
Decision Procedures Lecture on Logic Oct 31 2007
Pete Manolios

These lecture notes on logic are mostly based on material from the book by
Ebbinghaus, Flum, and Thomas entitled “Mathematical Logic.”

1 Intro to Logic

Logic forms the foundation of mathematics. Let’s start with an example. A
group is a triple 〈G, ◦, e〉 such that

• (G1) For all x, y, z: (x ◦ y) ◦ z = x ◦ (y ◦ z).

• (G2) For all x: x ◦ e = x.

• (G3) For all x there is a y such that: x ◦ y = e.

The following are groups: 〈Z,+, 0〉 and 〈R,+, 0〉. The following are not:
〈N,+, 0〉 and 〈R, ·, 1〉.

Here is a theorem about groups.

Theorem 1 For every x, there is a y such that: y ◦ x = e.

The axioms only directly mention a right inverse, but the above claims that
left inverses also exist.
Proof By (G3), there is a y such that x ◦ y = e and a z such that y ◦ z = e.
Taking associativity (G1) into account, we have

y ◦ x = y ◦ x ◦ e = y ◦ x ◦ y ◦ z = y ◦ e ◦ z = y ◦ z = e �

This example already highlights many of the features of modern mathemat-
ics. In mathematics, we study the properties of various objects, e.g., groups.
The properties that these objects enjoy are captured with “non-logical” axioms,
e.g., in the case of group theory, (G1)-(G3). The theory of groups consists of all
theorems that are derivable from the “non-logical axioms” via logical reasoning
alone. This separation is really fundamental. We cannot appeal to intuition
or “obvious truths” about groups (or geometry, or the reals, etc). So, what
exactly is a “proof”, then? This question naturally leads to computer science
and historically that is what happened, as a proof has to be machine-checkable.

Other questions naturally arise. When we prove theorems about groups,
then the results apply to every instance of a group, e.g., 〈Z,+, 0〉 and 〈R,+, 0〉,
but if some formula ϕ holds in every group (denoted {(G1), (G2), (G3)} |= ϕ),
then does there necessarily exist a proof (denoted {(G1), (G2), (G3)} ⊢ ϕ)? Note
that proofs are finite, machine checkable things, whereas there are many groups;
how many? By a result we will prove, the number of groups is uncountable (and
in fact there are so many groups, that they do not even form a set, so we have no
simple way of measuring them). We will see how to make this question precise,
i.e., we will present a simple proof theory. Then, we will see that for any set of
sentences Φ and any sentence ϕ, Φ |= ϕ iff Φ ⊢ ϕ, (where Φ ⊢ ϕ denotes that

1

there is a proof of ϕ from Φ). This is Gödel’s completeness theorem, perhaps
the most important result in logic, as it relates syntax with semantics.

2 Syntax of FOL

When one presents a mathematical language to a mature audience, e.g., a pro-
gramming language, one starts with the syntax and then the semantics. The
syntax tells us what markings, what sequences of symbols, belong to the lan-
guage. If we were to think about programming languages, this corresponds to
the syntax checker. We will insist that the problem of checking whether a se-
quence of symbols is syntactically well-formed is decidable, that is there exists
a program that can say “yes” or “no” when presented with a sequence of sym-
bols. Syntax can be presented using BNF or any other precise method. When
presenting the syntax, there is no need to mention the meaning or semantics
of the strings; all that we do is that we determine what is and what is not a
“statement” in the language. The semantics, or meaning, is given later.

We do not want to look at a specific language, instead, we want to describe
the syntax of any first-order language (FOL). All FOLs have the following in
common.

Definition 1 A contains the following symbols:

1. v0, v1, v2, . . . (variables);

2. ¬,∧,∨,⇒,↔ (boolean connectives);

3. ∀,∃ (quantifiers);

4. ≡ (equality symbol);

5.), ((parenthesis);

Depending on the first-order theory (FOT) in question, there may be other
symbols in a FOL, e.g., in the theory of groups we had ◦, a 2-ary function
symbol and e, a constant. In set theory we have ∈, a 2-ary relation symbol, and
so on.

Definition 2 The symbol set S of a FOL contains

1. for every n ≥ 1 a (possibly empty) set of n-ary relation symbols.

2. for every n ≥ 1 a (possibly empty) set of n-ary function symbols.

3. a (possibly empty) set of constant symbols.

S may be empty and the symbols mentioned in the definition of S must be
distinct from each other and from the symbols in A. S determines a FOL and
AS := A ∪ S is the alphabet of this language.

We shall use the letters P,Q,R, . . . for relation symbols, f, g, h, . . . for func-
tion symbols, c, c0, c1, . . . for constants, and x, y, z, . . . for variables.

2

2.1 Terms

To motivate the definition of terms and formulas, let me give you a preview of
the semantics. FOL are interpreted over structures, e.g., in the FOL of groups, ◦
corresponds to group multiplication say of group G. Terms are expressions that
denote elements of G. Formulas are expressions that make statements about G,
e.g., that all elements of a certain type have a certain property.

Definition 3 The set of S-terms, denoted TS is the least set closed under the
following rules.

1. Every variable is an S-term.

2. Every constant in S is an S-term.

3. If t1, . . . , tn are S-terms and f is an n-ary function symbol in S, then
ft1 . . . tn is an S-term.

Note that TS ⊆ A∗
S .

Here is an analogy with English. Bill, the father of John, etc. all denote ele-
ments in our universe. Similarly, x, c, fxy, etc. denote elements of the universe
of a first-order theory.

Note that parentheses are not used in terms. They are not needed and do
not result in any ambiguity.

2.2 Formulas

Terms name objects in our domain, whereas formulas correspond to statements
about our domain.

