
Lecture 9

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 9

Slides by Pete Manolios for CS4820

Normal Forms
Minimizing DNF has many applications

this is used to analyze the reliability of safety-critical systems

CNF is the input format of modern SAT solvers

this is the so-called DIMACS format

modern SAT solvers can solve industrial problems with 1M variables

There are many other “normal” forms for Boolean formulae

decision trees: widely used in machine learning

BDDs: very powerful representation used in verification, AI, program
analysis, …

Slides by Pete Manolios for CS4820

Set Theory Connections
Set Theory forms the foundations of mathematics

Set Theory provides foundations of ACL2s:

the universe, U, is a set

recognizers, predicates, etc. in ACL2s are defined in terms of sets

atoms in a propositional skeleton are predicates (subsets of U)

It turns out that there are interesting connections between propositional logic
and set theory

Here is an example

 is valid (in propositional logic) iff

 is valid (in set theory)

there are obvious similarities in the two formulas above

Let’s explore the connections a little bit

p ∧ (p ∨ q) ≡ p
P ∩ (P ∪ Q) = P

Slides by Pete Manolios for CS4820

Set Theory Connections
Boolean Algebra of (non-empty) X: a non-empty subset of the 2X closed under
union, intersection and complementation (with respect to X)

Let U be the ACL2s universe

Then B = {∅, U} is the smallest Boolean algebra of U

The largest Boolean algebra of U is 2U

B is isomorphic to propositional logic: ∅ for F and U for T

 correspond, respectively, to the (set theoretic)

In a Boolean algebra, atoms correspond to unary predicates, e.g., in 2U:

for clarity’s sake, we use upper case vars to indicate atoms in 2U

let be

let be

so (in 2U) means

A Boolean algebra formula is valid if = , e.g.: (in 2U) means

In general, a formula in 2U corresponds to the subset of U for which it holds

∨ , ∧ , ¬ ∪ , ∩ , ¬

P {x ∈ U : (integerp x)}
Q {x ∈ U : (neg-rationalp x)}
P ∧ Q P ∩ Q = {x ∈ U : (negp x)}

U P ∨ ¬P P ∪ ¬P = U

Slides by Pete Manolios for CS4820

Boolean Algebra of (non-empty) X: a non-empty subset of the 2X closed under union,
intersection and complementation (with respect to X)

 correspond, respectively, to the (set theoretic)

In general, a formula in 2U corresponds to the subset of U for which it holds

Can extend Boolean algebra with , etc, using the propositional equalities:

 is :

 is : W =

The equalities of propositional logic & Boolean algebra are the same!

Propositional logic validity:

Boolean algebra: (in 2U) is valid since

Check the rest of the equalities in the notes

The result is useful when analyzing propositional logic formulas, e.g.:

 is valid iff

 is valid (because is valid iff holds)

∨ , ∧ , ¬ ∪ , ∩ , ¬

⇒ , ≡
P ⇒ Q ¬P ∨ Q S = {x ∈ U : (implies (P x) (Q x))}
P ≡ Q (P ⇒ Q) ∧ (Q ⇒ P) {x ∈ U : (iff (P x) (Q x))}

p ∨ ¬p

P ∨ ¬P = U

p ∧ (p ∨ q) ≡ p

P ∩ (P ∪ Q) = P P ≡ Q P = Q

Set Theory Connections

1 32
4

Which regions are in S?

U

P Q

Which regions are in W?

2,3,4

2,4

(intersection of above)

Regions for ?Q ⇒ P
2,1,4

Slides by Pete Manolios for CS4820

BDDs and Decision Trees
A BDD on x1, …, xn is a DAG G=(V, E) where

exactly 1 vertex has indegree 0 (the root)

all vertices have outdegree 0 (leaves) or 2 (inner nodes)

the inner nodes are labeled from {x1, …, xn}

the leaves are labeled from {0, 1}

one of the edges from an inner node is labeled by 0; the other by 1

The BDD G=(V, E) represents a Boolean function, say f

for any assignment A in Bn, f(A) is computed recursively from root

if we reach a leaf, return the label

for inner nodes, say labeled with xi, take the edge labeled by A(xi)

A decision tree is a BDD whose graph is a tree

A BDD is an OBDD if there is a permutation on p={1,2, …, n} s.t. for all edges (u,
v) in E, where u, v are labeled by xi, xj, we have that pi < pj

An OBDD is an ROBDD if it has no isomorphic subgraphs and all children are
distinct

Images from Wikipedia

Slides by Pete Manolios for CS4820

BDDs and Decision Trees

Images from Wikipedia

Decision Tree for f ROBDD for f

How do we generate DNF from a decision tree? ROBDD?

Slides by Pete Manolios for CS4820

BDDs
Decision trees are widely used, e.g., in machine learning (ID3, C4.5, …)

BDDs are widely used (BDD usually means ROBDD)

Popularized by Bryant

Very efficient algorithms for constructing, manipulating BDDs

Used in verification, synthesis, fault trees, security, AI, model checking, static analysis, …

Bryant’s paper was the most cited research paper (at some point)

Many BDD packages available

Once a variable ordering is selected, BDDs are canonical!

