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ACL2 is . . .
A programming language: 

Applicative, functional subset of Lisp

Compilable and executable

Untyped, first-order


A mathematical logic: 
First-order predicate calculus

With equality, induction, recursive definitions


Ordinals up to  (termination & induction)


A mechanical theorem prover: 
Integrated system of ad hoc proof techniques 
Heavy use of term rewriting 
Largely written in ACL2

ϵ0
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Automated 
Rev-Rev 
DEMO



ACL2 System Architecture
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Driving ACL2
You may begin to get the idea that the machine does everything for you. 
This is not true. A more accurate view is that the machine is a proof 
assistant that fills in the gaps in your “proofs.” These gaps can be huge. 
When the system fails to follow your reasoning, you can use your 
knowledge of the mechanization to figure out what the system is 
missing. 

You are responsible for guiding ACL2 by proving the appropriate lemmas

Rules generated by lemmas are rewrite rules

You have to learn to program ACL2

That involves building a mental model 

The ACL2 book advocates “the method” 

Once a proof attempt is started, one can interact with ACL2 only by 
interrupting the proof attempt
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Proof Dags

In the proof dag, every node 
corresponds to a lemma

To lead ACL2 to a proof, you must 
prove every lemma (using a 
topological sort)

As a practical matter, you may not 
have the dag

The Method is a way of using 
ACL2 to discover it

Main

CA

A1

B

C2A3A2

A2bA2a

C1



Slides by Pete Manolios for CS4820

The Method
In ACL2s, we have an editor and a session

Our code is in the editor, initially containing the main theorem

When we are done, the editor will contain a topological sort of a proof 
dag

During the project, the editor has a “line”


Above the line, is the done list: successful commands

Below line, to-do list: remaining commands
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The Method

Add lemmas 
to front of to-
do list

Yes

No

Advance the line.  Abort if it takes too long. Did 
ACL2s succeed?

Think about the first theorem in the to-do list. Have 
the necessary lemmas been proved? 

Inspect proof 
checkpoint.  
Modify editor

Yes
No
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The Method
Rev-Rev 
DEMO
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Theorem Proving Strategies
ACL2 is really a programmable theorem prover

Define a “normal” form & rules that assume/respect it 

Coming up with a rewrite strategy is key, e.g., if app associates to the 
left, then rules that associate it to the right are going to cause loops

In addition to rewrite rules, there are built-in-clause, clause-processor, 
compound-recognizer, congruence, definition, elim, equivalence, 
forward-chaining, generalize, induction, linear, meta, refinement, tau-
system, type-prescription, type-set-inverter and well-founded-relation 
rules and many options for controlling how they work 

You can also provide hints, including computed-hints, which allow you to 
write a program that computes hints based on the goal under 
consideration

You can define your own theorem prover (meta rules), use external 
solvers (clause-processors), etc
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Gaming
This part of the book is concerned with the mechanization of the logic. Our goal is to 
teach you how to use the theorem prover. We start, in this chapter, by sketching how 
the theorem prover works. Of course, knowing how something works—e.g., an 
automobile, a programming language, a violin—is quite different from knowing how to 
use it effectively.

As you read this chapter you may begin to get the idea that the machine does 
everything for you. This is not true. A more accurate view is that the machine is a proof 
assistant that fills in the gaps in your “proofs.” These gaps can be huge. When the 
system fails to follow your reasoning, you can use your knowledge of the 
mechanization to figure out what the system is missing. But you may find that the 
machine’s inability to fill in the gap is because your “proof” was simply wrong. Indeed, 
you may even find that the formula you “proved” is not even a theorem! 

You may come to think of the proof process as a game. The theorem is the 
“opponent.” It will use all legal means to dodge your weapons and squirm free of your 
traps and fences. It can hide amid innocuous detail, shatter into a swarm of 
subproblems, or stand crystalline still and shimmering in front of you, daring you to find 
a chink in its armor. In recognition of this view of theorem proving we have named this 
part of the book “Gaming.” You will be hard pressed to find a more challenging game. 

Kaufmann, Manolios, Moore in Computer-Aided Reasoning: An Approach



Organization of ACL2
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The draw is 
orchestrated that 
we do not try to 
prove a subgoal by 
induction until we 
have processed 
every subgoal 
produced by the 
last induction.

The top-level goal 
is put in the pool. 


When a formula 
is drawn out, it is 
passed to proof 
techniques until 
one applies.
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Induction
When a formula arrives at the induction technique, ACL2 computes all the 
inductions suggested by the terms in the formula. 