Recall our analogy with English. Bill, the father of John, etc. all denote ele-
ments in our universe. Similarly, x, c, fxy, etc. denote elements of the universe
of a first-order theory.

Similarly, statements such as “Bob has three siblings” are statements about
the universe. They are either true or false. That is the role played by formulas.

Definition 4 An atomic formula of S is either of the form t1 ≡ t2 or Rt1 . . . tn,
where t1, t2, . . . , tn are S-terms and R is an n-ary relation symbol in S.

Definition 5 The set of S-formulas is the least set closed under the following
rules.

1. Every atomic formula is an S-formula.

2. If ϕ,ψ are S-formulas and x is a variable, then ¬ϕ, (ϕ ∨ ψ), and ∃xϕ
are S-formulas.

3

We can define ∀xϕ to be ¬∃x¬ϕ. Also, all Boolean connectives can be
defined in terms of ¬ and ∨ .

LS denotes the set of S-formulas.
Is there a string that is both a formula and a term? (No)
Can you think of a formula that can be parsed in more than one way? (No)

Lemma 1 If |S| ≤ ω, then |TS | = |LS | = ω.

Proof?
TS ⊆ A∗

S ; LS ⊆ A∗
S and both are infinite.

2.3 Definitions on terms and formulas

Define a function that given an S-term returns the set of variables occuring in
it.

var(x) = {x}

var(c) = {}

var(ft1 . . . tn) = var(t1) ∪ · · · ∪ var(tn)

Is the above really a definition? Why? Because there is only one way of
decomposing a term into its parts, so we do not inadvertently allow var to
assign different values to the same argument.

Looked at another way, we can define functions on terms (and formulas) by
using recursive definitions based on the rules defining terms (and formulas).

Define a function that given an S-formula returns the set of free variables
occuring in it.

free(t1 ≡ t2) = var(t1) ∪ var(t2)

free(Rt1 . . . tn) = var(t1) ∪ · · · ∪ var(tn)

free(¬ϕ) = free(ϕ)

free((ϕ ⋆ ψ)) = free(ϕ) ∪ free(ψ), for ⋆ a boolean connective

free(Qxϕ) = free(ϕ) \ {x}, for Q = ∀,∃

Formulas without free variables are called sentences.

3 Semantics of FOL

We will now go beyond the grammatical, syntactic aspects of FOL to discuss
what terms and formulas mean. Notions such as free, term, formula are purely
syntactic.

Here is an example of something that isn’t syntactic: what does ∀v0Rv0v1
mean? Well, it depends on what R means, i.e., what relation is it and over
what domain? and what v1 means, i.e., what element of the domain is it? Say
that R is < on N and v1 is 0, then the statement is false. If R is ≥, then it is
true.

4

3.1 Structures and Interpretations

Definition 6 An S-structure is a pair U = 〈A,a〉, where A is a non-empty
set, the domain or universe, and a is a function with domain S such that:

1. If c ∈ S is a constant symbol, then a.c ∈ A .

2. If f ∈ S is an n-ary function symbol, then a.f : An → A .

3. If R ∈ S is an n-ary relation symbol, then a.R ⊆ An .

Instead of a.R,a.f, and a.c we often write RU, fU, and cU or even RA, fA,

and cA. In addition, instead of denoting a structure U as a pair 〈A,a〉, we often
replace a by a list of its values, e.g., we would write an {f,R, c}-structure as
〈A, fU, RU, cU〉.

Here are some examples. The symbol sets

Sar := {+, ·, 0, 1} and S<
ar := {+, ·, 0, 1, <}

play an important role, and we use N to denote the Sar-structure 〈N,+N, ·N, 0N, 1N〉
and N< to denote the S<

ar-structure 〈N,+N, ·N, 0N, 1N, <N〉.
Similarly, we use R to denote the Sar-structure 〈R,+R, ·R, 0R, 1R〉 and R<

to denote the S<
ar-structure 〈R,+R, ·R, 0R, 1R, <R〉.

Notice that +R and +N are very different objects. Even so, we will drop the
subscripts when (we think) no ambiguity will arise.

Are we done? Can we give a precise meaning to terms and formulas?
What about ∀v0 < v0v0? (not true in R nor in N)
What about ∀v0∃v1 < v1v0? (not true in N, true in R)
What about our initial example, ∀v0 < v0v1?
It depends on what v1 means, so let’s go on.

Definition 7 An S-interpretation J is a pair 〈U, β〉, where U = 〈A,a〉 is an
S-structure and β : Var → A, is an assignment, a function that assigns values
to the variables.

We define the meaning of any term t in interpretation J , denoted J .t, as
follows.

1. If v ∈ Var , then J .v = β.v .

2. If c ∈ S is a constant symbol, then J .c = cU .

3. If ft1 . . . tn is a term, then J (ft1 . . . tn) is (fU)(J .t1, . . . ,J .tn) .

Let’s look at an example. If S = Sgr and J = 〈U, β〉, where U = 〈Z,+, 0〉
and β.v0 = 2, β.v1 = 4, then what is J (◦v0 ◦ ev1)?
= +Z(J .v0,J (◦ev1))
= β.v0 + +Z(eZ,J .v1)
= 2 + (0 + β.v1)

5

= 2 + (0 + 4)
= 6

If β is an assignment, then β a
x
(y) is a if y = x and β.y otherwise. For

J = 〈U, β〉, J a
x

denotes 〈U, β a
x
〉.

We now define what it means for an interpretation to satisfy a formula.