Construct decision tree using Shannon expansion and merge isomorphic nodes, remove
nodes who children are equal until you reach a fixpoint

To see, this note that BDDs are essentially DFA that recognize strings in {0,1}n and such
automata can be minimized (note nodes with equal children remain)

So, checking equality is just pointer equality (with appropriate data structures)

Can be used for model checking: represent set of reachable states & transition system with
BDDs

Bryant, Clarke, Emerson & McMillan got 1998 Paris Kanellakis Award for symbolic model
checking

Slides by Pete Manolios for CS4820

BDD Break
Made the safety-analysis repo public; see link from slides

Find someone you haven’t spoken to yet

Come up with an example formula over 4 variables where variable
order matters wrt BDD size

Slides by Pete Manolios for CS4820

Variable Ordering for BDDs

Images from Wikipedia

Bad Ordering Good Ordering

Variable ordering matters: find the best ordering is hard.

What function is this?

Slides by Pete Manolios for CS4820

Projects & Presentations
Talk with me regarding projects

Set up 1/2 - 1 hour slots to go over project ideas

Some ideas (groups 1-2)

Better induction proofs

Refinement: verification

Distributed system verification: perimeter monitoring example, etc

CyC: ontology engineering (Doug Lenat)

AI & FM: Reasoning about programs

Reproduce interesting result

Survey paper on some FM topic

Harrison’s book in ACL2s

Slides by Pete Manolios for CS4820

Algorithms for SAT
Modern SAT solvers accept input in CNF

Dimacs format:

1 -3 4 5 0

2 -4 7 0

…

Davis & Putnam Procedure (DP)

Dates back to the 50’s

Based on resolution

Helps to explain learning

Slides by Pete Manolios for CS4820

DP SAT Algorithm
Davis Putnam (1960)

Input: CNF formula

Output: SAT/UNSAT

Idea: apply three rules until

Derive the empty clause: UNSAT (identity of is false)

No clauses remain: SAT (identity of is true)

Three “rules”

Pure literal rule (affirmative-negative rule)

Unit resolution rule (unit propagation, BCP, 1-literal rule)

Resolution (Called consensus, also used for logic minimization)

∨
∧

Slides by Pete Manolios for CS4820

Pure Literal Rule

Given , a set of clauses, and literal ℓ such

ℓ appears in

¬ℓ does not appear in

remove all clauses containing ℓ

Equisatisfiable because we can make ℓ true

Notice that this always simplifies

Modern SAT solvers tend to not use the rule (efficiency)

F
F

F

F

Slides by Pete Manolios for CS4820

Boolean Constraint Propagation

BCP: given a set of clauses including {ℓ}

remove all other clauses containing ℓ (subsumption)

remove all occurrences of ¬ℓ in clauses (unit resolution)

repeat until a fixpoint is reached

Unit resolution rule:

C, ¬ℓ ℓ

C

Slides by Pete Manolios for CS4820

Resolution

Soundness of rule: above line implies below line

If below line is SAT, so is above line (w/ side conditions)

Given literal p, set of clauses S, let P be the clauses in S that contain p
only positively and let N be the clauses that contain p only negatively.
Let E be the rest of the clauses. Then S is SAT iff S’ is SAT, where S’= E
U the set of all p-resolvents of P and N.

Proof: If A is an assignment for S, then if A(p)=true, all clauses in N,
with ¬p removed are satisfied, so each p-resolvent is satisfied. Similarly
if A(p)=false. If A is an assignment for S’, then it satisfies all Ci or all Di:
suppose it doesn’t satisfy Ck, then it must satisfy all Di. If it satisfies all
Ci, let A’(p)=false, else A’(p)=true and A’(x)=A(x) otherwise.

Resolution rule:

C, v D, ¬v

C, D

¬v,v ∉ C,D

Resolution rule:

Ci, p Di, ¬p

Ci, Di

¬p ∉ Ci ∈ P ,p ∉ Di ∈ N

Slides by Pete Manolios for CS4820

Resolution Example
Resolution rule:

C, v D, ¬v

C, D

C, D are clauses, ¬v∉C and v∉D

{{¬p, q, r, s}, {p, ¬q, s}, {¬p, ¬q, r, ¬s}, {p, ¬r, ¬s}, {¬p, ¬q, ¬r}, {p, q}, {¬p, ¬q, s}}

{{p, ¬r, ¬s}, {¬p, r, s}, {p, s}}

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively
and let N be the clauses that contain p only negatively. Let E be the rest of the clauses.
Then S is SAT iff S’ is SAT, where S’= E U the set of all p-resolvents of P and N.

Resolve on q {¬p, p, r, s} Notice that clauses that contain a literal and

its negation can be thrown away. Why?

Slides by Pete Manolios for CS4820

Resolution Example
Resolution rule:

C, v D, ¬v

C, D

C, D are clauses, ¬v∉C and v∉D

{{¬p, q, r, s}, {p, ¬q, s}, {¬p, ¬q, r, ¬s}, {p, ¬r, ¬s}, {¬p, ¬q, ¬r}, {p, q}, {¬p, ¬q, s}}

{{p, ¬r, ¬s}, {¬p, r, s}, {p, s}}

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively
and let N be the clauses that contain p only negatively. Let E be the rest of the clauses.
Then S is SAT iff S’ is SAT, where S’= E U the set of all p-resolvents of P and N.

Resolve on q

Resolve on r

{{p, s}} Sat, resolve on p to get {} or use pure literal rule

{¬p, p, r, s} Notice that clauses that contain a literal and

its negation can be thrown away. Why?

How do we generate a satisfying assignment? Next homework

Slides by Pete Manolios for CS4820

DP SAT Algorithm
Input: CNF formula, Output: SAT/UNSAT

Base case: empty clause: UNSAT

Base case: no clauses: SAT

Apply these two rules until fixpoint

Pure literal rule

BCP

Choose var, say x, perform all possible resolutions, remove trivial
clauses and clauses containing x

Repeat

Existentially quantify variables, one at a time

Problem: space blow-up

