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Abstract. There is a growing recognition of the need to apply formal
mathematical methods in the design of “high confidence” computing
systems. Such systems operate in safety critical contexts (e.g., air traf-
fic control systems) or where errors could have major adverse economic
consequences (e.g., banking networks). The problem is especially acute
in the design of many reactive systems which must exhibit correct on-
going behavior, yet are not amenable to thorough testing due to their
inherently nondeterministic nature. One useful approach for specifying
and reasoning about correctness of such systems is temporal logic model
checking, which can provide an efficient and expressive tool for automatic
verification that a finite state system meets a correctness specification
formulated in temporal logic. We describe model checking algorithms and
discuss their application. To do this, we focus attention on a particularly

important type of temporal logic known as the Mu-calculus.

1 Introduction

There is a growing need for reliable methods of designing correct reactive sys-
tems. These systems are characterized by ongoing, typically nonterminating and
highly nondeterministic behavior. Often such systems amount to parallel or dis-
tributed programs. Examples include operating systems, network protocols, and
air traffic control systems.

There is nowadays widespread agreement that some type of temporal logic
[Pn77] provides an extremely useful framework for reasoning about reactive pro-
grams. Basic temporal operators such as “sometimes” (F), “always” (G), and
“nexttime” (X) make it possible to easily express many important correctness
properties; e.g., G(sent = Freceived) asserts that whenever a message is sent,
it 1s eventually received.

When we introduce “path quantifiers” (A, E), meaning “for all possible fu-
ture computations” and “for some possible future computation”, respectively,
we can distinguish between the inevitability of events (AF P) and their poten-
tiality (EF P). Such a system is referred to as a branching time temporal logic.



One commonly used branching time logic is CTL (Computation Tree Logic) (cf.
[EC80], [CE&1]).

Another branching time logic is the (propositional) Mu-calculus [Ko83] (cf.
[EC80], [Pr81]). The Mu-calculus may be thought of as extending CTL with
a least fixpoint (¢) and greatest fixpoint (v) operator. We note that EFP =
PV EXEFP, so that EFP is a fixed point, also known as a fixpoint, of the
expression 7(Y) = PV EXY. In fact, EF P is the least fixpoint, i.e., the least
Y = PV EXY. The least fixpoint of 7(Y) is ordinarily denoted as pY.r (V).
As this example suggests, not all of CTL is needed as a “basis” for the Mu-
calculus, which can instead be defined in terms of atomic proposition constants
and variables (P, ...,;Y,...), boolean connectives (A,V, =), nexttime operators
(AX, FX), and finally least and greatest fixpoint operators (u,v). The rest of
the CTL operators can be defined in terms of these surprisingly simple primitives.
In fact, most modal and temporal logics of interest can be defined in terms of
the Mu-calculus. In this way, it provides a single, simple and uniform framework
subsuming most other logics of interest for reasoning about reactive systems (cf.

[EL86]).

The “classical” approach to the use of temporal logic for reasoning about
reactive programs is a manual one, where one is obliged to construct by hand
a proof of program correctness using axioms and inference rules in a deductive
system. A desirable aspect of some such proof systems is that they may be for-
mulated so as to be “compositional”, which facilitates development of a program
hand in hand with its proof of correctness by systematically composing together
proofs of constituent subprograms. Even so, manual proof construction can be
extremely tedious and error prone, due to the large number of details that must
be attended to. Hence, correct proofs for large programs are often very difficult
to construct and to organize in an intellectually manageable fashion. It seems
clear that it is unrealistic to expect manual proof construction to be feasible
for large-scale reactive systems. For systems with millions or even just tens of
thousands of lines of codes, transcription and other clerical errors guarantee that
the task of proof construction is beyond the ability of humans by themselves.

Hence, we have historically advocated an alternative, automated approach
to reasoning about reactive systems (cf. [Em81], [CE81]). One of the more useful
approaches for specifying and reasoning about correctness of such systems has
turned out to be temporal logic model checking (cf. [CE81], [Em81], [QS82]),
which can provide an efficient and expressive tool for automatic verification
that a finite state reactive system meets a correctness specification formulated
in propositional temporal logic. Empirically, it turns out that many systems
of interest either are or can be usefully modeled at some level of abstraction
as finite state systems. Moreover, the propositional fragment of temporal logic



suffices to specify their important correctness properties." The model checking
problem can be formalized as:

The Model Checking Problem - Given a finite state transition graph M,
an initial state sy of M, and a temporal logic specification formula f,
does M,so = f 7i.e.,is M at sp a model of f7?

Variant formulations of the model checking problem stipulate calculating the set
of all such states sg in M where f is true.

The remainder of this paper is organized as follows: Section 2 defines the
Mu-calculus. Section 3 defines certain related logics including CTL. The ex-
pressiveness of the Mu-calculus is discussed in section 4. Algorithms for model
checking in the Mu-calculus are described in section 5. Section 6 gives some
concluding remarks.

2 The Mu-calculus

The (propositional) Mu-Calculus (cf. [Pa70], [EC80], [Ko83]) provides a least
firpoint operator (p) and a greatest fixpoint operator (v), which make it possible
to give extremal fizpoint characterizations of correctness properties. Intuitively,
the Mu-Calculus makes it possible to characterize the modalities in terms of
recursively defined tree-like patterns. For example, the assertion that “along
all computation paths p will become true eventually” can be characterized as
uZ.pV AXZ, the least fixpoint of the functional pV AXZ where 7 is an atomic
proposition variable (intuitively ranging over sets of states) and AX denotes the
universal nexttime operator.
We first give the formal definition of the Mu-Calculus.

Syntax

The formulae of the propositional Mu-Calculus Ly are those generated by rules

(1)-(6):

(1) Atomic proposition constants P, Q)

(2) Atomic proposition variables Y, 7, . ..
(3) EXp, where p is any formula.

(4) —p, the negation of formula p.