1. J |= (t1 ≡ t2) iff J .t1 = J .t2 .

2. J |= R(t1 . . . tn) iff 〈J .t1, . . . ,J .tn〉 ∈ RU .

3. J |= ¬ϕ iff not J |= ϕ .

4. J |= (ϕ ∨ ψ) iff J |= ϕ or J |= ψ .

5. J |= ∃xϕ iff for some a ∈ A, J a
x
|= ϕ .

If J |= ϕ we say that ϕ holds in J ; we also say that J is a model of ϕ; we
also say that J satisfies ϕ .

Given, Φ, a set of formulas, J |= Φ (J is a model of Φ) iff for every ϕ ∈ Φ,
J |= ϕ .

You should convince yourself that J |= ϕ iff ϕ is true under interpretation
J .

Let’s look at an example. If S = Sgr and J = 〈U, β〉, where U = 〈Z,+, 0〉
and β.v0 = 2, β.v1 = 4, as before, then what is the value of J |= ∀v0∃v1 ◦ v0e ≡
v1?

J |= ∀v0∃v1 ◦ v0e ≡ v1
iff for all i ∈ Z,J i

v0

|= ∃v1 ◦ v0e ≡ v1

iff for all i ∈ Z, there is a j ∈ Z such that (J i
v0

) j
v1

|= ◦v0e ≡ v1

iff for all i ∈ Z, there is a j ∈ Z such that (J i
v0

) j
v1

(◦v0e) = (J i
v0

) j
v1

(v1)

iff for all i ∈ Z, there is a j ∈ Z such that ◦U((J i
v0

) j
v1

(v0), (J
i

v0

) j
v1

(e)) = j

iff for all i ∈ Z, there is a j ∈ Z such that i+ eU = j

iff for all i ∈ Z, there is a j ∈ Z such that i+ 0 = j

true, set j to i
Note that the meaning of a sentence does not depend on the assignment. In

general, we are interested in sentences, but to evaluate them, we have to evaluate
subformulas, which may not be sentences, therefore, the need for assignments.
This kind of thing comes up in programming a lot.

Using the notion of satisfaction, we define the notion of consequence.

Definition 8 Let Φ be a set of formulas and ϕ a formula. Then Φ |= ϕ (ϕ is
a consequence of Φ) iff for every interpretation, J , which is a model of Φ, we
have that J |= ϕ .

We have developed enough mathematical machinery to reconsider, in a more
rigourous way, one of our initial goals. Recall, that we were interested in whether
Φ |= ϕ iff Φ ⊢ ϕ. For example, we saw a proof that groups have a left inverse,
i.e., Φgr ⊢ ∀vo∃v1(v1 ◦ v0) ≡ e , and you should be convinced that such a proof

6

implies Φgr |= ∀vo∃v1(v1 ◦ v0) ≡ e , where Φgr = {∀v0∀v1∀v2(v0 ◦ v1) ◦ v2 ≡
v0 ◦ (v1 ◦ v2),∀v0v0 ◦ e ≡ v0,∀v0∃v1v0 ◦ v1 = e} . Once we develop the notion of
proof more carefully, this will be an easy theorem to prove.

What is not as clear is whether the opposite direction holds. The complete-
ness theorem will establish this. That comes after we define what a proof is and
will be the first main theorem we prove.

We now continue to build our vocabulary.

Definition 9 A formula ϕ is valid iff ∅ |= ϕ, which we abbreviate by |= ϕ.

Definition 10 A formula ϕ is satisfiable, written Sat ϕ iff there is an inter-
pretation which is a model of ϕ; similarly, a set of formulas Φ is satisfiable, Sat
Φ iff there is an interpretation which is a model of all the formulas in Φ.

Lemma 2 For all Φ and all ϕ, Φ |= ϕ iff not Sat Φ ∪ {¬ϕ}.

Proof Φ |= ϕ

iff for all J , J |= Φ implies J |= ϕ

iff there is no J such that J |= Φ but not J |= ϕ

iff there is no J such that J |= Φ ∪ {¬ϕ}
iff not Sat Φ ∪ {¬ϕ}. �

As a consequence, ϕ is valid iff ¬ϕ is not satisfiable.
We now prove some straight-forward lemmas that clarify the situation and

suggest new notations.
The first lemma, the “coincidence lemma” isolates what parts of an inter-

pretation can affect the meaning of terms and formulas.

Lemma 3 (Coincidence Lemma). Let J1 = 〈U1, β1〉 be an S1-interpretation
and and J2 = 〈U2, β2〉 be an S2-interpretation, both with the same domain. Let
S = S1 ∩ S2.

1. Let t be an S-term. If J1 and J2 agree on the S-symbols occurring in t

and on the variables occuring in t, then J1(t) = J2(t).

2. Let ϕ be an S-formula. If J1 and J2 agree on the S-symbols and on the
variables occurring free in ϕ, then J1 |= ϕ iff J2 |= ϕ.

Proof By induction on S-terms and then on S-formulas. �

Note that the coincidence lemma tells us that the meaning of a formula ϕ
under an interpretation J depends only on the free variables in ϕ, which form
a finite part of an assignment.

If the variables are among v0, v1, . . . , vn−1 (denoted ϕ ∈ LS
n , so ϕ ∈ LS

0 is
the set of S-sentences), and if β.vi = ai, instead of 〈U, β〉 |= ϕ, we often write
the more suggestive

U |= ϕ[a0, . . . , an−1]

7

Similary, if t is an S-term such that var(t) ⊆ {v0, . . . , vn−1}, instead of J (t),
we may write tU[a0, . . . , an−1].

If ϕ is a sentence (ϕ ∈ LS
0) then we write U |= ϕ.

If Φ is a set of sentence, then, as expected, U |= Φ means that for each
ϕ ∈ Φ, U |= ϕ.