It then compares them, possibly combining several into one, and selects 
one regarded as most appropriate.

It applies the scheme to the formula at hand, uses simple propositional 
calculus to normalize the result, and puts each of the new formulas back 
into the pool. 

Propositional calculus normalization may make the instantiation of the 
induction scheme look different than the scheme itself. For example, 
instead of , propositional normalization 
produces two formulas:  and .

It is possible to prove an induction rule (see induction) so that a term 
suggests other inductions. 

You can override its choice of induction by supplying an induction hint. 

(q ∧ (α′￼⇒ β′￼)) ⇒ (a ⇒ β)
(q ∧ ¬α′￼∧ α) ⇒ β (q ∧ β′￼∧ α) ⇒ β
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Simplification Overview
Simplification is the heart of the theorem prover. It:


applies propositional calculus, equality, and linear arithmetic decision 
procedures, 

uses type information and forward chaining rules to construct a 
“context” describing the assumptions of each subterm, 

rewrites each subterm in the appropriate context, using definitions, 
conditional rewrite rules, and metafunctions, 

uses propositional calculus normalization to convert the resulting 
formula to an equivalent set of formulas, reduces the set under 
subsumption, and deposits the surviving formulas back in the pool.


The simplifier is not guaranteed to produce formulas that are stable under 
simplification; repeated trips through the simplifier, via insertion and 
extraction from the pool, are used to reach the final stable form (if any). 
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Destructor Elimination
Elim rule example: suppose a formula mentions (CAR A) and (CDR A). If A is a 
cons, we could replace A by (CONS A1 A2), for new variables A1 and A2, 
allowing us to replace (CAR A) and (CDR A) with A1 and A2. 

CAR-CDR-ELIM axiom: (=> (consp x)  (== (cons (car x) (cdr x)) x))

This axiom is an example of a more general form: 


(=> (hyp x) (== (constructor (dest1 x) . . . (destn x)) x)) 

Such theorems can be stored as “destructor elimination” or elim rules. 

The (desti x) are the destructor terms. 


Applies when a formula contains an instance of (desti x) and x is bound to a 
variable, say a.

It “splits” the formula into two, according to whether (hyp a) is true; when true, 
it replaces all of the a’s in the formula (except those inside desti applications) 
by (constructor (dest1 a) . . . (destn a)).

Replaces all the (desti a) terms with distinct new variable symbols, a1, … , an. 
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Use of Equivalences
If the formula contains the hypothesis (== lhs rhs) and elsewhere in 
the formula there is an occurrence of lhs, then rhs is substituted for lhs 
in every such occurrence based on heuristics. 

ACL2 supports a more general form of substitution involving equivalence 
relations. The use of equalities is generalized to the use of any 
equivalence relation. 

(=> (^ (== (rev (rev a2)) a2)
       (tlp a2))
    (== (rev (app (rev a2) (list a1)))
        (cons a1 a2)))

(=> (tlp a2)
    (== (rev (app (rev a2) (list a1)))
        (cons a1 (rev (rev a2)))))

⇒
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Generalization
Find a subterm that appears in both the hypothesis and the conclusion, 
in two different hypotheses, or on opposite sides of an equivalence

Replace that subterm by a new variable symbol

If type information (see type-prescription) or generalization rules (see 
generalize) can be used to restrict the type of the new variable, then it is 
so restricted. The generalized formula is then added to the pool. 

(=> (tlp a2)
    (== (rev (app (rev a2) (list a1)))
        (cons a1 (rev (rev a2)))))

(=> (tlp a2)
    (== (rev (app rv (list a1)))
        (cons a1 (rev rv))))

⇒
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Elimination of Irrelevance
Eliminate irrelevant hypotheses, by partitioning them into cliques 
according to the variables they mention. 

If there are isolated cliques of hypotheses, then either the formula is a 
theorem because those hypotheses are collectively false, or else they are 
irrelevant. 

Use type information to show that a clique is not false. 

(=> (tlp a2)
    (== (rev (app rv (list a1)))
        (cons a1 (rev rv))))

(== (rev (app rv (list a1)))
    (cons a1 (rev rv)))

⇒



Organization of ACL2
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The draw is 
orchestrated that 
we do not try to 
prove a subgoal by 
induction until we 
have processed 
every subgoal 
produced by the 
last induction.

The top-level goal 
is put in the pool. 


When a formula 
is drawn out, it is 
passed to proof 
techniques until 
one applies.

