
Model Checkingand theMu-calculusE. Allen EmersonUniversity of Texas at Austin, Austin, Tx 78712, USAAbstract. There is a growing recognition of the need to apply formalmathematical methods in the design of \high con�dence" computingsystems. Such systems operate in safety critical contexts (e.g., air traf-�c control systems) or where errors could have major adverse economicconsequences (e.g., banking networks). The problem is especially acutein the design of many reactive systems which must exhibit correct on-going behavior, yet are not amenable to thorough testing due to theirinherently nondeterministic nature. One useful approach for specifyingand reasoning about correctness of such systems is temporal logic modelchecking, which can provide an e�cient and expressive tool for automaticveri�cation that a �nite state system meets a correctness speci�cationformulated in temporal logic. We describe model checking algorithms anddiscuss their application. To do this, we focus attention on a particularlyimportant type of temporal logic known as the Mu-calculus.1 IntroductionThere is a growing need for reliable methods of designing correct reactive sys-tems. These systems are characterized by ongoing, typically nonterminating andhighly nondeterministic behavior. Often such systems amount to parallel or dis-tributed programs. Examples include operating systems, network protocols, andair tra�c control systems.There is nowadays widespread agreement that some type of temporal logic[Pn77] provides an extremely useful framework for reasoning about reactive pro-grams. Basic temporal operators such as \sometimes" (F ), \always" (G), and\nexttime" (X) make it possible to easily express many important correctnessproperties; e.g., G(sent ) F received) asserts that whenever a message is sent,it is eventually received.When we introduce \path quanti�ers" (A, E), meaning \for all possible fu-ture computations" and \for some possible future computation", respectively,we can distinguish between the inevitability of events (AFP ) and their poten-tiality (EFP ). Such a system is referred to as a branching time temporal logic.



One commonly used branching time logic is CTL (Computation Tree Logic) (cf.[EC80], [CE81]).Another branching time logic is the (propositional) Mu-calculus [Ko83] (cf.[EC80], [Pr81]). The Mu-calculus may be thought of as extending CTL witha least �xpoint (�) and greatest �xpoint (�) operator. We note that EFP �P _ EXEFP , so that EFP is a �xed point, also known as a �xpoint, of theexpression � (Y ) = P _ EXY . In fact, EFP is the least �xpoint, i.e., the leastY � P _ EXY . The least �xpoint of � (Y ) is ordinarily denoted as �Y:� (Y ).As this example suggests, not all of CTL is needed as a \basis" for the Mu-calculus, which can instead be de�ned in terms of atomic proposition constantsand variables (P; :::; ;Y; :::), boolean connectives (^;_;:), nexttime operators(AX;EX), and �nally least and greatest �xpoint operators (�; �). The rest ofthe CTL operators can be de�ned in terms of these surprisingly simple primitives.In fact, most modal and temporal logics of interest can be de�ned in terms ofthe Mu-calculus. In this way, it provides a single, simple and uniform frameworksubsuming most other logics of interest for reasoning about reactive systems (cf.[EL86]).The \classical" approach to the use of temporal logic for reasoning aboutreactive programs is a manual one, where one is obliged to construct by handa proof of program correctness using axioms and inference rules in a deductivesystem. A desirable aspect of some such proof systems is that they may be for-mulated so as to be \compositional", which facilitates development of a programhand in hand with its proof of correctness by systematically composing togetherproofs of constituent subprograms. Even so, manual proof construction can beextremely tedious and error prone, due to the large number of details that mustbe attended to. Hence, correct proofs for large programs are often very di�cultto construct and to organize in an intellectually manageable fashion. It seemsclear that it is unrealistic to expect manual proof construction to be feasiblefor large-scale reactive systems. For systems with millions or even just tens ofthousands of lines of codes, transcription and other clerical errors guarantee thatthe task of proof construction is beyond the ability of humans by themselves.Hence, we have historically advocated an alternative, automated approachto reasoning about reactive systems (cf. [Em81], [CE81]). One of the more usefulapproaches for specifying and reasoning about correctness of such systems hasturned out to be temporal logic model checking (cf. [CE81], [Em81], [QS82]),which can provide an e�cient and expressive tool for automatic veri�cationthat a �nite state reactive system meets a correctness speci�cation formulatedin propositional temporal logic. Empirically, it turns out that many systemsof interest either are or can be usefully modeled at some level of abstractionas �nite state systems. Moreover, the propositional fragment of temporal logic2



su�ces to specify their important correctness properties.1 The model checkingproblem can be formalized as:The Model Checking Problem - Given a �nite state transition graph M ,an initial state s0 of M , and a temporal logic speci�cation formula f ,does M; s0 j= f ? i.e., is M at s0 a model of f?Variant formulations of the model checking problem stipulate calculating the setof all such states s0 in M where f is true.The remainder of this paper is organized as follows: Section 2 de�nes theMu-calculus. Section 3 de�nes certain related logics including CTL. The ex-pressiveness of the Mu-calculus is discussed in section 4. Algorithms for modelchecking in the Mu-calculus are described in section 5. Section 6 gives someconcluding remarks.2 The Mu-calculusThe (propositional) Mu-Calculus (cf. [Pa70], [EC80], [Ko83]) provides a least�xpoint operator (�) and a greatest �xpoint operator (�), which make it possibleto give extremal �xpoint characterizations of correctness properties. Intuitively,the Mu-Calculus makes it possible to characterize the modalities in terms ofrecursively de�ned tree-like patterns. For example, the assertion that \alongall computation paths p will become true eventually" can be characterized as�Z:p_AXZ, the least �xpoint of the functional p_AXZ where Z is an atomicproposition variable (intuitively ranging over sets of states) and AX denotes theuniversal nexttime operator.We �rst give the formal de�nition of the Mu-Calculus.SyntaxThe formulae of the propositional Mu-Calculus L� are those generated by rules(1)-(6):(1) Atomic proposition constants P;Q(2) Atomic proposition variables Y; Z; : : :(3) EXp, where p is any formula.(4) :p, the negation of formula p.(5) p ^ q, the conjunction of formulae p; q.1 These two assertions are related. Most propositional temporal logics satisfy the �nitemodel property: if a speci�cation is satis�able, it has a �nite model which may beviewed as a system meeting the speci�cation.3