3.2 Substitution

We want to define a notion of substitution so that if we substitute term t for
variable x in formula ϕ, obtaining ϕ′, then ϕ′ says about t what ϕ says about
x. Substitution is know to be error-prone. Here is an example of how we have
to be careful.

Consider ϕ = ∃zz + z ≡ x.
Note that 〈N , β〉 |= ϕ iff β.x is even.
Replacing x by y gives, ϕ′ = ∃zz + z ≡ y, where 〈N , β〉 |= ϕ iff β.y is even.

Good.
What about replacing x by z? This gives ϕ′ = ∃zz + z ≡ z, but N |= ϕ, so

here we have a problem. In order to get a ϕ′ which expresses about z what ϕ
expresses about x, we can first replace bound occurences of z by a new variable
u in ϕ, and then proceed as before.

We will define how to perform simultaneous substitution for terms, where
the xi are distinct.

1. x t0...tr

x0...xr
=

{

x if x 6= x0, . . . , x 6= xr,

ti if x = xi

2. c t0...tr

x0...xr
= c

3. [ft′1 . . . t
′
n] t0...tr

x0...xr
= ft′1

t0...tr

x0...xr
. . . t′n

t0...tr

x0...xr

The square brackets are for easier reading. Now, we define substitution for
formulas

1. [t′1 ≡ t′2]
t0...tr

x0...xr
= t′1

t0...tr

x0...xr
≡ t′2

t0...tr

x0...xr

2. [Rt′1 . . . t
′
n] t0...tr

x0...xr
= Rt′1

t0...tr

x0...xr
. . . t′n

t0...tr

x0...xr

3. [¬ϕ] t0...tr

x0...xr
= ¬[ϕ t0...tr

x0...xr
]

4. (ϕ ∨ ψ) t0...tr

x0...xr
= (ϕ t0...tr

x0...xr
∨ ψ t0...tr

x0...xr
)

5. Suppose xi1 , . . . , xis
(i1 < · · · < is) are exactly the variables xi among the

x0, . . . , xr such that

xi ∈ free(∃xϕ) and xi 6= ti

Then, set

[∃xϕ]
t0 . . . tr

x0 . . . xr

= ∃u[ϕ
ti1 . . . tis

u

xi1 . . . xis
x

],

8

where u is x if x does not occur in ti1 . . . tis
; otherwise u is the first variable

in the list v0, v1, v2, . . . which does not occur in ϕ, ti1 . . . tis
.

Notice that this definition is very much like a program and in fact, similar
definitions need to be given in actual languages.

Let’s look at some examples.

1. [Pv0fv1v2]
v2v0v1

v1v2v3

= Pv0fv2v0

2. [∃v0Pv0fv1v2]
v4fv1v1

v0v2

= ∃v0[Pv0fv1v2
fv1v1v0

v2v0

] = ∃v0Pv0fv1fv1v1

3. [∃v0Pv0fv1v2]
v0v2v4

v1v2v0

= ∃v3[Pv0fv1v2
v0v3

v1v0

] = ∃v3Pv3fv0v2

There are some lemmas about substitution that will be important later on,
and that is what we will get to after some definitions.

First, some definitions that extend existing notations. Let J = 〈U, β〉 with
a0, . . . , ar ∈ A. Then:

β a0...ar

x0...xr
(y) =

{

β.y if y 6= x0, . . . , y 6= xr

ai if y = xi

and
J a0...ar

x0...xr
= 〈U, β a0...ar

x0...xr
〉

Here then is the main result about substitution.

Lemma 4 1. For every term t, J (t t0...tr

x0...xr
) = J J (t0)...J (tr)

x0...xr
(t)

2. For every formula ϕ, J |= ϕ t0...tr

x0...xr
iff J J (t0)...J (tr)

x0...xr
|= ϕ

Proof By induction on terms and formulas. �

4 Proof Theory

4.1 Introduction

Remember that we are on our way to proving Φ |= ϕ iff Φ ⊢ ϕ. We defined
what Φ |= ϕ means, that is when ϕ is a consequence of Φ. Now we will define
Φ ⊢ ϕ, that is when ϕ is provable from Φ. There are many ways of defining
the notion of proof and at first glance it may seem a hopeless task to nail down
exactly what it is that is allowed in a proof. Don’t mathmaticians expand their
set of techniques every so often? It will turn out that we will give a fairly
simple set of obvious proof rules that will be enough to prove the completeness
theorem. What we are doing is defining a calculus and the formulas derivable
in the calculus are exactly the provable formulas.

9

4.2 Sequent Rules

We will use the notion of a sequent : a nonempty list (sequence) of formulas. For
example, ϕ1 . . . ϕnϕ is a sequent. ϕ1 . . . ϕn is called the antecedent and ϕ is the
succedent. From the unique decomposition of formulas, we know that we can
uniquely determine the antecedent and succedent of a sequent. The antecedent
can be empty, but the succedent is not.

We will use Γ,∆, . . . to denote (possibly empty) sequences of formulas. We
will now define a sequent calculus. Here is an example.

Γ ¬ϕ ψ

Γ ¬ϕ ¬ψ
Γ ϕ

Think of this as saying that if you have a proof of both ψ and ¬ψ from
Γ ∪ {¬ϕ} then that constitutes a proof of ϕ from Γ.

If there is a derivation of the sequent Γ ϕ, then we write ⊢ Γ ϕ and we say
that Γ ϕ is derivable.

Definition 11 A formula ϕ is formally provable or derivable from a set Φ of
formulas (written Φ ⊢ ϕ) iff there are finetely many formulas ϕ1, . . . , ϕn in Φ
such that ⊢ ϕ1 . . . ϕn ϕ.

