Lecture 9

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 9

Normal Forms

» Minimizing DNF has many applications
» this is used to analyze the reliability of safety-critical systems
» CNF is the input format of modern SAT solvers
» this is the so-called DIMACS format
» modern SAT solvers can solve industrial problems with 1M variables

» There are many other “normal” forms for Boolean formulae
» decision trees: widely used in machine learning

» BDDs: very powerful representation used in verification, Al, program
analysis, ...

Slides by Pete Manolios for CS4820

Set Theory Connections

» Set Theory forms the foundations of mathematics

» Set Theory provides foundations of ACL2s:
» the universe, U, is a set
» recognizers, predicates, etc. in ACL2s are defined in terms of sets
» atoms in a propositional skeleton are predicates (subsets of U)

» It turns out that there are interesting connections between propositional logic
and set theory

» Here Is an example
*pA(pV q)=p isvalid (in propositional logic) iff
» PN (PUQ) = Pisvalid (in set theory)

» there are obvious similarities in the two formulas above

» Let’s explore the connections a little bit

Slides by Pete Manolios for CS4820

Set Theory Connections

» Boolean Algebra of (non-empty) X: a non-empty subset of the 2X closed under
union, intersection and complementation (with respect to X)

» Let U be the ACL2s universe

» Then B = {@, U} is the smallest Boolean algebra of U
» The largest Boolean algebra of U is 2V

» B is isomorphic to propositional logic: @ for F and U for T

” VvV, A, correspond, respectively, to the (set theoretic) U, N, -

» In a Boolean algebra, atoms correspond to unary predicates, e.g., in 2Y:

» for clarity’s sake, we use upper case vars to indicate atoms in 2V
*let P be {x € U : (integerp x)}
*let O be {x € U : (neg-rationalp x)}
»sSoPAQ({in2V)means PN QO = {x € U : (negp x)}
» A Boolean algebra formula is valid if = U, e.g.: PV =P (in2Vy means PU =P = U

» In general, a formula in 2Y corresponds to the subset of U for which it holds

Slides by Pete Manolios for CS4820

Set Theory Connections

» Boolean Algebra of (non-empty) X: a non-empty subset of the 2X closed under union,
intersection and complementation (with respect to X)

» V, A, correspond, respectively, to the (set theoretic) U, N, —

» In general, a formula in 2V corresponds to the subset of U for which it holds

» Can extend Boolean algebra with = , =, etc, using the propositional equalities:
*P=> Qis"PvQO:S={xe€ U: (mplies (P x) (O x))} J
PP=0Qis(P=>0)A0=>P):W={xe U: ff (P x) (O x)} 4
» The equalities of propositional logic & Boolean algebra are the same!
? Propositional logic validity: p V —1p ” “
» Boolean algebra: P V =P (in 2Y) is valid since = U Which regions are in S?
» Check the rest of the equalities in the notes 2,34
» The result is useful when analyzing propositional logic formulas, e.g.: Regionszf(irélQ = P?

*pA(pVq) =p isvalid iff
Which regions are in W?
*PN(PUQ) =P isvalid (because P = Q is valid iff P = Q holds) 2.4

(intersection of above)

Slides by Pete Manolios for CS4820

BDDs and Decision Trees

» A BDD on X1, ..., Xn is a DAG G=(V, E) where

» exactly 1 vertex has indegree 0O (the root)

» all vertices have outdegree 0 (leaves) or 2 (inner nodes)

» the inner nodes are labeled from {x1, ..., Xn}

» the leaves are labeled from {0, 1}

» one of the edges from an inner node is labeled by 0; the other by 1
» The BDD G=(V, E) represents a Boolean function, say f

» for any assignment A in Bn, f(A) is computed recursively from root

» if we reach a leaf, return the label

» for inner nodes, say labeled with xi, take the edge labeled by A(xi)
» A decision tree is a BDD whose graph is a tree

» A BDD is an OBDD if there is a permutation on p={1,2, ..., n} s.t. for all edges (u,
V) in E, where u, v are labeled by x;, x;, we have that p; < p;

» An OBDD is an ROBDD if it has no isomorphic subgraphs and all children are
distinct

Images from Wikipedia
Slides by Pete Manolios for CS4820

BDDs and Decision Trees

o ¢

UUUUUUUU

>

-l OO0 == 0OOIN
>

—_ O - O - 0O -=0O|W
-t ek OO =000 =™

| %
—t ek ek = OO OO =

Decision Tree for f ROBDD for f

How do we generate DNF from a decision tree? ROBDD?

Images from Wikipedia
Slides by Pete Manolios for CS4820

BDDs

» Decision trees are widely used, e.g., in machine learning (ID3, C4.5, ...)

» BDDs are widely used (BDD usually means ROBDD)
» Popularized by Bryant
» Very efficient algorithms for constructing, manipulating BDDs
» Used in verification, synthesis, fault trees, security, Al, model checking, static analysis, ...
» Bryant’s paper was the most cited research paper (at some point)

» Many BDD packages available

» Once a variable ordering is selected, BDDs are canonical!