(6) �Y:p(Y ), where p(Y ) is any formula syntactically monotone in the proposi-tional variable Y , i.e., all occurrences of Y in p(Y ) fall under an even numberof negations.The set of formulae generated by the above rules forms the language L�.The other connectives are introduced as abbreviations in the usual way: p _ qabbreviates :(:p^:q), p) q abbreviates :p_q, p � q abbreviates p) q^q) p,AXp abbreviates :EX:p, �Y:p(Y ) abbreviates :�Y::p(:Y ), etc. Intuitively,�Y:p(Y ) (�Y:p(Y )) stands for the least (greatest, resp.) �xpoint of p(Y ), EXp(AXp) means p is true at some (every) successor state reachable from the currentstate, ^ means \and", etc. We use jpj to denote the length (i.e., number ofsymbols) of p.We say that a formula q is a subformula of a formula p provided that q, whenviewed as a sequence of symbols, is a substring of p. A subformula q of p is saidto be proper provided that q is not p itself. A top-level (or immediate) subformulais a maximal proper subformula. We use SF (p) to denote the set of subformulaeof p.The �xpoint operators � and � are somewhat analogous to the quanti�ers 9and 8. Each occurrence of a propositional variable Y in a subformula �Y:p(Y )(or �Y:p(Y )) of a formula is said to be bound. All other occurrence are free. Byrenaming variables if necessary we can assume that the expression �Y:p(Y ) (or�Y:p(Y )) occurs at most once for each Y .A sentence (or closed formula) is a formula that contains no free propositionalvariables, i.e., every variable is bound by either � or �. A formula is said to bein positive normal form (PNF) provided that no variable is quanti�ed twiceand all the negations are applied to atomic propositions only. Note that everyformula can be put in PNF by driving the negations in as deep as possibleusing DeMorgan's Laws and the dualities :�Y:p(Y ) = �Y::p(:Y );:�Y:p(Y ) =�Y::p(:Y ). (This can at most double the length of the formula). Subsentencesand proper subsentences are de�ned in the same way as subformulae and propersubformulae.Let � denote either � or �. If Y is a bound variable of formula p, there isa unique � or � subformula �Y:q(Y ) of p in which Y is quanti�ed. Denote thissubformula by �Y . Y is called a �-variable if �Y = �Y ; otherwise, Y is called a�-variable. A �-subformula (�-subsentence, resp.) is a subformula (subsentence)whose main connective is either � or �. We say that q is a top-level �-subformulaof p provided q is a proper �-subformula of p but not a proper �-subformula ofany other �-subformula of p. Finally, a basic modality is a �-sentence that hasno proper �-subsentences. 4



SemanticsWe are given a set � of atomic proposition constants and a set � of atomicproposition variables. We let AP denote � [ � . Sentences of the propositionalMu-Calculus L� are interpreted with respect to a structure M = (S;R; L) whereS is the set of states,R is a total binary relation � S � S (i.e., one where 8s 2 S9t 2 S(s; t) 2 R),andL: S ! 2AP is a labeling which associates with each state s a set L(s) consistingof all atomic proposition symbols in the underlying set of atomic propositionsAP intended to be true at state s.We may view M as a labeled, directed graph with node set S, arc set R, andnode labels given by L. The size of M , jM j = jSj + jRj, where jSj is the size ofthe state space S, the sum over s 2 S of the sizes of L(s), and jRj is the numberof transitions.The power set of S, 2S, may be viewed as the complete lattice (2S ; S; ;, �,[, \). Intuitively, we identify a predicate with the set of states which make ittrue. Thus, false, which corresponds to the empty set, is the bottom element,true, which corresponds to S is the top element, and implication (8s 2 S[P (s))Q(s)]), which corresponds to simple set-theoretic containment (P � Q), providesthe partial ordering on the lattice.Let functional � : 2S ! 2S be given; then we say that � (Y ) is monotonicprovided that P � Q implies � (P ) � � (Q). We say P 0 is a �xpoint of functional� (Y ) provided P 0 = � (P 0). Fixpoint P 0 is a least �xpoint provided that if P 00 is a�xpoint then P 0 � P 00. Note that any least �xpoint of � (Y ) is unique, since, if P 0and P 00 are least �xpoints, P 0 � P 00 and P 00 � P 0. We use �Y:� (Y ) to denote theleast �xpoint; analogously, �Y:� (Y ) denotes the greatest �xpoint. The existenceof these of these \extremal" �xpoints is guaranteed by the following.Theorem (Tarski-Knaster). Let � : 2S ! 2S be a monotonic functional.Then(a) �Y:� (Y ) = \ fY : � (Y ) = Y g = \ fY : � (Y ) � Y g,(b) �Y:� (Y ) = [ fY : � (Y ) = Y g = [ fY : � (Y ) � Y g,(c) �Y:� (Y ) = [i � i(false) where i ranges over all ordinals of cardinality atmost that of the state space S, so that when S is �nite i ranges over [0:jSj];�Y:� (Y ) is the union of the following ascending chain of approximations:false � � (false) � �2(false) : : : , and(d) �Y:� (Y ) = \i � i(true) where i ranges over all ordinals of cardinality atmost that of the state space S, so that when S is �nite i ranges over [0:jSj];�Y:� (Y ) is the intersection of the following descending chain of approxima-tions: true � � (true) � �2(true) : : :.5