Reviewed all 
proof techniques
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Simplification in Detail
Simplification is the heart of the theorem prover. It:


applies propositional calculus, equality, and linear arithmetic decision 
procedures, 

uses type information and forward chaining rules to construct a 
“context” describing the assumptions of each subterm, 

rewrites each subterm in the appropriate context, using definitions, 
conditional rewrite rules, and metafunctions, 

use propositional calculus normalization to convert the resulting 
formula to an equivalent set of formulas, reduce the set under 
subsumption, and deposit the surviving formulas back in the pool.


We’ll discuss each of the four steps in the order in which they occur. 

First we discuss equivalence relations and congruence rules, which are 
fundamental to several aspects of the simplifier.
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Congruence-Based Reasoning
General form of substitution of equals for equals based on the ideas of 
user-defined equivalence relations and congruence rules. 

Consider: (=> (set-equal x y)  (iff (member e x) (member e y)))

This congruence rule allows the substitution of set-equals for set-
equals, in the second argument of member expressions, while preserving 
iff.

Use defequiv to identify equivalence relations. 

Congruence rules: (=> (equiv1 x y) (equiv2 (f...x...) 
(f...y...))) where equiv1 and equiv2 are known equivalence 
relations. 

Use defcong to prove congruence rules.

The rule allows equiv1 substitution into f while preserving equiv2. ACL2 
justifies deep substitutions by chaining together congruence rules, 
starting from a rule that preserves iff (propositional equivalence).



Slides by Pete Manolios for CS4820

Decision Procedures
When a formula is given to the simplifier three decision procedures are applied. 

Propositional Calculus based on the normalization of if expressions


Propositional connectives are expanded in terms of if

the if terms are distributed, so (f (if a b c)) becomes (if a (f b) (f c)) 
and (if (if a b c) x y) becomes (if a (if b x y) (if c x y))
the resulting tree is explored to determine whether every reachable tip is non-nil. 


Congruence Closure: use the context to compute equivalence classes, choose a 
representative per equivalence class, and substitute that representative for all 
members of the class. Repeat until fixpoint is reached. 

Rational linear arithmetic: linear data base contains all inequalities  (<,<=, >=,>,=) 
relevant to conjecture, where function applications other than sums, differences, and 
products with constants are treated as variables.


Linear rules are theorems that conclude with an inequality. If an instance of one of 
the terms in the inequality arises in the linear data base, the rule is instantiated
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Context
Assume the formula to which the simplifier is applied is of the form                    
(=> (and p1 ... pn) q). The pi are the hypotheses and q is the conclusion.


After decision procedures, the simplifier will rewrite each hypothesis and then 
the conclusion. 

Rewriting is done in a context that specifies what is assumed true. 


For the conclusion, we assume all of the hypotheses. 

For a hypothesis, we assume the other hypotheses and the negation of 
the conclusion. 


The context actually consists of two kinds of information: arithmetic and type 
theoretic.


Arithmetic inequalities from the assumptions and linear rules provide 
arithmetic information.

Type theoretic information: type algorithm, type-prescription & compound-
recognizer rules. 
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Type-Theoretic Context
Type-prescription rules allow you to inform the type algorithm of the type 
of the output produced by a function.


E.g., (=> (^ (tlp a) (tlp b)) (tlp (app a b))) allows the type 
algorithm to deduce the type of (app a b). 


Compound-recognizer rules are applicable to Boolean-valued functions 
of one argument (recognizers).


E.g., (=> (primep x) (posp x)) allows ACL2 to deduce type 
information about x. 


Forward chaining rules: any theorem 

E.g., (=> (and p1 . . . pn) q), where p1 is the default trigger 
term (you can specify the trigger terms). 

If an instance of the trigger occurs in the context and the pi are all 
true in the context, then q is added to the context. 
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Tau System
Tau rules extend ACL2’s type checker.

The tau system is only tried when subgoals first enter the waterfall and 
when they are stable under simplification.

Supports many kinds of rules, including  


Simple:  (=> (p v) (q v)) 


Conjunctive: (=> (and (p1 v)...(pk v)) (q v))


Signature:  (=> (and (p1 x1) (p2 x2)...)  (q (fn x1 x2...))) 


Eval, Signature Form 2, Bounder, Big Switch, MV-NTH Synonym, etc.

p, q, p1, etc., denote monadic Boolean-valued function symbols, or 
equalities where one argument is constant, arithmetic comparisons in 
which one argument is a constant, or the negations of such terms.
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Rewriter: High-Level Overview
Variable & constants rewrite to themselves 

(f a1 ... an): (target) In most cases, rewrite ai, to get ai’ and rewrite 
(f a1’ ... an’) (inside-out) 


Special case(s): if f is if, rewrite the test, a1, to a1’; then rewrite a2 and/
or a3 depending on whether we can establish if a1’ is nil 


(f a1’ ... an’): Consider all rules derived from axioms, definitions, 
theorems in reverse chronological order.

