backtracks:

|
for general netlist compression. ;g

B. Formal Equivalence Checking

1) Interleaved Invocation of BDD Sweeping and SAdist,
to demonstrate the effect of the interleaved application of BD
sweeping and structural SAT search, we chose a miter str
ture from a particular equivalence checking problem. From tlf, \
above-mentioned circuits, we selected an output pair which HE
97 inputs, 1322 gates for the specification, and 2782 gates 1
the implementation. "\

In a series of experiments the BDD sweeping algorithm \\'

applied to the original miter circuit with varying limits for the ‘lt\\\

i . R N
BDD size. After sweeping, the SAT solver was invoked on
the compressed miter structure and run until equivalence was
proven. Table | gives the results for different limits on the BDI

. | BDD size limit: 217 ’
size. As shown, there is a clear tradeoff between the efft  verices eft cone only: 0
spent in BDD sweeping and SAT search. For this example, t  Vertices right cone only: 0 \
optimal performance was achieved with a BDD size limit ¢ Yoo shred 216 \
4 ) . . Number of backtracks: 0
2°. The use of BDD sweeping and SAT search in the describ i

incremental and intertwined manner heuristically adjusts tl
effort spent by each algorithm to the difficulty of the problem.

Fig. 22 shows the two outputs forming the miter structur
for three selected runs for which the corresponding entries «
highlighted in Table I. In the drawings, all inputs are positione
at the bottom. The placement of theD vertices is done based
on their connectivity to the two outputs which are located
the top.AND vertices that feed only one of the two outputs ar
aligned on the left and right side of the picture. Vertices that a
shared between both cones are placed in the middle. Furtl
filled circles and open circles are used to distinguish betwe =Z=
vertices with and without BDDs, respectively.

.Part (a) of th,e picture illustrates _the initial miter StructurEig. 22. Example the two outputs forming the miter structure at different
without performing any BDD sweeping. As shown, a numbefages of BDD sweeping: (a) no sweeping performed; (b) sweeping result with
of vertices are shared as a result of structural and functiofD size limit of 2*; (c) sweeping result with BDD size limit of'2.
hashing. In order to prove equivalence at this stage, the SAT
solver would need about 2.4 million backtracks. Fig. 22(lsweep with a size limit of 16 BDD nodes. It is clear that
shows the miter structure after performing a modest BDDany more vertices are shared at this point. The SAT solver
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25 3 3.5 4 4.5 5 55 6 6.5
Combined Functional Hashing, BDD-Sweeping and SAT Fig. 24. Comparison of the original BDD sweeping algorithm with the new
() algorithm for equivalence checking: (a) runtime and (b) memory.

Fig. 23.  Computing resources for equivalence checking of the given set of 488
circuits: (a) runtime distribution and (b) memory distribution. approach with the original plain BDD sweeping algorithm as
described in [3]. For the former, BDD sizes were varied from

G od o ae 028
can now prove equivalence using only 87 backtracks. TRQAd_lower_size_limibf 2 to abdd_upper_size_limaf 27,
last part of the picture displays the miter structure when it Y4ith @ delta_bdd_limitof 2°. The sat_backirack_limitanged

completely merged by BDD sweeping. Here, the equivalenff@m_a low of 1000 to a high of 1 000 000 witrdelta._satflim.it
proof required building BDDs for all miter vertices. varying between 1000 and 5000. The results are given in Fig. 24.

2) Overall Performance in an Industrial Settingn a further AS Shown, the majority of circuits could be compared using sig-
experiment, we evaluated the overall effectiveness of the comBificantly less time, sometimes two orders of magnitude less.
nation of BDD sweeping, structural transformations, structura'® Memory consumption remained about the same. The per-
SAT, and random simulation. First, to provide an intuition of thfPrmance for a particularly complex circuitis marked in both di-
required computing resources in a typical industrial applicati@@@ms: This design contains 55 096 gates, 302 primary inputs,
project, we ran a full equivalence check for the given set of 48876 outputs., and 2200 latches. Thg verification run included
signs using the presented approach. All designs are correct, P8./6 comparisons and 231 232 consistency checks (checks for
the specification and implementation are functionally equiv&ll N€ts, prohibiting floating, or collision condition) and could
lent. Fig. 23 provides two histograms showing the distributid?® @ccomplished in 246 s versus 8.3 h using 82 MBytes versus
of the runtimes and memory use. As shown, the majority of ci?>/ MBytes for the new and old methods, respectively.
cuits can be compared within a few ten seconds using less than )

100 MBytes of memory. C. Formal Property Checking

3) Comparison of Combined Approach With Simple BDD For evaluating the effectiveness of the presented approach for