A formula p with free variables Y1; : : : ; Yn is thus interpreted as a mappingpM from (2S)n to 2S , i.e., it is interpreted as a predicate transformer. We writep(Y1; : : : ; Yn) to denote that all free variables of p are among Y1; : : : ; Yn. A val-uation V, denoted (V1; : : : ; Vn), is an assignment of the subsets of S; V1; : : : ; Vn,to free variables Y1; : : : ; Yn, respectively. We use pM (V) to denote the value of pon the (actual) arguments V1; : : : ; Vn (cf. [EC80], [Ko83]). The operator pM isde�ned inductively as follows:(1) PM(V) = fs : s 2 S and P 2 L(s)g for any atomic propositional constantP 2 AP(2) YMi (V) = Vi(3) (p ^ q)M (V) = pM(V) \ qM(V)(4) (:p)M (V) = Sn(pM (V))(5) (EXp)M (V) = fs : 9t 2 pM(V); (s; t) 2 Rg(6) �Y1:p(Y1)M (V) = \fS0 � S : p(Y1)M (S0; V2; : : : ; Vn) � S0gNote that our syntactic restrictions on monotonicity ensure that least (aswell as greatest) �xpoints are well-de�ned.Usually we write M; s j= p (respectively, M; s j= p(V)) instead of s 2 pM(respectively, s 2 pM(V)) to mean that sentence (respectively, formula) p is truein structure M at state s (under valuation V). When M is understood, we writesimply s j= p.3 Temporal LogicsIn this section we de�ne three representative systems of propositional temporallogic. The system PLTL (Propositional Linear temporal logic) is the \standard"linear time temporal logic (cf. [Pn77], [MP92]). The branching time logic, CTL(Computational Tree Logic), allows basic temporal operators of the form: a pathquanti�er|either A (\for all futures") or E (\for some future"|followed by asingle one of the usual linear temporal operators G (\always"), F (\sometime"),X (\nexttime"), or U (\until") (cf. [CE81], [EC80]). Its syntactic restrictionslimit its expressive power so that, for example, correctness under fair schedulingassumptions cannot be expressed. We therefore also consider the much richerlanguage CTL*, which extends CTL by allowing basic temporal operators wherethe path quanti�er (A or E) is followed by an arbitrary linear time formula,allowing boolean combinations and nestings, over F , G, X, and U (cf. [EH86]).SyntaxWe now give a formal de�nition of the syntax of CTL*. We inductively de�nea class of state formulae (true or false of states) using rules S1-3 below and aclass of path formulae (true or false of paths) using rules P1-3 below:6



S1 Each atomic proposition P is a state formulaS2 If p; q are state formulae then so are p ^ q;:pS3 If p is a path formula then Ep;Ap are state formulaeP1 Each state formula is also a path formulaP2 If p; q are path formulae then so are p ^ q;:pP3 If p; q are path formulae then so are Xp; pUqThe set of state formulae generated by the above rules forms the languageCTL*. The other connectives can then be introduced as abbreviations in theusual way: p_ q abbreviates :(:p^:q), p) q abbreviates :p_ q, p � q abbre-viates p ) q ^ q ) p, Fp abbreviates trueUq, and Gp abbreviates :F:p. Wealso let 1F p abbreviate GFp (\in�nitely often"), 1G p abbreviate FGp (\almosteverywhere"), and (pBq) abbreviate :((:p)Uq) (\before").Remark:We could take the view that Ap abbreviates :E:p, and give a moreterse syntax in terms of just the primitive operators E;^;:; X; and U . However,the present approach makes it easier to give the syntax of the sublanguage CTLbelow.The restricted logic CTL is obtained by restricting the syntax to disallowboolean combinations and nestings of linear time operators. Formally, we replacerules P1-3 byP0 If p; q are state formulae then Xp; pUq are path formulae.The set of state formulae generated by rules S1-3 and P0 forms the languageCTL. The other boolean connectives are introduced as above while the othertemporal operators are de�ned as abbreviations as follows: EFp abbreviatesE(trueUp), AGp abbreviates :EF:p, AFp abbreviates A(trueUp), and EGpabbreviates :AF:p. (Note: this de�nition can be seen to be consistent withthat of CTL*.)Finally, the set of path formulae generated by rules S1,P1-3 de�ne the syntaxof the linear time logic PLTL.SemanticsA formula of CTL* is interpreted with respect to a structure M = (S;R; L) asis the Mu-calculus.A fullpath of M is an in�nite sequence s0; s1; s2; : : : of states such that 8i(si; si+1) 2 R. We use the convention that x = (s0; s1; s2; : : :) denotes a fullpath,and that xi denotes the su�x path (si; si+1; si+2; : : :). We write M; s0 j= p(respectively,M;x j= p) to mean that state formula p (respectively, path formulap) is true in structure M at state s0 (respectively, of fullpath x). We de�ne j=inductively as follows: 7



S1 M; s0 j= P i� P 2 L(s0)S2 M; s0 j= p ^ q i� M; s0 j= p and M; s0 j= qM; s0 j= :p i� it is not the case that M; s0 j= pS3 M; s0 j= Ep i� 9 fullpath x = (s0; s1; s2; : : :) in M , M;x j= pM; s0 j= Ap i� 8 fullpath x = (s0; s1; s2; : : :) in M , M;x j= pP1 M;x j= p i� M; s0 j= pP2 M;x j= p ^ q i� M;x j= p and M;x j= qM; x j= :p i� it is not the case that M;x j= :pP3 M;x j= pUq i� 9i [M;xi j= q and 8j (j < i implies M;xj j= p)]M;x j= Xp i� M;x1 j= pA formula of CTL is also interpreted using the CTL* semantics, using ruleP3 for path formulae generated by rule P0.Similarly, a formula of PLTL, which is a \pure path formula" of CTL* isinterpreted using the above CTL* semantics.We say that a state formula p (resp., path formula p) is valid provided that forevery structure M and every state s (resp., fullpath x) in M we have M; s j= p(resp.,M;x j= p). A state formula p (resp., path formula p) is satis�able providedthat for some structure M and some state s (resp., fullpath x) in M we haveM; s j= p (resp., M;x j= p).A formula of CTL* is a basic modality provided that it is of the form Ap orEp where p itself contains no A's or E's, i.e., p is an arbitrary formula of PLTL.Similarly, a basic modality of CTL is of the form Aq or Eq where q is one ofthe single linear temporal operators F , G, X, or U applied to pure propositionalarguments. A CTL* (respectively, CTL) formula can now be thought of as be-ing built up out of boolean combinations and nestings of basic modalities (andatomic propositions).4 ExpressivenessThe Mu-calculus is of considerable importance for several reasons, which, overall,relate to its expressiveness. First, the Mu-calculus provides a single, elegant, uni-form logical framework of great raw expressive power that subsumes most modaland temporal logics of programs, and related formalisms. Both CTL and CTL*can be translated into the Mu-calculus, as well as most other commonly usedmodal and temporal logics of programs. It can be shown that the Mu-calculus,over in�nite binary trees, coincides in expressive power with �nite state tree au-tomata; in fact, Mu-calculus formulas are really alternating �nite state automataon in�nite trees (cf. [EJ91]). Second, the semantics of the Mu-calculus is �rmlyanchored in the fundamental Tarski-Knaster theorem and the basic notion ofinductive de�nability. This provides a ready means to do model checking, i.e.,8