(5) p A q, the conjunction of formulae p, q.

! These two assertions are related. Most propositional temporal logics satisfy the finite
model property: if a specification is satisfiable, it has a finite model which may be

viewed as a system meeting the specification.



(6) uY.p(Y), where p(Y) is any formula syntactically monotone in the proposi-
tional variable Y, i.e., all occurrences of Y in p(Y") fall under an even number
of negations.

The set of formulae generated by the above rules forms the language Lpu.
The other connectives are introduced as abbreviations in the usual way: p V ¢
abbreviates =(—pA—g), p = ¢ abbreviates —pVq, p = ¢ abbreviates p = ¢Aq = p,
AXp abbreviates “EX-p, vY.p(Y) abbreviates —uY.—p(—Y), etc. Intuitively,
pY.p(Y) (vY.p(Y)) stands for the least (greatest, resp.) fixpoint of p(Y), EXp
(AXp) means p is true at some (every) successor state reachable from the current
state, A means “and”, etc. We use [p| to denote the length (i.e., number of
symbols) of p.

We say that a formula ¢ is a subformula of a formula p provided that ¢, when
viewed as a sequence of symbols; is a substring of p. A subformula ¢ of p is said
to be proper provided that ¢ is not pitself. A top-level (or immediate) subformula
is a maximal proper subformula. We use SF(p) to denote the set of subformulae
of p.

The fixpoint operators ¢ and v are somewhat analogous to the quantifiers 3
and V. Each occurrence of a propositional variable Y in a subformula pY.p(Y)
(or vY.p(Y)) of a formula is said to be bound. All other occurrence are free. By
renaming variables if necessary we can assume that the expression pY.p(Y) (or
vY.p(Y)) occurs at most once for each Y.

A sentence (or closed formula) is a formula that contains no free propositional
variables; i.e., every variable 1s bound by either g or v. A formula is said to be
in positive normal form (PNF) provided that no variable is quantified twice
and all the negations are applied to atomic propositions only. Note that every
formula can be put in PNF by driving the negations in as deep as possible
using DeMorgan’s Laws and the dualities —pY.p(Y) = vY.—p(=Y), wYp(Y) =
#Y.—p(2Y). (This can at most double the length of the formula). Subsentences
and proper subsentences are defined in the same way as subformulae and proper
subformulae.

Let ¢ denote either p or v. If Y is a bound variable of formula p, there is
a unique g or v subformula oY.q(Y") of p in which Y is quantified. Denote this
subformula by oY . Y 1s called a p-variable if Y = uY'; otherwise, Y is called a
v-variable. A o-subformula (o-subsentence, resp.) is a subformula (subsentence)
whose main connective is either g or v. We say that ¢ is a top-level o-subformula
of p provided ¢ is a proper o-subformula of p but not a proper o-subformula of
any other o-subformula of p. Finally, a basic modality is a o-sentence that has
no proper o-subsentences.



Semantics

We are given a set X of atomic proposition constants and a set I' of atomic
proposition variables. We let AP denote X' U I'. Sentences of the propositional
Mu-Calculus Ly are interpreted with respect to a structure M = (S, R, L) where

S is the set of states,

R is a total binary relation C S x S (i.e., one where ¥s € S3t € S(s,t) € R),
and

L: S — 2% is a labeling which associates with each state s a set L(s) consisting
of all atomic proposition symbols in the underlying set of atomic propositions
AP intended to be true at state s.

We may view M as a labeled, directed graph with node set S, arc set R, and
node labels given by L. The size of M, | M| = |S| + |R|, where |S| is the size of
the state space S, the sum over s € S of the sizes of L(s), and |R] is the number
of transitions.

The power set of S, 2° may be viewed as the complete lattice (2°, 5,0, C,
U, N). Intuitively, we identify a predicate with the set of states which make it
true. Thus, false, which corresponds to the empty set, is the bottom element,
true, which corresponds to S is the top element, and implication (Vs € S[P(s) =
Q(s)]), which corresponds to simple set-theoretic containment (P C @), provides
the partial ordering on the lattice.

Let functional 7 : 2° — 2° be given; then we say that 7(Y') is monotonic
provided that P C @ implies 7(P) C 7(Q). We say P’ is a fizpoint of functional
7(Y) provided P’ = 7(P’). Fixpoint P’ is a least fixpoint provided that if P” is a
fixpoint then P’ C P”. Note that any least fixpoint of 7(Y") is unique, since, if P’
and P" are least fixpoints, P’ C P” and P"” C P’. We use pY.7(Y) to denote the
least fixpoint; analogously, vY.7(Y) denotes the greatest fixpoint. The existence
of these of these “extremal” fixpoints is guaranteed by the following.

Theorem (Tarski-Knaster). Let 7 : 2° — 2° be a monotonic functional.
Then

(a) WYr(Y)=n{Y:r(Y)=Y}=n{Y:r(Y)C Y},

b)) vYrY)=u{Y :r(V) =Y} =U{Y:r(Y)D Y},

(¢) pYor(Y) = U; 7i(false) where i ranges over all ordinals of cardinality at
most that of the state space S, so that when S is finite ¢ ranges over [0:]S]];
#Y.7(Y) is the union of the following ascending chain of approximations:
false C 7(false) C 7%(false) ... , and

(d) vY.r(Y) = n; 7%(true) where i ranges over all ordinals of cardinality at
most that of the state space S, so that when S is finite ¢ ranges over [0:]S]];
vY.r(Y) is the intersection of the following descending chain of approxima-
tions: true D T(true) D T3(true) . . ..



