
Lecture 6

Pete Manolios

Northeastern

Computer Aided Reasoning, Lecture 6

Slides by Pete Manolios for CS4820

ACL2 is . . .
A programming language:

Applicative, functional subset of Lisp

Compilable and executable

Untyped, first-order

A mathematical logic:
First-order predicate calculus

With equality, induction, recursive definitions

Ordinals up to (termination & induction)

A mechanical theorem prover:
Integrated system of ad hoc proof techniques
Heavy use of term rewriting
Largely written in ACL2

ϵ0

Slides by Pete Manolios for CS4820

Automated
Rev-Rev
DEMO

ACL2 System Architecture

Slides by Pete Manolios for CS4820

Slides by Pete Manolios for CS4820

Driving ACL2
You may begin to get the idea that the machine does everything for you.
This is not true. A more accurate view is that the machine is a proof
assistant that fills in the gaps in your “proofs.” These gaps can be huge.
When the system fails to follow your reasoning, you can use your
knowledge of the mechanization to figure out what the system is
missing.

You are responsible for guiding ACL2 by proving the appropriate lemmas

Rules generated by lemmas are rewrite rules

You have to learn to program ACL2

That involves building a mental model

The ACL2 book advocates “the method”

Once a proof attempt is started, one can interact with ACL2 only by
interrupting the proof attempt

Slides by Pete Manolios for CS4820

Proof Dags

In the proof dag, every node
corresponds to a lemma

To lead ACL2 to a proof, you must
prove every lemma (using a
topological sort)

As a practical matter, you may not
have the dag

The Method is a way of using
ACL2 to discover it

Main

CA

A1

B

C2A3A2

A2bA2a

C1

Slides by Pete Manolios for CS4820

The Method
In ACL2s, we have an editor and a session

Our code is in the editor, initially containing the main theorem

When we are done, the editor will contain a topological sort of a proof
dag

During the project, the editor has a “line”

Above the line, is the done list: successful commands

Below line, to-do list: remaining commands

Slides by Pete Manolios for CS4820

The Method

Add lemmas
to front of to-
do list

Yes

No

Advance the line. Abort if it takes too long. Did
ACL2s succeed?

Think about the first theorem in the to-do list. Have
the necessary lemmas been proved?

Inspect proof
checkpoint.
Modify editor

Yes
No

Slides by Pete Manolios for CS4820

The Method
Rev-Rev
DEMO

Slides by Pete Manolios for CS4820

Theorem Proving Strategies
ACL2 is really a programmable theorem prover

Define a “normal” form & rules that assume/respect it

Coming up with a rewrite strategy is key, e.g., if app associates to the
left, then rules that associate it to the right are going to cause loops

In addition to rewrite rules, there are built-in-clause, clause-processor,
compound-recognizer, congruence, definition, elim, equivalence,
forward-chaining, generalize, induction, linear, meta, refinement, tau-
system, type-prescription, type-set-inverter and well-founded-relation
rules and many options for controlling how they work

You can also provide hints, including computed-hints, which allow you to
write a program that computes hints based on the goal under
consideration

You can define your own theorem prover (meta rules), use external
solvers (clause-processors), etc

Slides by Pete Manolios for CS4820

Gaming
This part of the book is concerned with the mechanization of the logic. Our goal is to
teach you how to use the theorem prover. We start, in this chapter, by sketching how
the theorem prover works. Of course, knowing how something works—e.g., an
automobile, a programming language, a violin—is quite different from knowing how to
use it effectively.

As you read this chapter you may begin to get the idea that the machine does
everything for you. This is not true. A more accurate view is that the machine is a proof
assistant that fills in the gaps in your “proofs.” These gaps can be huge. When the
system fails to follow your reasoning, you can use your knowledge of the
mechanization to figure out what the system is missing. But you may find that the
machine’s inability to fill in the gap is because your “proof” was simply wrong. Indeed,
you may even find that the formula you “proved” is not even a theorem!

You may come to think of the proof process as a game. The theorem is the
“opponent.” It will use all legal means to dodge your weapons and squirm free of your
traps and fences. It can hide amid innocuous detail, shatter into a swarm of
subproblems, or stand crystalline still and shimmering in front of you, daring you to find
a chink in its armor. In recognition of this view of theorem proving we have named this
part of the book “Gaming.” You will be hard pressed to find a more challenging game.

Kaufmann, Manolios, Moore in Computer-Aided Reasoning: An Approach

Organization of ACL2

Slides by Pete Manolios for CS4820

The draw is
orchestrated that
we do not try to
prove a subgoal by
induction until we
have processed
every subgoal
produced by the
last induction.

The top-level goal
is put in the pool.