check whether a given structure de�nes a model of a given speci�cation as dis-cussed in the next section. Finally, the translation of most logics and formalismsturns out to require only small syntactic fragments of the Mu-calculus. This hasimplications for the complexity of model checking as also discussed in the nextsection.The above-mentioned syntactic fragments are determined by \alternationdepth" of a Mu-calculus formula. Intuitively, the alternation depth refers to thedepth of \signi�cant" nesting of alternating �'s and �'s. An alternation of eitherof the following forms is \insigni�cant"(�) �Y:f(Y; �Z:g(Z)) or �Y:f(Y; �Z:g(Z))as the inner �-formula is a sentence and is not in
uenced by the surrounding�-formula of opposite \polarity". In contrast, an alternation of either of thefollowing forms is signi�cant(��) �Y:f(�Z:g(Y; Z)) or �Y:f(�Z:g(Y; Z))as a free occurrence of � variable Y appears within the scope of �Z or a freeoccurrence of � Y occurs within the scope of a �Z.We can give the technical de�nition of the alternation depth ad(f) of formulaf as follows (cf. [EL86], [An93]). We assume that f is initially placed in positivenormal form.ad(P ) = ad(Y ) = 0 for atomic proposition constants P and variables Y .ad(f ^ g) = ad(f _ g) = max fad(f); ad(g)gad(:f) = ad(f)ad(�Y:f) = 1+max fad(�Z:g) : �Z:g is a subformula of fin which Y occurs free gad(�Y:f) = 1+max fad(�Z:g) : �Z:g is a subformula of fin which Y occurs free gLet L�k denote the Mu-Calculus L� restricted to formulas of alternationdepth at most k. Most modal or temporal logics of programs can be translatedinto L�1 or L�2, often succinctly (cf. [EL86]).For example, below we give characterizations of CTL basic modalities interms of least or greatest �xpoints. Note that each is a formula of L�1.EFP � �Z:P _EXZAGP � �Z:P ^AXZAFP � �Z:P _AXZEGP � �Z:P ^EXZA(P U Q) � �Z:Q_ (P ^AXZ)E(P U Q) � �Z:Q_ (P ^EXZ) 9



These �xpoint characterizations are simple and plausible. They also turn outto be important in applications as they underly the original CTL model checkingalgorithm of [CE81] as well as the \symbolic" approaches developed later anddiscussed in section 5.5.Below we sketch representative proofs of correctness for some of these �xpointcharacterizations (cf. [EC80], [EL86]). We assume that each proof is conductedin the context of an arbitrarily chosen underlying structure M .Proposition. EFP � �Z:P _EXZProof idea. Let g(Z) = P _EXZ. Then gi(false) corresponds to the set ofstates from which it is possible to reach a state satisfying P by a path of lengthat most i states. Plainly, s satis�es EFP i� s 2 gi(false) for some i. utProposition. AGP � �Z:P ^AXZ.Proof Idea.We use duality, interchanging the connective A with E, F withG, � with �, _ with wedge, and X with itself. Thus AGP is converted into itsdual EFP while �Z:P _EXZ is converted into its dual �Z:P^AXZ. The resultfollows by the preceeding proposition. utProposition. AFP � �Z:P _AXZ.Proof Idea. Establish the dual claim that EGP � �Z:P ^EXZ. Let f(Z)= P ^EXZ. First note that EGP is a �xpoint of f(Z), viz. EGP � f(EGP ).Now suppose Y is an arbitrary �xpoint of f(Z), so that Y � f(Y ). Let s0 be anarbitrary state of Y . As s0 2 Y , then by virtue of f , s0 is in (the set of statessatisfying) P . Moreover, s0 has a successor s1 2 Y . Apply to s1 the argument.We get an in�nite computation path comprised of consecutive states s0; s1; s2; : : :each of which is in Y and also satis�es P . This path witnesses the truth of EGPat s0. Thus every state in Y satis�es EGP and Y is a subset of (the set of statessatisfying) EGP . Hence, any �xpoint of f is a subset of EGP , which must bethe greatest �xpoint, thereby establish the dual claim. utThese �xpoint characterizations of CTL basic modalities provide the key fortranslating all of CTL into the Mu-calculus, viz., L�1 ([EC80], [EL86]). For in-stance, the CTL formulaAG(AFP ^EFQ) can be seen to be comprised of basicmodalities of the form EF , AF , and AG. Expanding the �xpoint characteri-zations and doing appropriate substitutions we get that AG(AFP ^ EFQ) ��Y:((�Z:P _AXZ) ^ (�Z0:Q_EXZ0)) ^AXY . Observe that the result is stillof alternation depth 1.The translation of CTL* into the Mu-calculus is more involved. Each basicmodality of CTL* is of the form Eh where h is a PLTL formula. After �rst beingconverted to an automaton on in�nite strings, h can be converted an equivalent!-regular expression h0 (cf. [ES83], [VW83]). Eh0 is readily rendered in L�2.This permits us to translate all of CTL* into L�2 as above [EL86].For example, if h is the temporal logic formula G(PUQ) the corresponding!-regular expression is (P �Q)!, denoting the set of all in�nite strings that are of10