Apply the first that fires & repeat

All of this happens in simplification

There is a rich underlying theory of term-rewriting
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Rewrite Rules
Rewrite rules are of the form:                                                                   
(=> (and h1 ... hk) (equal (f b1 ... bn) rhs)) 


The definition of f is of this form (hyps are input contracts)


A theorem concluding with (not (p...)) is considered to conclude with 
(iff (p...) nil)


A theorem concluding with (p ...), where p is not a known equivalence 
relation and is not “not,” is considered to conclude with (iff (p...) t)


Rules cause the rewriter to replace instances of pattern (f b1 ... bn) 
with the corresponding instance of rhs when they fire
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Rewrite Rules
Rewrite rule: (=> (and h1 ... hk) (equal (f b1 ... bn) rhs)) 


Rules cause the rewriter to replace instances of pattern (f b1 ... bn) 
with the corresponding instance of rhs when they fire


If we can instantiate variables in the pattern so that the pattern matches 
the target to get, say                                                                                
(=> (and h1’ ... hk’) (equal (f a1’ ... an’) rhs′)) 


We try to apply the rule, by establishing its hypotheses

Backchaining: Rewriting is used recursively to establish each hypothesis 
in the order in which they appear

If successful, recursively rewrite rhs′ to get rhs′′ 


Certain heuristic checks are used to prevent some loops 

Finally, if certain heuristics approve of rhs′′, we say the rule fires and 
the result is rhs′′. This result replaces the target term.
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Special Hypotheses
pi is an arithmetic inequality, say (< u v): the two arguments are rewritten, to u′ 
and v′, and then the linear arithmetic decision procedure is applied to (< u′ v′).

An instantiated hypothesis contains free variables (e.g., transitivity). The rewriter 
looks for a binding of the free variables that make the hypothesis true. See set-
match-free-default, which can be set to :once, :all, etc. Backtracking can occur.

An instantiated hypothesis is of one of three forms: 


(syntaxp p) always returns t. But when the rewriter encounters such a 
hypothesis it evaluates the form inside the syntaxp to decide whether the rule 
should fire.

(force p) is defined as the identity function. When the rewriter finds a hyp 
marked with force, it tries to establish it as above and if that fails it assumes 
hyp and goes on. These proofs are, by default, delayed until the successful 
completion of the main goal, using all the power of the theorem prover. 

(case-split p) is a variant of force. When a hypothesis has the form (case-
split hyp) it is logically equivalent to hyp. If ACL2 attempts to apply the rule 
but cannot establish the instance of hyp holds, it considers the hyp true 
anyhow, but creates a subgoal in which the instance of hyp is assumed false.
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Heuristic Checks
A rule for a function definition or definition rule, corresponds to expanding 
a call of the function. If the definition is recursive, we want to avoid 
looping: the rewriter will not fire the rule if the rewritten rhs, rhs′′, fails 
certain tests. 


One test permitting firing is that the arguments to the rewritten 
recursive call already appear in the formula being proved by the 
simplifier. 

Another test permitting the firing is that the arguments be 
symbolically simpler. 


For rules like (== (f x y) (f y x)) that permute arguments to a 
function, care is taken not to loop forever. Essentially, the system uses 
permutative rules only to swap arguments into “alphabetical” order. 

The rewriter just does what you tell it to do with your rewrite rules. If you 
tell it to loop forever, by rewriting a to b, b to c, and c to a, then it will loop 
forever, or as long as the resources of time and memory allow. 
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Normalization & Subsumption
Assume the simplifier is working on (=> (and p1 . . . pk) q), by 
rewriting the parts, and it has just rewritten pk. Suppose the result is a 
term that involves an if-expressions, say the result is (p (if a b c)). 
Then if normalization occurs.

The simplifier tries to clean up the set of formulas. 


For example, if one formula is (=> p q) and another is (=> (and p 
r) q), then clearly we just prove the former.


If one formula is (=> (and p r) q) and another is (=> (and p (not 
r)) q), then we just prove (=> p q).


If the result of subsumption/replacement is a set containing the input 
formula, then the simplifier passes the formula to dest elim. 

If the result is the empty set of formulas, then the simplifier proved the 
input formula. 

Otherwise, the simplifier deposits each of the formulas into the pool. 



Questions?