When a formula
is drawn out, it is
passed to proof
techniques until
one applies.

Slides by Pete Manolios for CS4820

Induction
When a formula arrives at the induction technique, ACL2 computes all the
inductions suggested by the terms in the formula.

It then compares them, possibly combining several into one, and selects
one regarded as most appropriate.

It applies the scheme to the formula at hand, uses simple propositional
calculus to normalize the result, and puts each of the new formulas back
into the pool.

Propositional calculus normalization may make the instantiation of the
induction scheme look different than the scheme itself. For example,
instead of , propositional normalization
produces two formulas: and .

It is possible to prove an induction rule (see induction) so that a term
suggests other inductions.

You can override its choice of induction by supplying an induction hint.

(q ∧ (α′ ⇒ β′)) ⇒ (a ⇒ β)
(q ∧ ¬α′ ∧ α) ⇒ β (q ∧ β′ ∧ α) ⇒ β

Slides by Pete Manolios for CS4820

Simplification Overview
Simplification is the heart of the theorem prover. It:

applies propositional calculus, equality, and linear arithmetic decision
procedures,

uses type information and forward chaining rules to construct a
“context” describing the assumptions of each subterm,

rewrites each subterm in the appropriate context, using definitions,
conditional rewrite rules, and metafunctions,

uses propositional calculus normalization to convert the resulting
formula to an equivalent set of formulas, reduces the set under
subsumption, and deposits the surviving formulas back in the pool.

The simplifier is not guaranteed to produce formulas that are stable under
simplification; repeated trips through the simplifier, via insertion and
extraction from the pool, are used to reach the final stable form (if any).

Slides by Pete Manolios for CS4820

Destructor Elimination
Elim rule example: suppose a formula mentions (CAR A) and (CDR A). If A is a
cons, we could replace A by (CONS A1 A2), for new variables A1 and A2,
allowing us to replace (CAR A) and (CDR A) with A1 and A2.

CAR-CDR-ELIM axiom: (=> (consp x) (== (cons (car x) (cdr x)) x))

This axiom is an example of a more general form:

(=> (hyp x) (== (constructor (dest1 x) . . . (destn x)) x))

Such theorems can be stored as “destructor elimination” or elim rules.

The (desti x) are the destructor terms.

Applies when a formula contains an instance of (desti x) and x is bound to a
variable, say a.

It “splits” the formula into two, according to whether (hyp a) is true; when true,
it replaces all of the a’s in the formula (except those inside desti applications)
by (constructor (dest1 a) . . . (destn a)).

Replaces all the (desti a) terms with distinct new variable symbols, a1, … , an.

Slides by Pete Manolios for CS4820

Use of Equivalences
If the formula contains the hypothesis (== lhs rhs) and elsewhere in
the formula there is an occurrence of lhs, then rhs is substituted for lhs
in every such occurrence based on heuristics.

ACL2 supports a more general form of substitution involving equivalence
relations. The use of equalities is generalized to the use of any
equivalence relation.

(=> (^ (== (rev (rev a2)) a2)
 (tlp a2))
 (== (rev (app (rev a2) (list a1)))
 (cons a1 a2)))

(=> (tlp a2)
 (== (rev (app (rev a2) (list a1)))
 (cons a1 (rev (rev a2)))))

⇒

Slides by Pete Manolios for CS4820

Generalization
Find a subterm that appears in both the hypothesis and the conclusion,
in two different hypotheses, or on opposite sides of an equivalence

Replace that subterm by a new variable symbol

If type information (see type-prescription) or generalization rules (see
generalize) can be used to restrict the type of the new variable, then it is
so restricted. The generalized formula is then added to the pool.

(=> (tlp a2)
 (== (rev (app (rev a2) (list a1)))
 (cons a1 (rev (rev a2)))))

(=> (tlp a2)
 (== (rev (app rv (list a1)))
 (cons a1 (rev rv))))

⇒

Slides by Pete Manolios for CS4820

Elimination of Irrelevance
Eliminate irrelevant hypotheses, by partitioning them into cliques
according to the variables they mention.

If there are isolated cliques of hypotheses, then either the formula is a
theorem because those hypotheses are collectively false, or else they are
irrelevant.

Use type information to show that a clique is not false.

(=> (tlp a2)
 (== (rev (app rv (list a1)))
 (cons a1 (rev rv))))

(== (rev (app rv (list a1)))
 (cons a1 (rev rv)))

⇒

Organization of ACL2

Slides by Pete Manolios for CS4820

The draw is
orchestrated that
we do not try to
prove a subgoal by
induction until we
have processed
every subgoal
produced by the
last induction.

The top-level goal
is put in the pool.

When a formula
is drawn out, it is
passed to proof
techniques until
one applies.