this form: an (!) in�nite repetition of �nite strings comprised of �nitely manyconsecutive P 's followed by a single Q. Then E((P �Q)!) � �Y:�Z:(Q^EXY )_(P ^EXZ). If we take P to be true, this property simpli�es, in !-regular expres-sion notation, to E(true�Q)!. This is equivalent to E1FQ meaning \along somepath Q occurs in�nitely often", whose �xpoint characterization may be simpli-�ed to �Y:�Z:EX(Q^ Y _Z) in L�2. As suggested , such properties associatedwith fairness can be expressed in alternation depth 2. In fact, they require alter-nation depth 2. It can be shown that E1FQ is not expressible by any alternationdepth 1 formula (cf. [EC80] [EL86]).The existence of these translations witnesses the generality of the Mu-calculus.The translations are important in practice because correctness speci�cationswritten in logics such as CTL or CTL* are often more readable than speci�ca-tions written directly in the Mu-calculus. In fact, it turns out to be rather easy towrite down highly inscrutable Mu-calculus formulae for which there is no readilyapparent intuition regarding their intended meaning. Since Mu-calculus formulaare really alternating tree automata, perhaps this is not so surprising. After all,even such basic automata as deterministic �nite state automata on �nite stringscan be highly complex, incomprehensible \bowls of spaghetti". On the otherhand, many Mu-calculus characterizations of correctness properties are elegant,and the formalism seems to have found increasing favor, especially in Europe,owing to its simple and elegant underlying mathematical structure. In any event,many people �nd that the translations serve to \tame" the Mu-calculus, makingits expressive power more useful.For many years it was not known if the higher alternation depths form atrue hierarchy of expressive power. Recently, a�rmative solutions to this openproblem were reported in [Br96] and [Le96]. In practice, it seems to make littledi�erence, since it does appear that everything practical is in alternation depth2. However, it is of theoretical interest. Moreover, the question has some bearingon the complexity of model checking in the overall Mu-calculus as discussednext.5 Model CheckingWhat has turned out to be one of the more useful techniques for automated rea-soning about reactive systems began with the advent of e�cient temporal logicmodel checking [CE81] (cf. [Em81], [QS82], [CES86]). The basic idea is that theglobal state transition graph of a �nite state reactive system de�nes a (Kripke)structure in the sense of temporal logic (cf. [Pn77]), and we can give an e�cientalgorithm for checking if the state graph de�nes a model of a given speci�cationexpressed in an appropriate temporal logic. While earlier work in the protocolcommunity had addressed the problem of analysis of simple reachability prop-11



erties, model checking provided an expressive, uniform speci�cation language inthe form of temporal logic along with a single, e�cient veri�cation algorithmwhich automatically handled a wide variety of correctness properties.5.1 Taxonomy of Model Checking ApproachesIt is possible to give a rough taxonomy of model checking methods according tocertain criteria:Explicit State Representation versus Symbolic State Representation. In theexplicit state approach the Kripke structure is represented extensionally usingconventional data structures such as adjacency matrices and linked lists so thateach state and transition is enumerated explicitly. In contrast, in the symbolicapproach boolean expressions denote large Kripke structures implicitly. Typi-cally, the data structure involved is that of Binary Decision Diagrams (BDDs),which can, in many applications, although not always, manipulate boolean ex-pressions denoting large sets of states e�ciently.The distinction between explicit state and symbolic representations is to alarge extent an implementation issue rather than a conceptual one. The originalmodel checking method was based on an algorithm for �xpoint computation itwas implemented using explicit state representation. The subsequent symbolicmodel checking method uses the same �xpoint computation algorithm, but nowrepresents sets of states implicitly. However, the succinctness of BDD data struc-tures underlying the implementation can make a signi�cant practical di�erence.Global Calculation versus Local Search. In the global approach, we are givena structure M and formula f . The algorithm calculates fM = fs : M; s j= fg,the set of all states in M where f is true. This necessarily entails examining theentire structure. Global algorithms typically proceed by induction on the formulastructure, calculating gM for the various subformulae g of f . The algorithm canbe presented in recursive form; as the recursion \unwinds" the values of theshortest subformula are calculated �rst, then the next shortest, etc.In contrast, in the local approach, we are given a speci�c state s0 in M alongwith M and f . We wish to determine whether M; s0 j= f . The computationproceeds by performing a search of M starting at s0. The potential advantageis that, many times in practice, only a portion of M may need to be examinedto settle the question. In the worst case, however, it may still be necessary toexamine all of M . (cf. [SW89]).Monolithic Structures versus Incremental Algorithms. To some extent this isalso more of an implementation issue than a conceptual one. Again, however,it can have signi�cant practical consequences. In the monolithic approach, theentire structure M is built and represented at one time in computer memory.While conceptually simple and consistent with standard conventions for judgingthe complexity of graph algorithms, in practice this may be highly undesirable12