» Construct decision tree using Shannon expansion and merge isomorphic nodes, remove
nodes who children are equal until you reach a fixpoint

» To see, this note that BDDs are essentially DFA that recognize strings in {0,1}" and such
automata can be minimized (note nodes with equal children remain)

» S0, checking equality is just pointer equality (with appropriate data structures)

» Can be used for model checking: represent set of reachable states & transition system with
BDDs

» Bryant, Clarke, Emerson & McMillan got 1998 Paris Kanellakis Award for symbolic model
checking

Slides by Pete Manolios for CS4820

BDD Break

» Made the safety-analysis repo public; see link from slides

» FiInd someone you haven’t spoken to yet

» Come up with an example formula over 4 variables where variable
order matters wrt BDD size

Slides by Pete Manolios for CS4820

Variable Ordering for BDDs

Variable ordering matters: find the best ordering is hard.

Bad Ordering Good Ordering

What function is this?
Images from Wikipedia

Slides by Pete Manolios for CS4820

Projects & Presentations

» Talk with me regarding projects
» Set up 1/2 - 1 hour slots to go over project ideas
» Some ideas (groups 1-2)
» Better induction proofs
» Refinement: verification
» Distributed system verification: perimeter monitoring example, etc
» CyC: ontology engineering (Doug Lenat)
» Al & FM: Reasoning about programs
» Reproduce interesting result
» Survey paper on some FM topic

» Harrison’s book in ACL2s

Slides by Pete Manolios for CS4820

Algorithms for SAT

» Modern SAT solvers accept input in CNF

» Dimacs format:
»1-3450
»2-470
b ...
» Davis & Putham Procedure (DP)
» Dates back to the 50’s
» Based on resolution

» Helps to explain learning

Slides by Pete Manolios for CS4820

DP SAT Algorithm

» Davis Putnam (1960)
» Input: CNF formula
» Output: SAT/UNSAT

» |dea: apply three rules until
» Derive the empty clause: UNSAT (identity of V is false)

” No clauses remain: SAT (identity of A is true)

» Three “rules”
» Pure literal rule (affirmative-negative rule)
» Unit resolution rule (unit propagation, BCP, 1-literal rule)

» Resolution (Called consensus, also used for logic minimization)

Slides by Pete Manolios for CS4820

Pure Literal Rule

» Given F, a set of clauses, and literal £ such
» ¢ appears in F

» =f does not appear in I
» remove all clauses containing ¢

» Equisatisfiable because we can make { true

* Notice that this always simplifies [

» Modern SAT solvers tend to not use the rule (efficiency)

Slides by Pete Manolios for CS4820

Boolean Constraint Propagation

Unit resolution rule:
C, ¢ P
C

» BCP: given a set of clauses including {{}
» remove all other clauses containing £ (subsumption)
» remove all occurrences of =£ in clauses (unit resolution)

» repeat until a fixpoint is reached

Slides by Pete Manolios for CS4820

Resolution

Resolution rule: Resolution rule:

C,v D -v,v ¢ C,D Cip Dip
C,D Ci, Di

pgCeP.,pgDieN

» Soundness of rule: above line implies below line
> If below line is SAT, so is above line (w/ side conditions)

» Given literal p, set of clauses S, let P be the clauses in S that contain p
only positively and let N be the clauses that contain p only negatively.
Let E be the rest of the clauses. Then S is SAT iff S’ is SAT, where S’= E
U the set of all p-resolvents of P and N.

» Proof: If A is an assignment for S, then if A(p)=true, all clauses in N,
with =p removed are satisfied, so each p-resolvent is satisfied. Similarly
if A(p)=false. If A is an assignment for S’, then it satisfies all Ci or all Di:
suppose it doesn’t satisfy Ck, then it must satisfy all Di. If it satisfies all
Ci, let A’(p)=false, else A’(p)=true and A’(x)=A(x) otherwise.

Slides by Pete Manolios for CS4820

Resolution Example

Resolution rule:
C,V D, =v
C,D

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively
and let N be the clauses that contain p only negatively. Let E be the rest of the clauses.
Then S is SAT iff S” is SAT, where S’= E U the set of all p-resolvents of P and N.

C, D are clauses, —-v¢C and vgD

Resolve on g {7p.p,1,5} Notice that clauses that contain a literal and
{@p =r, s, {—p,r,s), {p, s)) its negation can be thrown away. Why?

Slides by Pete Manolios for CS4820

Resolution Example

Resolution rule:
C,V D, =v
C,D

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively
and let N be the clauses that contain p only negatively. Let E be the rest of the clauses.
Then S is SAT iff S” is SAT, where S’= E U the set of all p-resolvents of P and N.

C, D are clauses, —-v¢C and vgD

U p.qrsy,\p.7q. s}, {p.qg,r,mshAp, sy U p, g, oy, Ap. gt L p, g, st

Resolve on g {7p.p,1,5} Notice that clauses that contain a literal and
HUp,—r,=s}, {—p,r,s}, {p,s}} its negation can be thrown away. Why?

Resolve onr

Hp,s}} Sat, resolve on p to get {} or use pure literal rule

How do we generate a satisfying assignment? Next homework

Slides by Pete Manolios for CS4820

DP SAT Algorithm

» Input: CNF formula, Output: SAT/UNSAT
» Base case: empty clause: UNSAT

» Base case: no clauses: SAT

» Apply these two rules until fixpoint

» Pure literal rule
» BCP

» Choose var, say x, perform all possible resolutions, remove trivial
clauses and clauses containing x

» Repeat
» Existentially quantify variables, one at a time

» Problem: space blow-up

Slides by Pete Manolios for CS4820