Sweeping:Next, we compare the presented comprehensiygoperty checking, we integrated the algorithms in a bounded
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Time in seconds TABLE 1l
‘ ' ' ' PERFORMANCE OFBOUNDED MODEL CHECKING FOR VARIOUS SWEEPING
. LIMITS FOR THE MARKED PROPERTY OFFIG. 25
10
BDD Graph Size SAT Search Performance
o Size # Vertices # Backtracks | Memory [kB]/
[ .. .
1 Limit Time [sec]
&< o T
2w 2 1669 967887 924 /1549.86
ITo 2! 1228 6563 4494 /10.21
X (1549.86,6.65) 22 1228 6563 4496 /10.43
82l x \ _ 23 1228 6563 4497/10.51
o3 = 2 1222 6221 4498 /9.43
58 . P 25 1211 5590 4501/8.59
: 3 > 26 1203 4396 4503 /6.65
g Lo < X 5 27 1188 4484 4504 /6.71
S0 * « x 28 1188 4484 4505 /6.80
gm x
[« X x
O x x 4 . Time in seconds
x 10 T T
-2 1 1 L L L il x
1010'2 107" 10° 10' 10° 10°
SAT only =) . (0.64,5.43)
£ 10 x x/ x X
5. c Y
Fig. 25. Comparison of the application of plain SAT versus the presentef < < X X
N . . . (/2] K ST TR 300 3
combined approach to prove unreachability in a bounded model checkirg B wxx e x
setting. 85 X x0x %o x
S ol x
=]
ol
model checking setting. Bounded model checking [21] is baseg £
. . . . .0
on a sequence of combinational property checks using a fini E 4o
unfolding of the design under verification. By systematicallyg Q"
increasing the unfolding depth from 1 to a bounded intdger
this approach checks whether the property can be disproved
a counter example of length or less. We implemented the 102 - L .
. . . 10 10 10 10 10
bounded model checking approach in a transformation-bast Random Simulation

tool setting. For proving a particular property, the design d%— - _ - lcation of rand e o

s . H i : 1g. . omparison of the application of random simulation versus the
scription is conyerted Into a bit-level m_atlls_t' ) . o presented combined approach to prove reachability of easy-to-hit properties
In our experimental setting the netlist is first simplified byn a bounded model checking setting.

iteratively applying a sequence of reduction engines including:

1) acombinational simplification engine based on the presenigshtain a large number of functionally identical nets that cannot
algorithm and 2) a retiming engine for sequential optimizatioe discovered by simple structural hashing. The efficient han-
[22]. The first engine eliminates functionally equivalent circuifiling of these cases demonstrates the significant robustness and
structures and removes redundant registers. The second eng#igatility of the presented approach. As anillustration, the plain
reduces the number of registers by applying an ILP-basg@plication of SAT search required 1550 s for proving the prop-
min-area retiming algorithm. After simplification the netlist iserty highlighted in Fig. 25; in contrast the combined approach
verified with the above mentioned bounded model checkinged only 7 s. Table Il shows the performances for various BDD
method by checking a sequence of SAT problems. sweeping limits and gives the corresponding compression of the
In the first experiment, we compared the effectiveness of tiyeaph structure.
presented approach, which combines structural and functionaln a second experiment, we evaluated the effectiveness of
hashing, BDD sweeping, and SAT against a plain application simulation in the presented setting. For this, we compared the
the SAT procedure only. Both methods work on the circuit gragilain application of random simulation [14] with an imple-
that was compressed by simple hashing only (as describedrigntation that includes hashing, BDD sweeping, and SAT. We
Section IlI-A). For this experiment we used 40 properties fromsed 396 easy-to-hit properties from the given set of designs.
the given set of designs that are boundedly correct (i.e., the targethis experiment, the unfolding depth varied between 6 and
states are not reachable within the given unfolding limit). In th@s time frames, depending on the depth of the counterexample.
experiment, the unfolding length varied between 6 and 25 timyge found that simulation significantly outperforms structured
frames. search techniques, such as SAT, in hitting reachable target
The results of the comparison are depicted in Fig. 25. Eastates. Fig. 26 illustrates the run times for random simulation
marker in the diagram represents a particular property and the@sus the combined approach. It reaffirms our view of using
position indicates the performances of the two approaches. giswulation to discharge easy to hit targets and utilizing more
shown, the combined approach is vastly superior, sometimegensive but exhaustive techniques such as BDD sweeping
by several orders of magnitude. This result is particularly irnd SAT to hit difficult targets, or to prove targets unreachable.
teresting because, in contrast to an application in equivalencén a last experiment, we selected 10 deep hard-to-hit prop-
checking, the unfolded circuit structure does not necessardsties from the given set of designs. None of these properties
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Fig. 27. Comparison of the application of plain SAT versus the presente(g ]
combined approach to prove reachability of hard-to-hit properties in a bounded
model checking setting. [15]

could be handled by the simulation approach used in the pre-
vious experiment. Here the unfolding depth varied between 179
to as much as 400 for some particularly hard satisfiable proper-
ties. Fig. 27 illustrates the run times for the combined approacﬂn
compared against an application of the SAT-solver alone. Again,
the combined approach vastly outperforms the use of SAT alon%g]

X. CONCLUSION [19]

In this paper, we presented a combination of techniques
for Boolean reasoning using structural transformations, BDO2Y]
sweeping, an SAT solver, and random simulation in a tigh{zy)
integration. All four methods work on a sharedD/INVERTER
graph representation of the problem and are invoked in an
intertwined manner. This unique integration results in a ro{22]
bust summation of their natively orthogonal strength. Using
an extensive set of industrial problems we demonstrate thggs)
effectiveness of the presented technique for a wide range of
applications.

The outlined approach is well suited for formal equivalence
checking. It is currently integrated in the equivalence checking
tool Verity [23], which has been used on numerous practical
microprocessor and ASIC designs within IBM. Nevertheless,
the presented reasoning method is equally applicable to other
CAD applications, such as logic synthesis, timing analysis, |
formal property checking.
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