because the entire graph of M may not �t in computer memory at once. Incontrast, the incremental approach (also referred to as the \on-the-
y" or \on-line" approach) entails building and storing only small portions of the graph ofM at any one time (cf. [JT89]).5.2 Extensional Model Checking AlgorithmsTechnically, the Tarski-Knaster theorem can be understood as providing a sys-tematic basis for model checking. The speci�cations can be formulated in theMu-calculus or in other logics such as CTL which, as noted above, are readilytranslatable into the Mu-calculus. For example, to calculate the states wherethe CTL basic modality EFP holds in structure M = (S;R; L), we use the �x-point characterization EFP � �Z:� (Z), with � (Z) � P _EXZ. We successivelycalculate the ascending chain of approximations� (false) � �2(false) � : : : � �k(false)for the least k � jSj such that �k(false) = �k+1(false). The intuition hereis just that each � i(false) corresponds to the set of states which can reach Pwithin at most distance i; thus, P is reachable from state s i� P is reachablewithin i steps from s for some i less than the size of M i� s 2 � i(false) for somesuch i less than the size of M . This idea can be easily generalized to provide astraightforward model checking algorithm for all of CTL and even the entire Mu-calculus. The Tarski-Knaster theorem handles the basic modalities. Compoundformulae built up by nesting and boolean combinations are handled by recursivedescent.Iterative Fixpoint Algorithms. Building on this simple idea of iterative �x-point calculation using the Tarski-Knaster Theorem, we can get a number ofsuccessively faster (global) model checking algorithms.Naive Algorithm. We give below an algorithm to calculate, given structureM , formula f , and valuation V, set(f) = fs :M; s j= f(V)g, the set of states inM where formula f is true under valuation V.A straightforward implementation runs in time complexity O((jM jjf j)k+1)for input structure M and input formula p with �; � formulas nested k deep.Basic Algorithm.The naive algorithm can be signi�cantly improved by utiliz-ing the monotonicity among consecutive least �xpoints and consecutive greatest�xpoints, together with a simple generalization of the Tarski-Knaster theorem.The original algorithm for model checking in the Mu-calculus (cf. [EL86]) ex-ploited this basic optimization. 13



Initialize all atomic proposition constants P and variables Y :set(P ) := fs :M;s j= Pg;set(Y ) :=V(Y );Inductively calculate set(f) usingrecursive procedure set(f)case on the form of f :f = P : return set(f) unchanged;f = Y : return Y unchanged;f = EXg : return set(f) := fs : 9t 2 S (s; t) 2 R and t 2 set(g)g;f = AXg : return set(f) := fs : 8t 2 S (s; t) 2 R implies M; t 2 set(g)g;f = g ^ h : return set(f) := set(g) \ set(h);f = g _ h : return set(f) := set(g) [ set(h);f = :g : return set(f) := S n set(g);f = �Y:g(Y ) : [ Y := false;repeatY 0 := Y ;Y := set(g(Y ));until Y 0 = Y ;return set(f) := Y ]f = �Y:g(Y ) : [ Y := true;repeatY 0 := Y ;Y := set(g(Y ));until Y 0 = Y ;return set(f) := Y ]endcase Fig. 1. The Naive AlgorithmTheorem (Generalized Tarski-Knaster). Let � : 2S ! 2S be a monotonicfunctional. Then(a) �Y:� (Y ) = [i � i(Y0) for any Y0 � � (Y0) \ �Y:� (Y ), where i ranges over allordinals of cardinality at most that of the state space S, so that when S is�nite i ranges over [0:jSj]; �Y:� (Y ) is the union of the following ascendingchain of approximations:Y0 � � (Y0) � �2(Y0) : : : , and(b) �Y:� (Y ) = \i � i(Y0) for any Y0 � � (Y0) \ �Y:� (Y ), where i ranges overall ordinals of cardinality at most that of the state space S, so that whenS is �nite i ranges over [0:jSj]; �Y:� (Y ) is the intersection of the followingdescending chain of approximations: Y0 � � (Y0) � �2(Y0) : : :.14



Let us �rst consider a formula with alternating �'s and �'s. For example,�Y:f(Y; �Z:g(Y; Z)) can take jM j iterations of Y . Initially, Y 0 = true. Each sub-sequent iteration Y i+1 = f(Y i; �Z:g(Y i; Z)) involves calculating an ascendingchain of iterations of Z, starting with Z = false, of length up to jM j. Thus, intotal, Z is iterated jM j2 times.Now, consider �Y:f(Y; �Z:g(Y; Z)) where there are consecutive nested �'s,but no alternation of �'s and �'s. It can be computed as above, resetting Zto false each time the outer Y changes. In the above case, this resetting isapparently essential because Y is shrinking while Z is growing. In this case,however, monotonicity ensures that both Y and Z are growing, so that it isunnecessary to reset Z to false when Z changes. LetY 0 = falseY i+1 = f(Y i; �Z:g(Y i; Z))Zi;0 = the initial value of Z in the context of Y iZi;j+1 = g(Y i; Zj)We use Y ! to denote the �rst Y i = Y i+1 where Y stabilizes, and similarlyfor Zi;!.The computation proceeds as follows. Y 0; Z0;0 = false initially. To computeY 1 = f(Y 0; �Z:g(Y 0; Z)), one computes �Z:g(Y 0; Z) as the limit Z0;! of theascending chain of approximations false = Z0;0 � Z0;1 � : : : � Z0;! = Z0;!+1and then applies f . To compute, Y 2 = f(Y 1; �Z:g(Y 1; Z)), one must compute�Z:g(Y 1; Z). One way to do this entails simply computing an ascending chainof approximations false = Z1;0 � Z;1 � : : : � Z1;! = Z1;!+1 and then ap-plies f , having reinitialized Z to false. However, since Y 0 � Y 1, by mono-tonicity Z0;! = �Z:g(Y 0; Z) � �Z:g(Y 1; Z). Moreover, Z0;! = g(Y 0; Z0;!) �g(Y 1; Z0;!). Hence, by the generalized Tarski-Knaster Theorem we are permit-ted to start the computation of �Z:g(Y 1; Z) with Z1;0 = Z0;!. In general, wehave �Z:g(Y i; Z) � �Z:g(Y i+1; Z) and Zi;! = g(Y i; Zi;!) � g(Y i+1; Zi;!). sothat we can take Zi+1;0 = Zi;!. On this basis, we see that not only are at mostjM j iterations required for Y but also at most jM j iterations for Z.This algorithm can be straightforwardly implemented to run in timeO((jM j �jf j)ad+1) and space O(jM j � jf j). This can be improved to O((jM j � jf j)ad) byavoiding redundant computation, computing the successive di�erences Y i+1 nY i). 2Deluxe Algorithm. More extensive monotonicity considerations can be ex-ploited (cf. [Lo+94]) for yet more improvement. The key idea is that in a formulaf such as �Y1:�Z1:�Y2:�Z2: : : :�Yn:g(Y1; Z1; Y2; Z2; : : : ; Yn)of alternation depth ad = 2n� 1 the � variables turn out to be monotonic with2 With better accounting we can obtain sharper multi-parameter bounds such asO(jSjad�1 � jRj � jf j) , but these are adequate for our exposition.15