A formula p with free variables Y7, ..., Y, is thus interpreted as a mapping
pM from (2%)" to 27, i.e., it is interpreted as a predicate transformer. We write
p(Y1,...,Yy,) to denote that all free variables of p are among Y1,...,Y,. A val-
uation V, denoted (V1,...,V},), is an assignment of the subsets of S, V1,...,V,,
to free variables Y7, ..., Y, respectively. We use p™ (V) to denote the value of p
on the (actual) arguments Vi, ..., V, (cf. [EC80], [Ko83]). The operator p* i
defined inductively as follows:

(1) PM(V) ={s:s€ S and P € L(s)} for any atomic propositional constant
Pe AP

(2) YM(V) =V

(3) (pM)M(V) p ( )N (V)

4) )M (V) = S\(pM (V)

(5) (EXp)M (V)= {s:3t epM(V),(s,t) € R}

6) pY1.p(YDYM (V) =n{s CS:p(Y)M(S, Vo, ..., Vi) C S}

Note that our syntactic restrictions on monotonicity ensure that least (as
well as greatest) fixpoints are well-defined.

Usually we write M, s |= p (respectively, M, s = p(V)) instead of s € p¥
(respectively, s € pM(V)) to mean that sentence (respectively, formula) p is true
in structure M at state s (under valuation V). When M is understood, we write

simply s |= p.

3 Temporal Logics

In this section we define three representative systems of propositional temporal
logic. The system PLTL (Propositional Linear temporal logic) is the “standard”
linear time temporal logic (cf. [Pn77], [MP92]). The branching time logic, CTL
(Computational Tree Logic), allows basic temporal operators of the form: a path
quantifier—either A (“for all futures”) or E (“for some future”—followed by a
single one of the usual linear temporal operators G (“always”), I (“sometime”),
X (“nexttime”), or U (“until”) (cf. [CE81], [EC80]). Its syntactic restrictions
limit 1ts expressive power so that, for example, correctness under fair scheduling
assumptions cannot be expressed. We therefore also consider the much richer
language CTL*, which extends CTL by allowing basic temporal operators where
the path quantifier (A4 or F) is followed by an arbitrary linear time formula,
allowing boolean combinations and nestings, over F', G, X, and U (cf. [EH86]).
Syntax

We now give a formal definition of the syntax of CTL*. We inductively define
a class of state formulae (true or false of states) using rules S1-3 below and a
class of path formulae (true or false of paths) using rules P1-3 below:



S1 Each atomic proposition P is a state formula

S2 If p, q are state formulae then so are p A ¢, —p

S3 If p is a path formula then Ep, Ap are state formulae
P1 Each state formula is also a path formula

P2 1If p, q are path formulae then so are p A ¢, —p

P3 1If p,q are path formulae then so are Xp,pUygq

The set of state formulae generated by the above rules forms the language
CTL*. The other connectives can then be introduced as abbreviations in the
usual way: p V ¢ abbreviates =(—p A —q), p = ¢ abbreviates —=pV ¢, p = ¢ abbre-
viates p = ¢ A ¢ = p, Fp abbreviates truel ¢, and Gp abbreviates —=F—-p. We
also let ;70 p abbreviate G Fp (“infinitely often”), 8 p abbreviate FGp (“almost
everywhere”), and (pBq) abbreviate =((—p)Uq) (“before”).

Remark: We could take the view that Ap abbreviates =E—p, and give a more
terse syntax in terms of just the primitive operators £, A, =, X, and U. However,
the present approach makes it easier to give the syntax of the sublanguage CTL
below.

The restricted logic CTL is obtained by restricting the syntax to disallow
boolean combinations and nestings of linear time operators. Formally, we replace
rules P1-3 by

PO If p, q are state formulae then Xp, pUgq are path formulae.

The set of state formulae generated by rules S1-3 and PO forms the language
CTL. The other boolean connectives are introduced as above while the other
temporal operators are defined as abbreviations as follows: EFp abbreviates
E(trueUp), AGp abbreviates ~EF-p, AFp abbreviates A(trueUp), and EGp
abbreviates = AF—p. (Note: this definition can be seen to be consistent with
that of CTL*.)

Finally, the set of path formulae generated by rules S1,P1-3 define the syntax
of the linear time logic PLTL.

Semantics

A formula of CTL* is interpreted with respect to a structure M = (S, R, L) as
is the Mu-calculus.

A fullpath of M is an infinite sequence sg, s1, s3, ... of states such that Vi
(si,8;41) € R. We use the convention that @ = (sg, 51, s2,...) denotes a fullpath,
and that z! denotes the suffix path (s;,si11,si12,...). We write M,sq | p
(respectively, M,z |= p) to mean that state formula p (respectively, path formula
p) is true in structure M at state sg (respectively, of fullpath z). We define =
inductively as follows:



S1 M,sg = Piff P € L(so)

S2 M,so EpAqiff M,so |Epand M,so ¢
M, sy |E —p iff it is not the case that M, sy Ep

S3 M, sg | Ep iff 3 fullpath @ = (sg, s1,82,...)in M, M,z =p
M, sy = Ap iff ¥ fullpath # = (sg,s1,82,...) in M, M,z Ep

Pl MaEpif M;sp =p

P2 MaEpAqiff M,z =pand M,z |Eq
M,z = —piff it is not the case that M,z = —p

P3 M,z |=pUqiff 3i [M,2' = q and Vj (j < i implies M, 2/ = p)]
M,z Xpif M,z E=p

A formula of CTL is also interpreted using the CTL* semantics, using rule
P3 for path formulae generated by rule PO.

Similarly, a formula of PLTL, which is a “pure path formula” of CTL* is
interpreted using the above CTL* semantics.

We say that a state formula p (resp., path formulap) is valid provided that for
every structure M and every state s (resp., fullpath x) in M we have M s = p
(resp., M,z |= p). A state formula p (resp., path formula p) is satisfiable provided
that for some structure M and some state s (resp., fullpath z) in M we have
M,s = p (resp., M,z = p).