A sequent Γ ϕ is correct if Γ |= ϕ (more carefully {ψ : ψ is a member of
Γ} |= ϕ).

We will now introduce the rules of the sequent calculus and will show that
they are correct : when applied to correct sequents, they return correct sequents.
Antecedent Rule (Ant)

Γ ϕ

Γ′ ϕ
if every member of Γ is also a member of Γ′.

Assumption Rule (Assm)

Γ ϕ
if ϕ is a member of Γ.

Proof of correctness of the above rules is obvious, but let’s look at a proof to
make sure we know what is required. Remember showing that a rule is correct
requires showing that if the rule is applied to correct sequents, it returns a
correct sequent.

Correctness of Ant: If Γ ϕ is correct, then by definition Γ |= ϕ, (here we are
thinking of Γ as the set {ψ : ψ is a formula in Γ}) but since Γ ⊆ Γ′, (again, we
are thinking of Γ,Γ′ as sets, when they are really sequences) Γ′ |= ϕ as well.
Why? Note that Γ |= ϕ means that any interpretation that satisfies Γ satisfies
ϕ. Any interpretation that satisfies Γ′ also satisfies Γ, this is sometimes called
the monotonicity of FOL. By increasing a set of formulas, you either decrease

10

or do not affect the class of models satisfying the formulas.

Proof by Cases Rule (PC)
Γ ψ ϕ

Γ ¬ψ ϕ

Γ ϕ

Proof of correctness?

Contradiction Rule (Ctr)
Γ ¬ϕ ψ

Γ ¬ϕ ¬ψ
Γ ϕ

∨-Rule for the Antecedent (∨ A)
Γ ϕ ξ

Γ ψ ξ

Γ (ϕ ∨ ψ) ξ

∨-Rule for the Succedent (∨ S)

(a)
Γ ϕ

Γ (ϕ ∨ ψ)
(b)

Γ ϕ

Γ (ψ ∨ ϕ)

Using the existing rules, we can derive various sequents. We can also show
that rules themselves are derivable. These so called derived rules of inference are
derived, instead of made base rules, for the same reasons that the connectives
∧,→, etc. are thought of as abbreviations. We want to keep things simple. By
showing that they are derivable, we can use them as if they were built in, but
do not have to reason about them, i.e., they do not add to proof obligations.
At the other extreme, where we are interested not in the simplicity of the logic
(because we are exploring its inherent power), but where we are interested in
the usability of the logic, as is the case with ACL2, we can think of the ACL2
system as one big derived rule of inference.

Tertium non datur (Ctr)

(ϕ ∨ ¬ϕ)
Proof? We can prove it by assuming ϕ, getting ϕ ∨ ¬ϕ and similarly with

¬ϕ.

1. ϕ ϕ (Ant)
2. ϕ (ϕ ∨ ¬ϕ) (∨ S)
3. ¬ϕ ¬ϕ (Ant)
4. ¬ϕ (ϕ ∨ ¬ϕ) (∨ S)
5. (ϕ ∨ ¬ϕ) (PC)

11

There are other rules. Here are some of them.

Second Contradiction Rule (Ctr’)
Γ ψ

Γ ¬ψ
Γ ϕ

Chain Rule (Ch)
Γ ϕ

Γ ϕ ψ

Γ ψ

Contraposition Rules (Cp)

(a)
Γ ϕ ψ

Γ ¬ψ ¬ϕ

(b)
Γ ¬ϕ ¬ψ
Γ ψ ϕ

(c)
Γ ¬ϕ ψ

Γ ¬ψ ϕ

(d)
Γ ϕ ¬ψ
Γ ψ ¬ϕ

Modus ponens
Γ (ϕ→ ψ)
Γ ϕ

Γ ψ

4.3 Quantifier and Equality Rules

Now we will look at rules for quantifiers and equality.

∃-Introduction in the Succedent (∃ S)
Γ ϕ t

x

Γ ∃xϕ

Proof Suppose Γ |= ϕ t
x
. If J |= Γ, we have J |= ϕ t

x
. By the substitution

lemma, J J .t
x

|= ϕ and thus J |= ∃xϕ. �

The next rule corresponds to an often used argument used to prove that ψ
follows from ∃xϕ. One assumes that for some new y, ϕ y

x
. The intuition is that

this is a valid thing to do because nothing is known about y.

∃-Introduction in the Antecedent (∃ A)

Γ ϕ y
x

ψ

Γ ∃xϕ ψ
if y is not free in Γ ∃xϕ ψ.

Proof So, Γϕ y
x
|= ψ. Suppose J |= Γ and J |= ∃xϕ. Then there is an a such

that J a
x
|= ϕ, but by the coincidence lemma, (J a

y
)a

x
|= ϕ. Since J a

y
(y) = a,

we have (J a
y
)
J a

y
(y)

x
|= ϕ and by substitution lemma J a

y
|= ϕ y

x
. Since J |= Γ

and y 6∈ free.Γ, we get J a
y
|= Γ. Now, we get J a

y
|= ψ and therefore J |= ψ

because y 6∈ free.ψ. �

12

Finally, two rules about equality.

Reflexivity Rule for Equality (≡)

t ≡ t

Substitution Rule for Equality (Sub)

Γ ϕ t
x

Γ t ≡ t′ ϕ t′

x

Let’s review. A formula ϕ is derivable from Φ, written Φ ⊢ ϕ, iff there
are formulas ϕ1, . . . , ϕn in Φ such that ⊢ ϕ1 . . . ϕnϕ. From this definition, the
following lemma follows easily.

Lemma 5 For all Φ and ϕ, Φ ⊢ ϕ iff there is a finite subset Φ0 of Φ such that
Φ0 ⊢ ϕ.