Reviewed all
proof techniques

Slides by Pete Manolios for CS4820

Simplification in Detail
Simplification is the heart of the theorem prover. It:

applies propositional calculus, equality, and linear arithmetic decision
procedures,

uses type information and forward chaining rules to construct a
“context” describing the assumptions of each subterm,

rewrites each subterm in the appropriate context, using definitions,
conditional rewrite rules, and metafunctions,

use propositional calculus normalization to convert the resulting
formula to an equivalent set of formulas, reduce the set under
subsumption, and deposit the surviving formulas back in the pool.

We’ll discuss each of the four steps in the order in which they occur.

First we discuss equivalence relations and congruence rules, which are
fundamental to several aspects of the simplifier.

Slides by Pete Manolios for CS4820

Congruence-Based Reasoning
General form of substitution of equals for equals based on the ideas of
user-defined equivalence relations and congruence rules.

Consider: (=> (set-equal x y) (iff (member e x) (member e y)))

This congruence rule allows the substitution of set-equals for set-
equals, in the second argument of member expressions, while preserving
iff.

Use defequiv to identify equivalence relations.

Congruence rules: (=> (equiv1 x y) (equiv2 (f...x...)
(f...y...))) where equiv1 and equiv2 are known equivalence
relations.

Use defcong to prove congruence rules.

The rule allows equiv1 substitution into f while preserving equiv2. ACL2
justifies deep substitutions by chaining together congruence rules,
starting from a rule that preserves iff (propositional equivalence).

Slides by Pete Manolios for CS4820

Decision Procedures
When a formula is given to the simplifier three decision procedures are applied.

Propositional Calculus based on the normalization of if expressions

Propositional connectives are expanded in terms of if

the if terms are distributed, so (f (if a b c)) becomes (if a (f b) (f c))
and (if (if a b c) x y) becomes (if a (if b x y) (if c x y))
the resulting tree is explored to determine whether every reachable tip is non-nil.

Congruence Closure: use the context to compute equivalence classes, choose a
representative per equivalence class, and substitute that representative for all
members of the class. Repeat until fixpoint is reached.

Rational linear arithmetic: linear data base contains all inequalities (<,<=, >=,>,=)
relevant to conjecture, where function applications other than sums, differences, and
products with constants are treated as variables.

Linear rules are theorems that conclude with an inequality. If an instance of one of
the terms in the inequality arises in the linear data base, the rule is instantiated

Slides by Pete Manolios for CS4820

Context
Assume the formula to which the simplifier is applied is of the form
(=> (and p1 ... pn) q). The pi are the hypotheses and q is the conclusion.

After decision procedures, the simplifier will rewrite each hypothesis and then
the conclusion.

Rewriting is done in a context that specifies what is assumed true.

For the conclusion, we assume all of the hypotheses.

For a hypothesis, we assume the other hypotheses and the negation of
the conclusion.

The context actually consists of two kinds of information: arithmetic and type
theoretic.

Arithmetic inequalities from the assumptions and linear rules provide
arithmetic information.

Type theoretic information: type algorithm, type-prescription & compound-
recognizer rules.

Slides by Pete Manolios for CS4820

Type-Theoretic Context
Type-prescription rules allow you to inform the type algorithm of the type
of the output produced by a function.

E.g., (=> (^ (tlp a) (tlp b)) (tlp (app a b))) allows the type
algorithm to deduce the type of (app a b).

Compound-recognizer rules are applicable to Boolean-valued functions
of one argument (recognizers).

E.g., (=> (primep x) (posp x)) allows ACL2 to deduce type
information about x.

Forward chaining rules: any theorem

E.g., (=> (and p1 . . . pn) q), where p1 is the default trigger
term (you can specify the trigger terms).

If an instance of the trigger occurs in the context and the pi are all
true in the context, then q is added to the context.

Slides by Pete Manolios for CS4820

Tau System
Tau rules extend ACL2’s type checker.

The tau system is only tried when subgoals first enter the waterfall and
when they are stable under simplification.

Supports many kinds of rules, including

Simple: (=> (p v) (q v))

Conjunctive: (=> (and (p1 v)...(pk v)) (q v))

Signature: (=> (and (p1 x1) (p2 x2)...) (q (fn x1 x2...)))

Eval, Signature Form 2, Bounder, Big Switch, MV-NTH Synonym, etc.

p, q, p1, etc., denote monadic Boolean-valued function symbols, or
equalities where one argument is constant, arithmetic comparisons in
which one argument is a constant, or the negations of such terms.