A formula of CTL* is a basic modality provided that it is of the form Ap or
E'p where p itself contains no A’s or E’s, i.e., p is an arbitrary formula of PLTL.
Similarly, a basic modality of CTL is of the form Aq or Eq where ¢ is one of
the single linear temporal operators F', G, X, or U applied to pure propositional
arguments. A CTL* (respectively, CTL) formula can now be thought of as be-
ing built up out of boolean combinations and nestings of basic modalities (and
atomic propositions).

4 Expressiveness

The Mu-calculus is of considerable importance for several reasons, which, overall,
relate to its expressiveness. First, the Mu-calculus provides a single, elegant, uni-
form logical framework of great raw expressive power that subsumes most modal
and temporal logics of programs, and related formalisms. Both CTL and CTL*
can be translated into the Mu-calculus, as well as most other commonly used
modal and temporal logics of programs. It can be shown that the Mu-calculus,
over infinite binary trees, coincides in expressive power with finite state tree au-
tomata; in fact, Mu-calculus formulas are really alternating finite state automata
on infinite trees (cf. [EJ91]). Second, the semantics of the Mu-calculus is firmly
anchored in the fundamental Tarski-Knaster theorem and the basic notion of
inductive definability. This provides a ready means to do model checking, i.e.,



check whether a given structure defines a model of a given specification as dis-
cussed in the next section. Finally, the translation of most logics and formalisms
turns out to require only small syntactic fragments of the Mu-calculus. This has
implications for the complexity of model checking as also discussed in the next
section.

The above-mentioned syntactic fragments are determined by “alternation
depth” of a Mu-calculus formula. Intuitively, the alternation depth refers to the
depth of “significant” nesting of alternating g’s and v’s. An alternation of either
of the following forms is “insignificant”

(%) uY. f(Y,vZ.9(7)) or vY.f(Y, uZ.9(7))

as the inner o-formula is a sentence and is not influenced by the surrounding
o-formula of opposite “polarity”. In contrast, an alternation of either of the
following forms is significant

(k) uY. f(vZ.g(Y, Z)) or vY.f(pZ.9(Y, Z))

as a free occurrence of u variable Y appears within the scope of vZ or a free
occurrence of ¥ Y occurs within the scope of a u7.

We can give the technical definition of the alternation depth ad(f) of formula
f as follows (cf. [EL86], [An93]). We assume that f is initially placed in positive
normal form.

ad(P) = ad(Y') = 0 for atomic proposition constants P and variables Y.

ad(f A g) = ad(F V g) = max {ad(f), ad(g)}

(o) = a1

ad(pY.f) = 1+max {ad(vZ.g) : vZ.g is a subformula of f

in which Y occurs free }

ad(vY.f) = 14+max {ad(pZ.g) : pZ.g is a subformula of f

in which Y occurs free }

Let Lpy denote the Mu-Calculus Ly restricted to formulas of alternation
depth at most k. Most modal or temporal logics of programs can be translated
into Ly or Lua, often succinctly (cf. [EL86]).

For example, below we give characterizations of CTL basic modalities in
terms of least or greatest fixpoints. Note that each is a formula of Ly .

EFP=uZPVEXZ
AGP =vZ.PNAXZ
AFP = uZ PVAXZ
EGP =vZ.PANEXZ
APUQ)=pZ.QV (PAAXZ)
E(PUQ)=puZQV(PANEXZ)



These fixpoint characterizations are simple and plausible. They also turn out
to be important in applications as they underly the original CTL model checking
algorithm of [CE81] as well as the “symbolic” approaches developed later and
discussed in section 5.5.

Below we sketch representative proofs of correctness for some of these fixpoint
characterizations (cf. [EC80], [EL86]). We assume that each proof is conducted
in the context of an arbitrarily chosen underlying structure M.

Proposition. FFP = puZ. PV EXZ

Proof idea. Let ¢(Z) = PV EXZ. Then g¢'(false) corresponds to the set of
states from which it 1s possible to reach a state satisfying P by a path of length
at most ¢ states. Plainly, s satisfies EF P iff s € gi(false) for some 1. a

Proposition. AGP =vZ.PANAXZ.

Proof Idea. We use duality, interchanging the connective A with £, F' with
G, p with v, V with wedge, and X with itself. Thus AGP is converted into its
dual EF P while pz. PV EX 7 is converted into its dual vZ.PA AX Z. The result
follows by the preceeding proposition. a

Proposition. AFP=uZ.PV AXZ.

Proof Idea. Establish the dual claim that EGP =vZ.PAEXZ. Let f(7)
= P A EXZ. First note that FGP is a fixpoint of f(Z), viz. EGP = f(FGP).
Now suppose Y is an arbitrary fixpoint of f(7), so that Y = f(Y). Let sg be an
arbitrary state of Y. As sp € Y, then by virtue of f, sy is in (the set of states
satisfying) P. Moreover, sg has a successor s; € Y. Apply to s; the argument.
We get an infinite computation path comprised of consecutive states sg, s1, s2, . ..
each of which i1s in Y and also satisfies P. This path witnesses the truth of EGP
at sp. Thus every state in Y satisfies FGP and Y is a subset of (the set of states
satisfying) EGP. Hence, any fixpoint of f is a subset of FG P, which must be
the greatest fixpoint, thereby establish the dual claim. a

These fixpoint characterizations of CTL basic modalities provide the key for
translating all of CTL into the Mu-calculus, viz., Ly; ([EC80], [EL86]). For in-
stance, the CTL formula AG(AFPA EFQ) can be seen to be comprised of basic
modalities of the form EF, AF, and AG. Expanding the fixpoint characteri-
zations and doing appropriate substitutions we get that AG(AFP A EFQ) =
vY((pZ.PVAXZ)AN(pZ'.QV EXZ')) ANAXY . Observe that the result is still
of alternation depth 1.

The translation of CTL* into the Mu-calculus is more involved. Each basic
modality of CTL* is of the form Eh where h is a PLTL formula. After first being
converted to an automaton on infinite strings, h can be converted an equivalent
w-regular expression A’ (cf. [ES83], [VW83]). Eh’ is readily rendered in Lus.
This permits us to translate all of CTL* into Lus as above [EL86].