We will prove a similar theorem, the compactness theorem, for |=. As a
preview, once we prove the completeness theorem, namely that the notions |=
and ⊢ are “equivalent” then we will be able to transfer results such as this one
from one realm to the other. The beauty is that sometimes results are trivial
to prove in one realm, but seem very deep in the other.

Theorem 2 For all Φ and ϕ, if Φ ⊢ ϕ then Φ |= ϕ.

Proof The proof is by induction on the structure of a derivation. Suppose
Φ ⊢ ϕ. Then, we have ⊢ Γϕ, for Γ ⊆ Φ. Since every rule is correct, every
derivable sequent is correct, hence Γϕ is correct, so Γ |= ϕ and Φ |= ϕ. �

This is one direction of the completeness theorem. Note that we now know
what Φ |= ϕ means and what Φ ⊢ ϕ means. It is surprising that mathematical
reasoning, the essence of mathematics, can be reduced to these simple proof
rules.

5 Consistency

After we introduced |=, consequence, we introduced satisfiability. The syntactic
counterpart is consistency.

Definition 12 Φ is consistent, written Con Φ, iff there is no formula ϕ such
that Φ ⊢ ϕ and Φ ⊢ ¬ϕ.

Φ is inconsistent, written Inc Φ iff Φ is not consistent (i.e., there is a formula
ϕ such that Φ ⊢ ϕ and Φ ⊢ ¬ϕ).

Lemma 6 Inc Φ iff for all ϕ: Φ ⊢ ϕ.

Proof Only (⇒) is not obvious, but it follows from (Ctr’). �

13

Lemma 7 Con Φ iff there is a ϕ such that not Φ ⊢ ϕ.

Proof Negate both sides of the previous lemma. �

Lemma 8 For all Φ, Con Φ iff Con Φ0 for all finite subsets Φ0 of Φ.

Proof Φ ⊢ ϕ iff Φ0 ⊢ ϕ for some finite subset Φ0 of Φ. �

Lemma 9 Sat Φ implies Con Φ.

Proof

Inc Φ

⇒ { Definition of Inc }

Φ ⊢ ϕ and Φ ⊢ ¬ϕ

⇒ { Correctness of the sequent calculus }

Φ |= ϕ and Φ |= ¬ϕ

⇒ { A formula is either true or false in a model }

not Sat Φ �

Lemma 10 For all Φ and ϕ the following holds:

1. Φ ⊢ ϕ iff Inc Φ ∪ {¬ϕ}.

2. Φ ⊢ ¬ϕ iff Inc Φ ∪ {ϕ}.

3. If Con Φ, then Con Φ ∪ {ϕ} or Con Φ ∪ {¬ϕ}.

Proof

Φ ⊢ ϕ

⇒ { }

Φ ∪ {¬ϕ} ⊢ ϕ and Φ ∪ {¬ϕ} ⊢ ¬ϕ

⇒ { Definition of Inc }

Inc Φ ∪ {¬ϕ}

⇒ { By definition of Inc, there is Γ ⊆ Φ }

⊢ Γ ¬ϕ ϕ

⇒ { Γ ¬ϕ ϕ
Γ ϕ ϕ (Assm)
Γ ϕ (PC) }

Φ ⊢ ϕ

14

The second part is similar.

IncΦ ∪ {ϕ} and IncΦ ∪ {¬ϕ}

⇒ { Parts 1, 2, above }

Φ ⊢ ¬ϕ and Φ ⊢ ϕ

⇒ { Definition of Inc }

Inc Φ �

We have assumed a fixed symbol set S. When we need to consider several
symbol sets simultaneously, we will use Φ ⊢S ϕ to indicate that that there is a
derivation with underlying symbol set S. Similarly ConS Φ denotes Con Φ with
underlying symbol set S.

Lemma 11 For all i ∈ ω, Si is a symbol set and Si ⊆ Si+1. Similarly for all
i ∈ ω, Φi is a set of Si-formulas such that ConSi

Φi and Φi ⊆ Φi+1.
Let S = ∪i∈ωSi and Φ = ∪i∈ωΦi. Then ConS Φ.

Proof

IncSΦ

⇒ { IncSΨ for finite Ψ s.t. Ψ ⊆ Φ, thus Ψ ⊆ Φk for some k }

IncSΦk

⇒ { Any derivation of ϕ, ¬ϕ is finite so all symbols are in Sm for m ≥ k }

IncSm
Φm

6 Completeness Theorem

To show: For all Φ and ϕ: If Φ |= ϕ then Φ ⊢ ϕ. We will instead show: Every
consistent set of formulas is satisfiable.
Proof

not Φ ⊢ ϕ implies not Φ |= ϕ

≡ { Lemma 10 }

Con Φ ∪ {¬ϕ} implies Sat Φ ∪ {¬ϕ}

⇐ { Instance of }

Con Ψ implies Sat Ψ �

15

6.1 Henkin’s Theorem

If Φ is consistent, then all we have is the syntactical info that this provides. Let’s
use it to find a model J = 〈U, β〉 of Φ. If A is TS and β(vi) = vi, f

U(t) = ft,
..., then for variable x we have J (fx) = fU(β.x) = fx, so J (fv0) 6= J (fv1),
but what if fv0 ≡ fv1 ∈ Φ? To overcome this, we define an equivalence relation
on terms.

First, we define an equivalence relation on TS : t1 ∼ t2 iff Φ ⊢ t1 ≡ t2.

Lemma 12

1. ∼ is an equivalence relation.