Slides by Pete Manolios for CS4820

Rewriter: High-Level Overview
Variable & constants rewrite to themselves

(f a1 ... an): (target) In most cases, rewrite ai, to get ai’ and rewrite
(f a1’ ... an’) (inside-out)

Special case(s): if f is if, rewrite the test, a1, to a1’; then rewrite a2 and/
or a3 depending on whether we can establish if a1’ is nil

(f a1’ ... an’): Consider all rules derived from axioms, definitions,
theorems in reverse chronological order.

Apply the first that fires & repeat

All of this happens in simplification

There is a rich underlying theory of term-rewriting

Slides by Pete Manolios for CS4820

Rewrite Rules
Rewrite rules are of the form:
(=> (and h1 ... hk) (equal (f b1 ... bn) rhs))

The definition of f is of this form (hyps are input contracts)

A theorem concluding with (not (p...)) is considered to conclude with
(iff (p...) nil)

A theorem concluding with (p ...), where p is not a known equivalence
relation and is not “not,” is considered to conclude with (iff (p...) t)

Rules cause the rewriter to replace instances of pattern (f b1 ... bn)
with the corresponding instance of rhs when they fire

Slides by Pete Manolios for CS4820

Rewrite Rules
Rewrite rule: (=> (and h1 ... hk) (equal (f b1 ... bn) rhs))

Rules cause the rewriter to replace instances of pattern (f b1 ... bn)
with the corresponding instance of rhs when they fire

If we can instantiate variables in the pattern so that the pattern matches
the target to get, say
(=> (and h1’ ... hk’) (equal (f a1’ ... an’) rhs′))

We try to apply the rule, by establishing its hypotheses

Backchaining: Rewriting is used recursively to establish each hypothesis
in the order in which they appear

If successful, recursively rewrite rhs′ to get rhs′′

Certain heuristic checks are used to prevent some loops

Finally, if certain heuristics approve of rhs′′, we say the rule fires and
the result is rhs′′. This result replaces the target term.

Slides by Pete Manolios for CS4820

Special Hypotheses
pi is an arithmetic inequality, say (< u v): the two arguments are rewritten, to u′
and v′, and then the linear arithmetic decision procedure is applied to (< u′ v′).

An instantiated hypothesis contains free variables (e.g., transitivity). The rewriter
looks for a binding of the free variables that make the hypothesis true. See set-
match-free-default, which can be set to :once, :all, etc. Backtracking can occur.

An instantiated hypothesis is of one of three forms:

(syntaxp p) always returns t. But when the rewriter encounters such a
hypothesis it evaluates the form inside the syntaxp to decide whether the rule
should fire.

(force p) is defined as the identity function. When the rewriter finds a hyp
marked with force, it tries to establish it as above and if that fails it assumes
hyp and goes on. These proofs are, by default, delayed until the successful
completion of the main goal, using all the power of the theorem prover.

(case-split p) is a variant of force. When a hypothesis has the form (case-
split hyp) it is logically equivalent to hyp. If ACL2 attempts to apply the rule
but cannot establish the instance of hyp holds, it considers the hyp true
anyhow, but creates a subgoal in which the instance of hyp is assumed false.

Slides by Pete Manolios for CS4820

Heuristic Checks
A rule for a function definition or definition rule, corresponds to expanding
a call of the function. If the definition is recursive, we want to avoid
looping: the rewriter will not fire the rule if the rewritten rhs, rhs′′, fails
certain tests.

One test permitting firing is that the arguments to the rewritten
recursive call already appear in the formula being proved by the
simplifier.

Another test permitting the firing is that the arguments be
symbolically simpler.

For rules like (== (f x y) (f y x)) that permute arguments to a
function, care is taken not to loop forever. Essentially, the system uses
permutative rules only to swap arguments into “alphabetical” order.

The rewriter just does what you tell it to do with your rewrite rules. If you
tell it to loop forever, by rewriting a to b, b to c, and c to a, then it will loop
forever, or as long as the resources of time and memory allow.

Slides by Pete Manolios for CS4820

Normalization & Subsumption
Assume the simplifier is working on (=> (and p1 . . . pk) q), by
rewriting the parts, and it has just rewritten pk. Suppose the result is a
term that involves an if-expressions, say the result is (p (if a b c)).
Then if normalization occurs.

The simplifier tries to clean up the set of formulas.

For example, if one formula is (=> p q) and another is (=> (and p
r) q), then clearly we just prove the former.

If one formula is (=> (and p r) q) and another is (=> (and p (not
r)) q), then we just prove (=> p q).

If the result of subsumption/replacement is a set containing the input
formula, then the simplifier passes the formula to dest elim.

If the result is the empty set of formulas, then the simplifier proved the
input formula.

Otherwise, the simplifier deposits each of the formulas into the pool.

Questions?