For example, if & is the temporal logic formula G(PUQ) the corresponding
w-regular expression is (P*@Q)%, denoting the set of all infinite strings that are of
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this form: an (w) infinite repetition of finite strings comprised of finitely many
consecutive P’s followed by a single @. Then E((P*Q)¥) = vY.uZ.(QAEXY)V
(PAEXZ). If we take P to be true, this property simplifies, in w-regular expres-

sion notation, to E(true*@)*. This is equivalent to E%OQ meaning “along some
path ) occurs infinitely often”, whose fixpoint characterization may be simpli-
fied to vY . uZ EX(QAY V Z) in Lus. As suggested | such properties associated
with fairness can be expressed in alternation depth 2. In fact, they require alter-
nation depth 2. It can be shown that E%OQ 1s not expressible by any alternation
depth 1 formula (cf. [EC80] [EL86]).

The existence of these translations witnesses the generality of the Mu-calculus.
The translations are important in practice because correctness specifications
written in logics such as CTL or CTL* are often more readable than specifica-
tions written directly in the Mu-calculus. In fact, it turns out to be rather easy to
write down highly inscrutable Mu-calculus formulae for which there is no readily
apparent intuition regarding their intended meaning. Since Mu-calculus formula
are really alternating tree automata, perhaps this is not so surprising. After all,
even such basic automata as deterministic finite state automata on finite strings
can be highly complex, incomprehensible “bowls of spaghetti”. On the other
hand, many Mu-calculus characterizations of correctness properties are elegant,
and the formalism seems to have found increasing favor, especially in Europe,
owing to its simple and elegant underlying mathematical structure. In any event,
many people find that the translations serve to “tame” the Mu-calculus, making
its expressive power more useful.

For many years it was not known if the higher alternation depths form a
true hierarchy of expressive power. Recently, affirmative solutions to this open
problem were reported in [Br96] and [Le96]. In practice, it seems to make little
difference, since it does appear that everything practical is in alternation depth
2. However, 1t 1s of theoretical interest. Moreover, the question has some bearing
on the complexity of model checking in the overall Mu-calculus as discussed
next.

5 Model Checking

What has turned out to be one of the more useful techniques for automated rea-
soning about reactive systems began with the advent of efficient temporal logic
model checking [CE81] (cf. [Em81], [QS82], [CES86]). The basic idea is that the
global state transition graph of a finite state reactive system defines a (Kripke)
structure in the sense of temporal logic (cf. [Pn77]), and we can give an efficient
algorithm for checking if the state graph defines a model of a given specification
expressed in an appropriate temporal logic. While earlier work in the protocol
community had addressed the problem of analysis of simple reachability prop-
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erties, model checking provided an expressive, uniform specification language in
the form of temporal logic along with a single, efficient verification algorithm
which automatically handled a wide variety of correctness properties.

5.1 Taxonomy of Model Checking Approaches

It is possible to give a rough taxonomy of model checking methods according to
certain criteria:

Ezxplicit State Representation versus Symbolic State Representation. In the
explicit state approach the Kripke structure is represented extensionally using
conventional data structures such as adjacency matrices and linked lists so that
each state and transition is enumerated explicitly. In contrast, in the symbolic
approach boolean expressions denote large Kripke structures implicitly. Typi-
cally, the data structure involved is that of Binary Decision Diagrams (BDDs),
which can, in many applications, although not always, manipulate boolean ex-
pressions denoting large sets of states efficiently.

The distinction between explicit state and symbolic representations is to a
large extent an implementation issue rather than a conceptual one. The original
model checking method was based on an algorithm for fixpoint computation it
was implemented using explicit state representation. The subsequent symbolic
model checking method uses the same fixpoint computation algorithm, but now
represents sets of states implicitly. However, the succinctness of BDD data struc-
tures underlying the implementation can make a significant practical difference.

Global Calculation versus Local Search. In the global approach, we are given
a structure M and formula f. The algorithm calculates fM = {s: M,s = f},
the set of all states in M where f is true. This necessarily entails examining the
entire structure. Global algorithms typically proceed by induction on the formula
structure, calculating ¢™ for the various subformulae ¢ of f. The algorithm can
be presented in recursive form; as the recursion “unwinds” the values of the
shortest subformula are calculated first, then the next shortest, etc.

In contrast, in the local approach, we are given a specific state s in M along
with M and f. We wish to determine whether M, sy |= f. The computation
proceeds by performing a search of M starting at sg. The potential advantage
is that, many times in practice, only a portion of M may need to be examined
to settle the question. In the worst case, however, it may still be necessary to
examine all of M. (cf. [SW89]).

Monolithic Structures versus Incremental Algorithms. To some extent this is
also more of an implementation issue than a conceptual one. Again, however,
it can have significant practical consequences. In the monolithic approach, the
entire structure M is built and represented at one time in computer memory.
While conceptually simple and consistent with standard conventions for judging
the complexity of graph algorithms, in practice this may be highly undesirable
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because the entire graph of M may not fit in computer memory at once. In
contrast, the incremental approach (also referred to as the “on-the-fly” or “on-
line” approach) entails building and storing only small portions of the graph of
M at any one time (cf. [JT89]).