2. If t1 ∼ t′1, . . . , tn ∼ t′n then for n-ary f ∈ S: ft1 . . . tn ∼ ft′1 . . . t
′
n

and for n-ary R ∈ S: Φ ⊢ Rt1 . . . tn iff Φ ⊢ Rt′1 . . . t
′
n.

Proof Follows from previous chapter, e.g., there it is shown that ≡ is an equiv-
alence relation.

t1 ∼ t′1, . . . , tn ∼ t′n

≡ { Definition of ∼ }

Φ ⊢ t1 ≡ t′1, . . . ,Φ ⊢ tn ≡ t′n

⇒ { Results of last chapter }

Φ ⊢ ft1 . . . tn ≡ ft′1 . . . t
′
n

≡ { Definition of ∼ }

ft1 . . . tn ∼ ft′1 . . . t
′
n

Let t = {t′ ∈ TS : t ∼ t′}, i.e., t is the equivalence class of t.
Let TΦ be the set of equivalence classes: TΦ = {t : t ∈ TS}. Note that TΦ

is not empty. We now define the term structure over TΦ, T Φ as follows.

1. cT
Φ

= c

2. fT
Φ

(t1, . . . , tn) = ft1 . . . tn

3. RT
Φ

t1 . . . tn iff Φ ⊢ Rt1 . . . tn

Note that by Lemma 12, the definitions of fT
Φ

and RT
Φ

make sense.
We define the term interpretation associated with Φ to be J Φ = 〈T Φ, βΦ〉,

where βΦ(x) = x.

Lemma 13

1. For all t, J Φ(t) = t.

2. For every atomic formula ϕ, J Φ |= ϕ iff Φ ⊢ ϕ.

16

3. For every formula ϕ and pairwise disjoint variables x1, . . . , xn

(a) J ϕ |= ∃x1 . . . ∃xnϕ iff there are t1, . . . , tn ∈ TS s.t. J Φ |= ϕ t1...tn

x1...xn
.

(b) J ϕ |= ∀x1 . . . ∀xnϕ iff for all t1, . . . , tn ∈ TS we have J Φ |= ϕ t1...tn

x1...xn
.

Proof (1) By induction on terms. By definition it holds for variables and
constants. If t = ft1 . . . tn then

J Φ(ft1 . . . tn)

≡ { Definitions }

fT
Φ

(J Φ(t1), . . . ,J
Φ(tn))

≡ { Induction hypothesis }

fT
Φ

(t1, . . . , tn)

≡ { Definition of fT
Φ

}

ft1 . . . tn

(2)

J Φ |= t1 ≡ t2

≡ { Definitions }

J Φ(t1) = J Φ(t2)

≡ { by part (1) }

t1 = t2

≡ { definition of t }

t1 ∼ t2

≡ { Definition of ∼ }

Φ ⊢ t1 ≡ t2

J Φ |= Rt1 . . . tn

≡ { Definitions }

RT
Φ

(J Φ(t1)) . . . (J
Φ(tn))

≡ { by part (1) }

RT
Φ

t1 . . . tn

≡ { Definition of RT
Φ

}

17

Φ ⊢ Rt1 . . . tn

(c)

J Φ |= ∃x1 . . . ∃xnϕ

≡ { Definitions }

there are a1, . . . , an ∈ TΦ s.t. J Φ a1 . . . an

x1 . . . xn

|= ϕ

≡ { TΦ = {t : t ∈ TS} }

there are t1, . . . , tn ∈ TS s.t. J Φ t1 . . . tn

x1 . . . xn

|= ϕ

≡ { by part (1) }

there are t1, . . . , tn ∈ TS s.t. J ΦJ Φ(t1) . . .J Φ(tn)

x1 . . . xn

|= ϕ

≡ { Substitution lemma }

there are t1, . . . , tn ∈ TS s.t. J Φ |= ϕ
t1 . . . tn

x1 . . . xn

Part 2 of c is similar. �

Where are we? Well, by the previous lemma J Φ is a model of the atomic
formulas in Φ, but we do not know that it is a model of all formulas in Φ. In fact,
it isn’t. Consider Φ = {∃xRx}. Then, by (3) of the previous lemma, J Φ |= Φ
iff there is a term (in our case a variable) y such that ∃xRx ⊢ Ry, but this does
not hold, as one of the exercises requires you to show. Consider Φ∪ {¬Ry : y is
a variable }. This set is satisfiable, thus consistent, but for no term t ∈ TS do
we have Φ ⊢ Rt.

What is missing are some closure conditions that we now specify.

Definition 13

Φ is negation complete iff for every formula ϕ, Φ ⊢ ϕ or Φ ⊢ ¬ϕ.
Φ contains witnesses iff for every formula of the form ∃xϕ, there is a term t

such that Φ ⊢ (∃xϕ→ ϕ t
x
).

Lemma 14 If Φ is consistent, negation complete, and contains witnesses, then
for all ϕ and ψ.

1. Φ ⊢ ¬ϕ iff not Φ ⊢ ϕ

2. Φ ⊢ (ϕ ∨ ψ) iff Φ ⊢ ϕ or Φ ⊢ ψ

3. Φ ⊢ ∃xϕ iff there is a term t s.t. Φ ⊢ ϕ t
x

18

Proof (a) Since Φ is negation complete, Φ ⊢ ϕ or Φ ⊢ ¬ϕ. Since it is consistent,
not both.

(b) (⇐): Use (∨ S). (⇒): If not Φ ⊢ ϕ, then Φ ⊢ ¬ϕ by negation complete-
ness, but then Φ ⊢ ψ by sequent calculus.

