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Equality
Equality (equal, or =) is an equivalence relation 

Reflexivity:                   x = x

Symmetry of Equality:  x = y   ⇒  y = x


Transitivity of Equality:  x = y ∧ y = z  ⇒  x = z


Equality Axiom Schema for Functions: For every function symbol f of arity n 
we have the axiom

x1 = y1 ∧ ... ∧ xn = yn  ⇒  (f x1 ... xn) = (f y1 ... yn)


In ACL2s, we would write  (len (cons x z)) = (len (cons y z)) as

(equal/==/= (len (cons x z))  ; equal & == are equal 

            (len (cons y z))) ; =’s contract requires numbers

= and ≠ bind more tightly than any of the propositional operators
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Built-in Functions
Axioms for built-in functions, such as cons, car, and cdr


Axioms are theorems we get for “free” characterizing cons, car, 
cdr, consp, if, equal, etc. 


(car (cons x y)) = x

(cdr (cons x y)) = y

(consp (cons x y)) = t

x = nil ⇒  (if x y z) = z

x ≠ nil ⇒ (if x y z) = y

Reason about constant expressions using evaluation

t ≠ nil, (cons 1 ()) = (list 1), 3/9 = 1/3, ( ) = ’nil, …

Note: from the the semantics of the built-in functions
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Built-in Functions
Propositional Logic


(not p) = (if p nil t) 

(implies p q) = (if p (if q t nil) t) 

(iff p q) = (if p (if q t nil) (if q nil t)) 

By embedding propositional calculus and = in term language, terms (τ) 
can be interpreted as formulas (τ ≠ nil) 


e.g., x as a formula is x ≠ nil


(foo x y z) as a formula is (foo x y z)≠ nil

Similarly, we add axioms for numbers, strings, etc.

This is all in GZ, the “ground-zero theory”
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Built-in Functions
Similarly, we add axioms for numbers, strings, etc.

This is all in GZ, the “ground-zero theory”

Inference rules include 


propositional calculus

equality

instantiation


Well-foundedness of 


GZ also is inductively complete: for every φ, GZ contains the first order 
induction axioms


⟨∀y≺  :: ⟨∀x≺y :: φ(x)⟩ → φ(y)⟩ → ⟨∀y≺  :: φ(y)⟩


When GZ is extended (definitions), the resulting theory is the inductive 
completion of the extension

Extension principles: defchoose, encapsulation, defaxiom

ϵ0

ϵ0 ϵ0
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Instantiation
A substitution σ is a list of the form ((var1 term1) … (varn termn))


the vars are the “targets” (no repetitions) and the terms are their “images”

by f|σ we mean, substitute every free occurrence of a target by its image

(cons x (let ((y z)) y))|((x a) (y b) (z c) (w d)) =                
(cons a (let ((y c)) y))

Instantiation: If f is a theorem, so is f|σ

(len (list x)) = 1 is theorem, so is (len (list (list x y))) = 1

Are the following substitutions correct? (Review RAP)

(cons 'a b)|((a (cons a (list c))) (b (cons c nil)))

(cons 'a (cons c nil)) 

(cons x (f x y f))|((x (cons a b)) (f x) (y (app y x)))

(cons (cons a b) (f (cons a b) (app y x) x))
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Inference Rules
Evaluation

Propositional calculus validities


Includes exportation, Modus Ponens, Proof by contradiction, …

Equality axioms


equality is an equivalence relation, equality schema for functions

Instantiation


Start with built-in axioms

New axioms are added via definitional principle

Also defaxiom, defchoose, encapsulation, etc can add axioms
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How to Prove Theorems
Once you are done with contract checking, completion & generalization

Extract the context by rewriting the conjecture into the form:                     
[C1 ∧ C2 ∧ … ∧ Cn] ⇒ RHS where there are as many hyps as possible


Derived context. What obvious things follow? Common patterns:

(endp x), (tlp x): x=nil

(tlp x), (consp x): (tlp (rest x))

φ1 ∧… ∧ φn ⇒ ψ: Derive φ1,…,φn  and use MP to ψ

Proof. Use the proof format from RAP.

For equality, start with LHS/RHS and end with RHS/LHS or start w/ LHS 
& reduce, then start w/ RHS & reduce to the same thing

For transitive relation (⇒, <, ≤, …) same proof format works


For anything else reduce to t
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Equational Reasoning
(=> (and (tlp x)
         (tlp y))
    (=> (and (consp x)
             (not (equal a (first x)))
             (=> (tlp (rest x))
                 (=> (in a (rest x)) 
                     (in a (app (rest x) y)))))
        (=> (in a x) 
            (in a (app x y)))))

First step: Exportation, PL simplification
The goals are

have as many hypotheses as possible
flatten & simplify the propositional structure of the conjecture
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ER Example
(=> (and (tlp x)
         (tlp y))
    (=> (and (consp x)
             (not (equal a (first x)))
             (=> (tlp (rest x))
                 (=> (in a (rest x)) 
                     (in a (app (rest x) y)))))
        (=> (in a x) 
            (in a (app x y)))))

Exportation:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

A

B

C
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ER Example
(=> (and (tlp x)
         (tlp y)
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ER Example
(=> (and (tlp x)
         (tlp y)
         (consp x)
         (not (equal a (first x)))
         (=> (and (tlp (rest x))
                  (in a (rest x))) 
             (in a (app (rest x) y)))
         (in a x)) 
    (in a (app x y)))))

Exportation again:  A ⇒ (B ⇒ C)  ≡  (A ∧ B) ⇒ C

B
C

A
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ER Example
(=> (and (tlp x)
         (tlp y)
         (consp x)
         (not (equal a (first x)))
         (=> (and (tlp (rest x))
                  (in a (rest x))) 
             (in a (app (rest x) y)))
         (in a x)) 
    (in a (app x y)))))

Notice that we cannot use exportation in the 5th  hypothesis
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Equational Reasoning

Second Step: contract completion
do we need any hypotheses?