5.2 Extensional Model Checking Algorithms

Technically, the Tarski-Knaster theorem can be understood as providing a sys-
tematic basis for model checking. The specifications can be formulated in the
Mu-calculus or in other logics such as CTL which, as noted above, are readily
translatable into the Mu-calculus. For example, to calculate the states where
the CTL basic modality EF P holds in structure M = (S, R, L), we use the fix-
point characterization EF P = puZ.7(7), with 7(Z) = PV EX 7. We successively
calculate the ascending chain of approximations

m(false) C 7*(false) C ... C Tk(false)

for the least k < |S| such that 7*(false) = %*+!(false). The intuition here
is just that each 7¢(false) corresponds to the set of states which can reach P
within at most distance ¢; thus, P is reachable from state s iff P is reachable
within i steps from s for some i less than the size of M iff s € 7(false) for some
such ¢ less than the size of M. This idea can be easily generalized to provide a
straightforward model checking algorithm for all of CTL and even the entire Mu-
calculus. The Tarski-Knaster theorem handles the basic modalities. Compound
formulae built up by nesting and boolean combinations are handled by recursive
descent.

Iterative Fixpoint Algorithms. Building on this simple idea of iterative fix-
point calculation using the Tarski-Knaster Theorem, we can get a number of
successively faster (global) model checking algorithms.

Naive Algorithm. We give below an algorithm to calculate, given structure
M, formula f, and valuation V, set(f) = {s: M,s = f(V)}, the set of states in
M where formula f is true under valuation V.

A straightforward implementation runs in time complexity O((|M||f])**?)
for input structure M and input formula p with u, v formulas nested k deep.

Basic Algorithm. The naive algorithm can be significantly improved by utiliz-
ing the monotonicity among consecutive least fixpoints and consecutive greatest
fixpoints, together with a simple generalization of the Tarski-Knaster theorem.
The original algorithm for model checking in the Mu-calculus (cf. [EL86]) ex-
ploited this basic optimization.
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Initialize all atomic proposition constants P and variables Y:

set(P):={s: M,s = P};
set(Y) :=V(Y);

Inductively calculate set(f) using

recursive procedure set(f)
case on the form of f:

f = P : return set(f) unchanged;
f =Y :return Y unchanged;
f=EXg:return set(f) := {s: It € S (s,t) € R and ¢t € set(g)};
f=AXg : return set(f) := {s :Vt € S (s,t) € R implies M, ¢t € set(g)};
f =g Ah:return set(f) := set(g) N set(h)
f =gV h:return set(f) := set(g) U set(h)
f =g : return set(f) := 5\ set(g);
f=uYg(Y): [ Y = false;

)
)

repeat

Y=Y,

Y :=set(g(Y));
until Y =Y,

return set(f) :=Y ]
f=vYg(Y):[Y := true;

repeat

Y =Y,

Y = set(g(Y));
until Y =Y,

return set(f) =Y ]
endcase

Fig. 1. The Naive Algorithm

Theorem (Generalized Tarski-Knaster). Let 7 : 2° — 2° be a monotonic
functional. Then

(a) pY.r(Y) = U; 74(Yp) for any Yy C 7(Yp) N pY.7(Y), where i ranges over all
ordinals of cardinality at most that of the state space S, so that when S is
finite ¢ ranges over [0:|S]]; pY.7(Y) is the union of the following ascending
chain of approximations:

Yo C 7(Yy) C 73(Yp) ..., and

(b) vY.r(Y) = n; 78(Yy) for any Yo D 7(Yo) NvY.7(Y), where i ranges over
all ordinals of cardinality at most that of the state space S, so that when
S is finite ¢ ranges over [0:|S|]; vY.7(Y) is the intersection of the following
descending chain of approximations: Yy D 7(Yp) D 72(Yo) .. ..
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Let us first consider a formula with alternating p’s and »’s. For example,
vY. f(Y,uZ.9(Y, Z)) can take | M| iterations of Y. Initially, Y° = true. Each sub-
sequent iteration Y+l = f(Yi uZ.g(Y* Z)) involves calculating an ascending
chain of iterations of Z, starting with Z = false, of length up to |M|. Thus, in
total, 7 is iterated |M|? times.

Now, consider uY.f(Y,uZ.9(Y, 7)) where there are consecutive nested p’s,
but no alternation of p’s and v’s. It can be computed as above, resetting 7
to false each time the outer Y changes. In the above case, this resetting is
apparently essential because Y is shrinking while Z 1s growing. In this case,
however, monotonicity ensures that both Y and Z are growing, so that it is
unnecessary to reset Z to false when Z changes. Let

Y0 = false

Vit = f(Y', uZ.9(Y", Z))

Z%9 = the initial value of Z in the context of Y
Z0hitt = g(Y?, Z79)

We use Y¥ to denote the first Y? = Vit where Y stabilizes, and similarly
for 7',

The computation proceeds as follows. Y9, Z%9 = false initially. To compute
Y= (YO uZ.g(Y° 7)), one computes pZ.g(Y°, Z) as the limit Z%% of the
ascending chain of approximations false = Z%° c Z%' c ... c Z0% = ZOwtl
and then applies f. To compute, Y? = f(Y! uZ.g(Y, 7)), one must compute
puZ.g(Yt Z). One way to do this entails simply computing an ascending chain
of approximations false = Z%° ¢ 721 ¢ ... c ZL% = Z"%*! and then ap-
plies f, having reinitialized Z to false. However, since Y% C Y, by mono-
tonicity Z%* = puZ.9(Y° Z) C pZ.g(Y', Z). Moreover, Z%% = ¢(Y? Z%%) C
g(Y1, Z%%). Hence, by the generalized Tarski-Knaster Theorem we are permit-
ted to start the computation of uZ.g(Y1, Z) with Z1% = Z%%_ In general, we
have pZ.9(Y*, Z) C pZ.g(Y**1, Z) and Z0% = g(YVi Z1%) C g(Yi+! Z1%). so
that we can take Zi+19 = Z% On this basis, we see that not only are at most
| M| iterations required for Y but also at most | M| iterations for Z.