(c)

Φ ⊢ ∃xϕ

⇒ { Φ contains witnesses, so ∃ t s.t. Φ ⊢ (∃xϕ→ ϕ t
x
), modus ponens }

Φ ⊢ ϕ
t

x

⇒ { (∃S) sequent calculus }

Φ ⊢ ∃xϕ �

Theorem 3 (Henkin’s Theorem)

If Φ is consistent, negation complete, and contains witnesses, then for all ϕ,
J Φ |= ϕ iff Φ ⊢ ϕ.
Proof By induction on the structure of formulas (number of connectives and
quantifiers). We already proved it for atomic formulas.

(1) ϕ = ¬ψ

J Φ |= ¬ψ

≡ { Defs }

not J Φ |= ψ

≡ { Induction hypothesis }

not Φ ⊢ ψ

≡ { Lemma 14 }

Φ ⊢ ¬ψ

(2) ϕ = (ψ ∨ ξ)

J Φ |= (ψ ∨ ξ)

≡ { Defs }

J Φ |= ψ or J Φ |= ξ

≡ { Induction hypothesis }

Φ ⊢ ψ or Φ ⊢ ξ

≡ { Lemma 14 }

Φ ⊢ (ψ ∨ ξ)

19

(3) ϕ = ∃xψ

J Φ |= ∃xψ

≡ { Defs, lemma 13 }

there is a t s.t. J Φ |= ψ
t

x

≡ { Induction hypothesis, rank ψ t
x

= rank ψ < rank ϕ }

Φ ⊢ ψ
t

x

≡ { Lemma 14 }

Φ ⊢ ∃xψ

7 Satisfiability of Countable Consistent Sets

What we can do now is to show that and consistent set of formulas can be
extended to one that is consistent, negation complete, and contains witnesses.
Then, from Henkin’s theorem we get the completeness theorem.

Once we show the equivalence between |= and ⊢, we can transfer properties of
one to the other, e.g., we can prove the compactness theorem for |= by tranfering
it from the analogous theorem about ⊢.

Theorem 4 (a) Φ |= ϕ iff there is a finite Φ0 ⊆ Φ such that Φ0 |= ϕ.
(b) Sat Φ iff for all finite Φ0 ⊆ Φ, Sat Φ0.

In addition, given that the term interpretation is a model of a set of formulas
and that the size of the term interpretation is bound by the size of TS , we have
the Löwenheim-Skolem theorem.

Theorem 5 Every satisfiable and at most countable set of formulas is satisfiable
over a domain which is at most countable.

8 Gödel’s Incompleteness Theorems

8.1 Gödel’s First Incompleteness Theorem

Here is an overview of Gödel’s incompleteness theorem applied to set theory. A
set S is recursive iff there is a Turing machine that for any input returs yes or
no, depending on whether the input is an element or not. Assuming Con(ZF)
(that ZF is consistent), the set {ϕ : ZF ⊢ ϕ} is not recursive. (Why do we
assume Con(ZF)? Otherwise, all formulas follow from ZF.) More generally, for
any consistent extension C of ZF, we have {ϕ : C ⊢ ϕ} is not recursive. We
will not prove this, but it should be intuitively clear: we can embed Turing
machines in set theory and we can write a formula that folds iff some Turing
machine terminates.

20

Theorem 6 (Gödel’s first incompleteness theorem.) If C is a recursive consis-
tent extension of ZF, then it is incomplete, i.e., there is a formula ϕ such that
C 6⊢ ϕ and C 6⊢ ¬ϕ.

Proof Outine: If not, then for every ϕ, either C ⊢ ϕ or C ⊢ ¬ϕ. We can now
decide C ⊢ ϕ: enumerate all proofs of C. Stop when a proof for ϕ or ¬ϕ is
found. �

In ZF, the axiom of choice is neither provable nor refutable. In ZFC, the
continuum hypothesis is neither provable nor refutable. By Gödel’s first incom-
pleteness theorem, no matter how we extend ZFC, there will always be sentences
which are neither provable nor refutable.

8.2 G’́odel’s Second Incompleteness Theorem

This material is from a post to FOM by Harvey Friedman that addresses both
of Gödel’s incompleteness theorems.

To make things as familiar as possible, we treat PA. We assume familiarity
with Turing machines and their formalization in PA.

In particular, we will assume that every n ≥ 0 is the Gödel number of a
Turing machine. We write TM[n] for the n-th Turing machine.

We begin with the description of a particularly simple, fascinating(!) and
diabolical(!) Turing machine TM.

At input n, TM searches for a proof in PA that ”TM[n] does not halt at n”.
When it finds one, it immediately halts (and returns 0). Otherwise, TM will
not halt.

Let TM be TM[k]. What if we run TM[k] at k?
Case 1. There is a proof in PA that ”TM[k] does not halt at k”. Then TM[k]

halts at k (by the action of TM = TM[k]). But then PA proves ”TM[k] halts
at k”. Since PA is CONSISTENT, this case is impossible.

Case 2. There is no proof in PA that ”TM[k] does not halt at k”. Then
TM[k] does not halt at k (by the action of TM = TM[k]).

Note that we have proved:
There is no proof in PA that ”TM[k] does not halt at k”. TM[k] does not

halt at k.
These two lines give us a form of Gödel’s 1st Incompleteness Theorem for

PA.
But note, that the proof was done within PA + Con(PA), which we now

exploit.
If PA were to prove Con(PA), then PA would prove
There is no proof in PA that ”TM[k] does not halt at k”. TM[k] does not

halt at k.
From this, we see that PA would prove
There is no proof in PA that ”TM[k] does not halt at k”. PA proves ”TM[k]

does not halt at k”.
Hence PA would be INCONSISTENT.

21

Thus PA cannot prove its own consistency. This is Gödel’s 2nd incomplete-
ness theorem.

22