respect to each other, and the innermost � variable is monotonic in its variousinstantiations. For instance, in computing the formula�Y1:�Z1:�Y2:g(Y1; Z2; Y2),with ad = 3, we have �Y2:g(Y i1 ; Zi;j1 ; Y2) � �Y2:g(Y i+11 ; Zi+1;j1 ; Y2) and we canavoid reinitializing Y2 by taking Y i+1;02 = Y i;!2 . What varies as the computationproceeds are the number of iterations of surrounding � variables. For a �xedtuple of � variable indices, the number of iterations of the innermost � variableis jM j. The number of such tuples is about jM jad=2. So the dominant term in thecomplexity corresponds to about jM j1+ad=2 iterations. This can be implementedto run in time at most O((jM j � jf j)2+ad=2). However, a careful examinationreveals that an exponential number of intermediate results, roughly proportionalto the number of tuples of � indices must be stored. Thus the space complexityis also exponential.While this algorithm is of theoretical interest, it should be noted that thetime complexity is still (jM j � jf j)O(ad) as is the basic algorithm above. Moreover,the exponential space complexity here does not compare favorably with the poly-nomial space complexity of the basic algorithm. Exponential space complexityis especially problematic, in practice, because it is usually the space complexityrather than the time complexity that is the limiting factor. For most applica-tions, if the computation will not even �t within main computer memory, thenperforming it quickly is out of the question. For formulas of alternation depth1 or 2, this algorithm thus yields no advantage. Since no practical example ofa correctness property requiring alternation depth 3 or more is known, it is notclear that there is ever an actual situation where the algorithm could be helpful.Still, it provides mathematical insight into the nature of the Mu-calculus.Other Algorithms. There are a variety of other types of (extensional) modelchecking algorithms which we will just brie
y discuss. In contrast to the \bottomup" iterative approaches above, which are associated with global model checking,in which satisfaction of �xpoints radiates outward, we also have \top down"approaches which are associated with local model checking. For instance, givena speci�c state s0 in structure M , if we wish to know whether M; s0 j= AFQ,we perform a depth �rst search starting at s0 keeping on the stack the sequenceof states visited; if a cycle is detected without seeing Q then AFQ is false.Otherwise, the search will eventually return AFQ to be true.A related approach is to form the product of jM j with the syntax diagram ofjf j and view the result as a tree automaton. Then test the tree automaton fornonemptiness. Testing it for nonemptiness, can be done by model checking cer-tain restricted formulas [EJS93] (cf. [BVW94]). The tree automaton approachcaptures the essence of the boolean graph approach (cf. [CS93], [An93]), sincethe boolean AND/OR graphs correspond to the transition diagrams of tree au-tomata. 16



5.3 Complexity of Explicit State Model CheckingThe complexity results we summarize here are for explicit state model checking.The best known algorithm corresponds to the deluxe algorithm above. It is expo-nential time in the worst case, but polynomial time for any bounded alternationdepth. Since all practical correctness properties seem to be of alternation depth1 or 2, we have a low order polynomial time algorithm as explained above.Litchenstein and Pnueli advanced the following argument (cf. [LP85]): inpractice, it is typically the structure size rather than the formula size that is thedominant factor in the complexity, because structures are usually extremely largewhile speci�cations are often rather short. Hence, it is highly desirable to havean algorithm whose complexity grows linearly in the structure size, while evenexponential growth in the speci�cation size may be tolerable. For CTL and L�1,we can get algorithms of time and space complexityO(jM j�jf j) which is linear inthe size of both inputs (cf. [CES86], [CS93]). For CTL* the problem is PSPACE-complete, and we can get a model checker of time complexity O(jM j � exp(jf j))[EL85] (cf. [LP85]).Among signi�cant unsolved problems with practical implications we thushave:Open Question. Is there a model checking algorithm for L�2 that runs intime linear in the structure size?Finally, terms of complexity classes, we have this following result [EJS93] (cf.[BVW94], [Lo+94], [Va95]):Proposition.Model checking in the Mu-calculus is in NP \ co-NP.Proof idea.Given structure M and formula f guess an annotation ofM withthe subformulae of f true at each state; this annotation also provides a \rank" foreach � variable Y indicating how many times the associated �-formula �Y:g(Y ),is unwound. These ranks correspond to the indices in the Tarski-Knaster se-quence of approximations. Thus, we might have ranked � variable Y 5, which isequivalent to g(Y 4), at state s depending on Y 4, equivalent to g(Y 3), at state tdepending on Y 3 at state u and so forth; the \depending on" relation should bewell-founded as �Y:g(Y ) is a least �xpoint and can only be unwound a a bounded(viz. jM j) times. In general the ranks will be tuples of natural numbers; eachtuple is of length at most jf j and each tuple component is a natural number ofvalue at most jM j. The ranks are ordered lexicographically. After guessing theranked, threaded annotation simply verify that it is well-founded. This showsmembership in NP. Membership in co-NP follows from the fact that the Mu-calculus is trivially closed under complementation. utOpen Question. Is there a polynomial model checking algorithm for the(entire) Mu-calculus (over extensionally represented structures)?17