This algorithm can be straightforwardly implemented to run in time O((|M|-
|f))24*Y) and space O(|M] - |f]). This can be improved to O((|M] - |f)*¢) by
avoiding redundant computation, computing the successive differences Yi+! \
vi). 2

Deluzre Algorithm. More extensive monotonicity considerations can be ex-
ploited (cf. [Lo+94]) for yet more improvement. The key idea is that in a formula
f such as

/,LYl.I/Zl./,LYQ.I/Zz. . /,LYng(Yl, Zl,Yz, Zz, ceey Yn)

of alternation depth ad = 2n — 1 the y variables turn out to be monotonic with

2 With better accounting we can obtain sharper multi-parameter bounds such as
O(|S|*4=" - |R| - |£]) , but these are adequate for our exposition.

15



respect to each other, and the innermost p variable is monotonic in its various
instantiations. For instance, in computing the formula pY1.v 7, .4Y2.9(Y1, Z2, Y2),
with ad = 3, we have /,LYz.g(Yf,Zi’j,Yz) C uYz.g(YfH,ZiH’j,Yz) and we can
avoid reinitializing Y> by taking Y;H’O = Y;’w. What varies as the computation
proceeds are the number of iterations of surrounding v variables. For a fixed
tuple of v variable indices, the number of iterations of the innermost p variable
is |M|. The number of such tuples is about |M]%%2. So the dominant term in the
complexity corresponds to about |]\4|1‘|"“l/2 iterations. This can be implemented
to run in time at most O((|M| - |f])?>T2%?). However, a careful examination
reveals that an exponential number of intermediate results, roughly proportional
to the number of tuples of v indices must be stored. Thus the space complexity
is also exponential.

While this algorithm is of theoretical interest, it should be noted that the
time complexity is still (|M|-|f[)9(¢% as is the basic algorithm above. Moreover,
the exponential space complexity here does not compare favorably with the poly-
nomial space complexity of the basic algorithm. Exponential space complexity
is especially problematic, in practice, because it is usually the space complexity
rather than the time complexity that is the limiting factor. For most applica-
tions, if the computation will not even fit within main computer memory, then
performing it quickly is out of the question. For formulas of alternation depth
1 or 2, this algorithm thus yields no advantage. Since no practical example of
a correctness property requiring alternation depth 3 or more is known, it is not
clear that there is ever an actual situation where the algorithm could be helpful.
Still, it provides mathematical insight into the nature of the Mu-calculus.

Other Algorithms. There are a variety of other types of (extensional) model
checking algorithms which we will just briefly discuss. In contrast to the “bottom
up” iterative approaches above, which are associated with global model checking,
in which satisfaction of fixpoints radiates outward, we also have “top down”
approaches which are associated with local model checking. For instance, given
a specific state sp in structure M, if we wish to know whether M, sy | AFQ,
we perform a depth first search starting at sy keeping on the stack the sequence
of states visited; if a cycle is detected without seeing ) then AF Q) is false.
Otherwise, the search will eventually return AF @ to be true.

A related approach is to form the product of |M| with the syntax diagram of
|f| and view the result as a tree automaton. Then test the tree automaton for
nonemptiness. Testing it for nonemptiness, can be done by model checking cer-
tain restricted formulas [EJS93] (cf. [BVW94]). The tree automaton approach
captures the essence of the boolean graph approach (cf. [CS93], [An93]), since
the boolean AND/OR, graphs correspond to the transition diagrams of tree au-
tomata.
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5.3 Complexity of Explicit State Model Checking

The complexity results we summarize here are for explicit state model checking.
The best known algorithm corresponds to the deluxe algorithm above. It is expo-
nential time in the worst case, but polynomial time for any bounded alternation
depth. Since all practical correctness properties seem to be of alternation depth
1 or 2, we have a low order polynomial time algorithm as explained above.

Litchenstein and Pnueli advanced the following argument (cf. [LP85]): in
practice, 1t is typically the structure size rather than the formula size that is the
dominant factor in the complexity, because structures are usually extremely large
while specifications are often rather short. Hence, it is highly desirable to have
an algorithm whose complexity grows linearly in the structure size, while even
exponential growth in the specification size may be tolerable. For CTL and Ly,
we can get algorithms of time and space complexity O(|M|-|f|) which is linear in
the size of both inputs (cf. [CES86], [CS93]). For CTL* the problem is PSPACE-
complete, and we can get a model checker of time complexity O(|M| - exp(|f]))
[EL85] (cf. [LP85]).

Among significant unsolved problems with practical implications we thus
have:

Open Question. Is there a model checking algorithm for Lus that runs in
time linear in the structure size?

Finally, terms of complexity classes, we have this following result [EJS93] (cf.
[BVW94], [Lo+94], [Va95]):

Proposition. Model checking in the Mu-calculus is in NP N co-NP.

Proofidea. Given structure M and formula f guess an annotation of M with
the subformulae of f true at each state; this annotation also provides a “rank” for
each p variable Y indicating how many times the associated p-formula Y.g(Y),
is unwound. These ranks correspond to the indices in the Tarski-Knaster se-
quence of approximations. Thus, we might have ranked x variable Y®, which is
equivalent to g(Y?), at state s depending on Y*, equivalent to g(Y?), at state ¢
depending on Y3 at state u and so forth; the “depending on” relation should be
well-founded as uY.g(Y) is a least fixpoint and can only be unwound a a bounded
(viz. |[M|) times. In general the ranks will be tuples of natural numbers; each
tuple is of length at most |f| and each tuple component is a natural number of
value at most |M|. The ranks are ordered lexicographically. After guessing the
ranked, threaded annotation simply verify that it is well-founded. This shows
membership in NP. Membership in co-NP follows from the fact that the Mu-
calculus is trivially closed under complementation. a

Open Question. Is there a polynomial model checking algorithm for the
(entire) Mu-calculus (over extensionally represented structures)?