You can do this first, but it is easier to check after Exportation

(=> (and (tlp x)
         (tlp y)
         (consp x)
         (not (equal a (first x)))
         (=> (and (tlp (rest x))
                  (in a (rest x))) 
             (in a (app (rest x) y)))
         (in a x)) 
    (in a (app x y)))))
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Equational Reasoning

Third Step: Generate context
List all hypotheses, derived context
Can then focus on remaining goal

(=> (and (tlp x)
         (tlp y)
         (consp x)
         (not (equal a (first x)))
         (=> (and (tlp (rest x))
                  (in a (rest x))) 
             (in a (app (rest x) y)))
         (in a x)) 
    (in a (app x y)))))
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ER Example
C1. (tlp x)
C2. (tlp y)
C3. (consp x)
C4. a ≠ (first x)
C5. (tlp (rest x)) ∧ (in a (rest x)) 
     ⇒ (in a (app (rest x) y))
C6. (in a x)
———————————————————————————————————————-——————
D1. (tlp (rest x))  { C1, Def tlp, C3 }
D2. (in a (rest x)) { C6, Def in, C3, C4, PL }
D3. (in a (app (rest x) y)) { C5, MP, D1, D2 } 

Goal: (in a (app x y))

(=> (and (tlp x)
         (tlp y)
         (consp x)
         (not (equal a (first x)))
         (=> (and (tlp (rest x))
                  (in a (rest x))) 
             (in a (app (rest x) y)))
         (in a x)) 
    (in a (app x y)))))

(definec in (a :all X :tl) :bool
  (and (consp X)
       (or (== a (first X))
           (in a (rest X)))))

(definec tlp (l :all) :bool 
  (if (consp l)
      (tlp (rest l))
    (equal l () )))
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C1. (tlp x)
C2. (tlp y)
C3. (consp x)
C4. a ≠ (first x)
C5. (tlp (rest x)) ∧ (in a (rest x)) 
     ⇒ (in a (app (rest x) y))
C6. (in a x)
———————————————————————————————————————-——————
D1. (tlp (rest x))  { C1, Def tlp, C3 }
D2. (in a (rest x)) { C6, Def in, C3, C4, PL }
D3. (in a (app (rest x) y)) { C5, MP, D1, D2 } 

Goal: (in a (app x y))

Equational Reasoning

Fourth Step: Prove the goal
Term manipulation is now limited to the goal!



Slides by Pete Manolios for CS4820

ER Example
C1. (tlp x)
C2. (tlp y)
C3. (consp x)
C4. a ≠ (first x)
C5. (tlp (rest x)) ∧ (in a (rest x)) 
     ⇒ (in a (app (rest x) y))
C6. (in a x)
————————————————————————————————————————-—————
D1. (tlp (rest x))  { C1, Def tlp, C3 }
D2. (in a (rest x)) { C6, Def in, C3, C4, PL }
D3. (in a (app (rest x) y)) { C5, MP, D1, D2 } 

Goal: (in a (app x y))

  (in a (app x y))
=   { Def app, C3 }
  (in a (cons (first x) (app (rest x) y)))
=   { Def in, car-cdr-cons axioms }
  (or (equal a (first x)) (in a (app (rest x) y)))
=   { D3, PL }
  t

(definec tlp (l :all) :bool 
  (if (consp l)
      (tlp (rest l))
    (equal l () )))

(definec in (a :all X :tl) :bool
  (and (consp X)
       (or (== a (first X))
           (in a (rest X)))))

(definec app (x :tl y :tl) :tl
  (if (endp x)
      y
    (cons (first x) 
          (app (rest x) y))))
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Equational Reasoning is 
Easy Peasy Lemon Squeezy

Fermat's last theorem:


For all positive integers  and , where ,  


I have a truly marvelous proof of this proposition which this  margin is too 
narrow to contain.


Fermat, 1637


It took 357 years for a correct proof to be found (by Andrew Wiles in 1995).


x, y, z n n > 2 xn + yn ≠ zn
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Fermat’s Last Theorem
For all positive integers  and , where ,  


We can use Fermat's last theorem to construct a conjecture that is hard to prove.


(definec fermat (x :pos y :pos z :pos n :pos) :bool
  :ic (> n 2)
  (!= (+ (expt x n) (expt y n)) (expt z n)))

(property (x :pos y :pos z :pos n :pos)
  (=> (> n 2)
      (fermat x y z n)))

OR we can define a function that is hard to admit:

(defdata true t)
(definec fermat (x :pos y :pos z :pos n :pos) :true
  :ic (> n 2)
  (!= (+ (expt x n) (expt y n)) (expt z n)))

x, y, z n n > 2 xn + yn ≠ zn

We can play this trick with 
any conjecture.


Even restricted to integers, 
=, +, *, the validity problem is 
undecidable, so equational 
reasoning can be hard.



Homework 2

HWK 2 went up today

Due in a week (9/27)

Get partners!



Questions?