5.4 State ExplosionWe emphasize that the above discussion focuses on extensional model checking,where it is assumed that the structure M including all of its nodes and arcsexplicitly represented using data structures such as adjacency lists or adjacencymatrices. An obvious limitation then is the combinatorial state explosion prob-lem. Given a reactive system composed on n sequential processes running inparallel, its global state graph will be essentially the product of the individuallocal process state graphs. The number of global states thus grows exponentiallyin n. For particular systems it may happen that the �nal global state graph is ofa tractable size, say a few hundred thousand states plus transitions. A number ofpractical systems can be modeled at a useful level of abstraction by state graphsof this size, and extensional model checking can be a helpful tool.On the other hand, it can quickly become infeasible to represent the globalstate graph for large n. Even a banking network with 100 automatic teller ma-chines each having just 10 local states, could yield a global state graph of astro-nomical size amounting to about 10100 states.Plainly, for such astronomical size systems it is out of the question to performmodel checking over them even using algorithms that run in time and space linearin the size of the state space. Various approaches to ameliorating state explo-sion are currently under investigations. One approach is to use abstraction. Thebasic idea here is to replace a large, detailed system M by a small, less detailedsystem M 0 where inessential information has been suppressed. If an appropriatecorrespondence between the large and small systems can be established, thencorrectness of the small system may be used to ensure correctness of the largesystem. For instance, suppose there is a homomorphismh :M �! M 0 such thats and h(s) agree on atomic propositions in linear time formula f and such that ifs! t is a transition in M then h(s) ! h(t) is a transition in M 0. We may thenconclude that if there is a path satisfying :f in M then there is an image pathsatisfying :f in M 0. Hence, if in the small system M 0; h(s0) j= Af then in thelarge system M; s0 j= Af . Another approach is to represent transition relationsand sets of states symbolically as decribed below.5.5 Symbolic ApproachesA noteworthy advance has been the introduction of symbolic model checkingtechniques (cf. [McM92], [BCMDH90], [Pi90], [CM90]) which are { in practice{ often able to succinctly represent and model check over state graphs of size10100 states and even considerably larger. The basic algorithms used for sym-bolic model checking are the same as those used for extensional model checking,and are based on iterative calculation of (a representation of) the set of stateswhere each temporal basic modality holds using �xpoint computation justi�ed18



by the Tarski-Knaster Theorem. The key distinction is that the state graph ofthe Kripke structure and sets of states where formulae are true in it are repre-sented in terms of a boolean characteristic function which is in turn representedby an (ordered) Binary Decision Diagram (BDD) (cf. [Br86]). These BDDs canin practice be extremely succinct. BDD-based model checkers have been remark-ably e�ective and useful for debugging and veri�cation of hardware circuits. Forreasons not well understood, BDDs are often able to exploit the regularity that isreadily apparent even to the human eye in many hardware designs. Because soft-ware typically lacks this regularity, BDD-based model checking seems much lesshelpful for software veri�cation. We refer the reader to [McM92] for an extendedaccount of the utility of BDDs in hardware veri�cation.It should be emphasized, however, that BDD based model checking methods,are, in worst case, still intractably ine�cient. On the one hand, for some struc-tures M of astronomical size there are small BDDs representing them, and thisis exploited in applications as noted above. But for other structures M , some-times those derived from applications such as software, the BDD representationis intractably large. Plainly, a counting argument shows that most structures donot have a small BDD representation. In any event, checking simple graph reach-ability in a structure M , e. g. M; s0 j= EFQ where M is represented by a BDDis PSPACE-complete (cf. [GW83], [Br86]). The disparity between theoretical,worst case results for symbolic checking and its surprisingly good performancein practice, has so far militated against the development of an associated com-plexity theory for this application.5.6 Debugging versus Veri�cationModel checkers are a type of decision procedure and provide yes/no answers. Itturns out that, in practice, model checkers are often used for debugging as wellas veri�cation. In industrial environments it seems that the capacity of a modelchecker to function as a debugger is perhaps better appreciated than their utilityas a tool for verifying correctness.Consider the empirical fact that most designs are initially wrong and mustgo through a sequence of corrections/re�nements before a truly correct design is�nally achieved. Suppose one aspect of correctness that we wish to check is thata simple invariance property of the form AGgood holds provided the system Mis started in the obviously good initial state s0. It seems quite likely that theinvariance may in fact not hold of the initial faulty design due to conceptuallyminor but tricky errors in the �ne details. Thus, during many iterations of thedesign process, we have that in fact M; s0 j= EF:good .It would be desirable to circumvent the global strategy of examining all ofM to calculate the set EF:goodM and then checking whether s0 is a member ofthat set. If there does exist a :good state reachable from s0, once it is detected it19



is no longer necessary to continue the search examiningM . This is the heuristicmotivating local model checking algorithms. Many of them involve searchingfrom the start state s0 looking for con�rming or refuting states or cycles; oncefound, the algorithm can terminate often \prematurely" having determined thatthe formula must be true or must be false at s0 on the basis of the portion Mexamined during the limited search.Of course, it may be that all states must be examined before �nding a refu-tation to AGgood . Certainly, once a truly correct design is achieved, all statesreachable from s0 must be examined. But in many practical cases, a refutationmay be found quickly after limited search.We note in passing that some symbolic model checkers have been adapted toprovide some sort of counter example facility for debugging.6 ConclusionReactive systems are becoming increasingly important in our society. There isan undeniable and growing need to �nd e�ective methods of constructing cor-rect reactive systems. One factor these systems have in common beyond theirnondeterministic, ongoing, reactive nature is that they are highly complex, eventhough they are typically �nite state. While it may be relatively easy to expressinformally and in general terms what such a system is supposed to do (e.g., pro-vide an air tra�c control system), it appears quite di�cult to provide a formalspeci�cation of correct behavior and to prove that the implementation actuallysatis�es the speci�cation. The Mu-calculus and associated temporal logics suchas CTL provide a good handle on precisely stating just what behavior is to occurwhen, at a variety of levels of detail. The fully automated type of reasoning pro-vided by model checking provides a convenient tool for both verifying correctnessand for automatic debugging. Moreover, a number of interesting mathematicalproblems arise in connection with model checking in the Mu-calculus.Acknowledgments This work was supported in part by NSF grant CCR-9415496 and by SRC contract 95-DP-388.We thank Neil Immerman,Kedar Namjoshi, Richard Tre
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