17



5.4 State Explosion

We emphasize that the above discussion focuses on extensional model checking,
where 1t 18 assumed that the structure M including all of its nodes and arcs
explicitly represented using data structures such as adjacency lists or adjacency
matrices. An obvious limitation then is the combinatorial state explosion prob-
lem. Given a reactive system composed on n sequential processes running in
parallel, its global state graph will be essentially the product of the individual
local process state graphs. The number of global states thus grows exponentially
in n. For particular systems it may happen that the final global state graph is of
a tractable size, say a few hundred thousand states plus transitions. A number of
practical systems can be modeled at a useful level of abstraction by state graphs
of this size, and extensional model checking can be a helpful tool.

On the other hand, it can quickly become infeasible to represent the global
state graph for large n. Even a banking network with 100 automatic teller ma-
chines each having just 10 local states, could yield a global state graph of astro-

0100 states.

nomical size amounting to about 1

Plainly, for such astronomical size systems it is out of the question to perform
model checking over them even using algorithms that run in time and space linear
in the size of the state space. Various approaches to ameliorating state explo-
sion are currently under investigations. One approach is to use abstraction. The
basic idea here is to replace a large, detailed system M by a small, less detailed
system M’ where inessential information has been suppressed. If an appropriate
correspondence between the large and small systems can be established, then
correctness of the small system may be used to ensure correctness of the large
system. For instance, suppose there is a homomorphism h : M — M’ such that
s and h(s) agree on atomic propositions in linear time formula f and such that if
s =t is a transition in M then h(s) — h(?) is a transition in M’. We may then
conclude that if there is a path satisfying —f in M then there is an image path
satisfying —f in M’. Hence, if in the small system M’ h(sg) E Af then in the
large system M, sy = Af. Another approach is to represent transition relations
and sets of states symbolically as decribed below.

5.5 Symbolic Approaches

A noteworthy advance has been the introduction of symbolic model checking
techniques (cf. [McM92], [BCMDH90], [Pi90], [CM90]) which are — in practice
— often able to succinctly represent and model check over state graphs of size
10199 states and even considerably larger. The basic algorithms used for sym-
bolic model checking are the same as those used for extensional model checking,
and are based on iterative calculation of (a representation of) the set of states
where each temporal basic modality holds using fixpoint computation justified
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by the Tarski-Knaster Theorem. The key distinction is that the state graph of
the Kripke structure and sets of states where formulae are true in it are repre-
sented in terms of a boolean characteristic function which is in turn represented
by an (ordered) Binary Decision Diagram (BDD) (cf. [Br86]). These BDDs can
in practice be extremely succinct. BDD-based model checkers have been remark-
ably effective and useful for debugging and verification of hardware circuits. For
reasons not well understood, BDDs are often able to exploit the regularity that is
readily apparent even to the human eye in many hardware designs. Because soft-
ware typically lacks this regularity, BDD-based model checking seems much less
helpful for software verification. We refer the reader to [McM92] for an extended
account of the utility of BDDs in hardware verification.

It should be emphasized, however, that BDD based model checking methods,
are, in worst case, still intractably inefficient. On the one hand, for some struc-
tures M of astronomical size there are small BDDs representing them, and this
1s exploited in applications as noted above. But for other structures M, some-
times those derived from applications such as software, the BDD representation
is intractably large. Plainly, a counting argument shows that most structures do
not have a small BDD representation. In any event, checking simple graph reach-
ability in a structure M, e. g. M, sy | EFQ where M is represented by a BDD
is PSPACE-complete (cf. [GW83], [Br86]). The disparity between theoretical,
worst case results for symbolic checking and its surprisingly good performance
in practice, has so far militated against the development of an associated com-
plexity theory for this application.

5.6 Debugging versus Verification

Model checkers are a type of decision procedure and provide yes/no answers. It
turns out that, in practice, model checkers are often used for debugging as well
as verification. In industrial environments 1t seems that the capacity of a model
checker to function as a debugger is perhaps better appreciated than their utility
as a tool for verifying correctness.

Consider the empirical fact that most designs are initially wrong and must
go through a sequence of corrections/refinements before a truly correct design is
finally achieved. Suppose one aspect of correctness that we wish to check is that
a simple invariance property of the form AGgood holds provided the system M
is started in the obviously good initial state sq. It seems quite likely that the
invariance may in fact not hold of the initial faulty design due to conceptually
minor but tricky errors in the fine details. Thus, during many iterations of the
design process, we have that in fact M, sq || EF—good.

It would be desirable to circumvent the global strategy of examining all of
M to calculate the set EF—good™ and then checking whether s; is a member of
that set. If there does exist a —good state reachable from sy, once 1t is detected it
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is no longer necessary to continue the search examining M. This is the heuristic
motivating local model checking algorithms. Many of them involve searching
from the start state sg looking for confirming or refuting states or cycles; once
found, the algorithm can terminate often “prematurely” having determined that
the formula must be true or must be false at sy on the basis of the portion M
examined during the limited search.

Of course, it may be that all states must be examined before finding a refu-
tation to AGgood. Certainly, once a truly correct design is achieved, all states
reachable from sy must be examined. But in many practical cases, a refutation
may be found quickly after limited search.

We note in passing that some symbolic model checkers have been adapted to
provide some sort of counter example facility for debugging.

6 Conclusion

Reactive systems are becoming increasingly important in our society. There is
an undeniable and growing need to find effective methods of constructing cor-
rect reactive systems. One factor these systems have in common beyond their
nondeterministic, ongoing, reactive nature is that they are highly complex, even
though they are typically finite state. While it may be relatively easy to express
informally and in general terms what such a system is supposed to do (e.g., pro-
vide an air traffic control system), it appears quite difficult to provide a formal
specification of correct behavior and to prove that the implementation actually
satisfies the specification. The Mu-calculus and associated temporal logics such
as CTL provide a good handle on precisely stating just what behavior is to occur
when, at a variety of levels of detail. The fully automated type of reasoning pro-
vided by model checking provides a convenient tool for both verifying correctness
and for automatic debugging. Moreover, a number of interesting mathematical
problems arise in connection with model checking in the Mu-calculus.
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