
Lecture 4

Pete Manolios

Northeastern

Computer Aided Reasoning, Lecture 4

Slides by Pete Manolios for CS4820

DEMO

Slides by Pete Manolios for CS4820

Equality
Equality (equal, or =) is an equivalence relation

Reflexivity: x = x

Symmetry of Equality: x = y ⇒ y = x

Transitivity of Equality: x = y ∧ y = z ⇒ x = z

Equality Axiom Schema for Functions: For every function symbol f of arity n
we have the axiom

x1 = y1 ∧ ... ∧ xn = yn ⇒ (f x1 ... xn) = (f y1 ... yn)

In ACL2s, we would write (len (cons x z)) = (len (cons y z)) as

(equal/==/= (len (cons x z)) ; equal & == are equal

 (len (cons y z))) ; =’s contract requires numbers

= and ≠ bind more tightly than any of the propositional operators

Slides by Pete Manolios for CS4820

Built-in Functions
Axioms for built-in functions, such as cons, car, and cdr

Axioms are theorems we get for “free” characterizing cons, car,
cdr, consp, if, equal, etc.

(car (cons x y)) = x

(cdr (cons x y)) = y

(consp (cons x y)) = t

x = nil ⇒ (if x y z) = z

x ≠ nil ⇒ (if x y z) = y

Reason about constant expressions using evaluation

t ≠ nil, (cons 1 ()) = (list 1), 3/9 = 1/3, () = ’nil, …

Note: from the the semantics of the built-in functions

Slides by Pete Manolios for CS4820

Built-in Functions
Propositional Logic

(not p) = (if p nil t)

(implies p q) = (if p (if q t nil) t)

(iff p q) = (if p (if q t nil) (if q nil t))

By embedding propositional calculus and = in term language, terms (τ)
can be interpreted as formulas (τ ≠ nil)

e.g., x as a formula is x ≠ nil

(foo x y z) as a formula is (foo x y z)≠ nil

Similarly, we add axioms for numbers, strings, etc.

This is all in GZ, the “ground-zero theory”

Slides by Pete Manolios for CS4820

Built-in Functions
Similarly, we add axioms for numbers, strings, etc.

This is all in GZ, the “ground-zero theory”

Inference rules include

propositional calculus

equality

instantiation

Well-foundedness of

GZ also is inductively complete: for every φ, GZ contains the first order
induction axioms

⟨∀y≺ :: ⟨∀x≺y :: φ(x)⟩ → φ(y)⟩ → ⟨∀y≺ :: φ(y)⟩

When GZ is extended (definitions), the resulting theory is the inductive
completion of the extension

Extension principles: defchoose, encapsulation, defaxiom

ϵ0

ϵ0 ϵ0

Slides by Pete Manolios for CS4820

Instantiation
A substitution σ is a list of the form ((var1 term1) … (varn termn))

the vars are the “targets” (no repetitions) and the terms are their “images”

by f|σ we mean, substitute every free occurrence of a target by its image

(cons x (let ((y z)) y))|((x a) (y b) (z c) (w d)) =
(cons a (let ((y c)) y))

Instantiation: If f is a theorem, so is f|σ

(len (list x)) = 1 is theorem, so is (len (list (list x y))) = 1

Are the following substitutions correct? (Review RAP)

(cons 'a b)|((a (cons a (list c))) (b (cons c nil)))

(cons 'a (cons c nil))

(cons x (f x y f))|((x (cons a b)) (f x) (y (app y x)))

(cons (cons a b) (f (cons a b) (app y x) x))

Slides by Pete Manolios for CS4820

Inference Rules
Evaluation

Propositional calculus validities

Includes exportation, Modus Ponens, Proof by contradiction, …

Equality axioms

equality is an equivalence relation, equality schema for functions

Instantiation

Start with built-in axioms

New axioms are added via definitional principle

Also defaxiom, defchoose, encapsulation, etc can add axioms

Slides by Pete Manolios for CS4820

How to Prove Theorems
Once you are done with contract checking, completion & generalization

Extract the context by rewriting the conjecture into the form:
[C1 ∧ C2 ∧ … ∧ Cn] ⇒ RHS where there are as many hyps as possible

Derived context. What obvious things follow? Common patterns:

(endp x), (tlp x): x=nil

(tlp x), (consp x): (tlp (rest x))

φ1 ∧… ∧ φn ⇒ ψ: Derive φ1,…,φn and use MP to ψ

Proof. Use the proof format from RAP.

For equality, start with LHS/RHS and end with RHS/LHS or start w/ LHS
& reduce, then start w/ RHS & reduce to the same thing

For transitive relation (⇒, <, ≤, …) same proof format works

For anything else reduce to t

Slides by Pete Manolios for CS4820

Equational Reasoning
(=> (and (tlp x)
 (tlp y))
 (=> (and (consp x)
 (not (equal a (first x)))
 (=> (tlp (rest x))
 (=> (in a (rest x))
 (in a (app (rest x) y)))))
 (=> (in a x)
 (in a (app x y)))))

First step: Exportation, PL simplification
The goals are

have as many hypotheses as possible
flatten & simplify the propositional structure of the conjecture

Slides by Pete Manolios for CS4820

ER Example
(=> (and (tlp x)
 (tlp y))
 (=> (and (consp x)
 (not (equal a (first x)))
 (=> (tlp (rest x))
 (=> (in a (rest x))
 (in a (app (rest x) y)))))
 (=> (in a x)
 (in a (app x y)))))

Exportation: A ⇒ (B ⇒ C) ≡ (A ∧ B) ⇒ C

A

B

C

Slides by Pete Manolios for CS4820

ER Example
(=> (and (tlp x)
 (tlp y)
 (consp x)
 (not (equal a (first x)))
 (=> (tlp (rest x))
 (=> (in a (rest x))
 (in a (app (rest x) y)))))
 (=> (in a x)
 (in a (app x y)))))

Exportation: A ⇒ (B ⇒ C) ≡ (A ∧ B) ⇒ C

A

B

C

Slides by Pete Manolios for CS4820

ER Example
(=> (and (tlp x)
 (tlp y)
 (consp x)
 (not (equal a (first x)))
 (=> (tlp (rest x))
 (=> (in a (rest x))
 (in a (app (rest x) y)))))
 (=> (in a x)
 (in a (app x y)))))

Slides by Pete Manolios for CS4820

ER Example
(=> (and (tlp x)
 (tlp y)
 (consp x)
 (not (equal a (first x)))
 (=> (tlp (rest x))
 (=> (in a (rest x))
 (in a (app (rest x) y)))))
 (=> (in a x)
 (in a (app x y)))))

Exportation again: A ⇒ (B ⇒ C) ≡ (A ∧ B) ⇒ C

A

B
C

Slides by Pete Manolios for CS4820

ER Example
(=> (and (tlp x)
 (tlp y)
 (consp x)
 (not (equal a (first x)))
 (=> (tlp (rest x))
 (=> (in a (rest x))
 (in a (app (rest x) y))))
 (in a x))
 (in a (app x y)))))

Slides by Pete Manolios for CS4820

ER Example
(=> (and (tlp x)
 (tlp y)
 (consp x)
 (not (equal a (first x)))
 (=> (tlp (rest x))
 (=> (in a (rest x))
 (in a (app (rest x) y))))
 (in a x))
 (in a (app x y)))))

Exportation again: A ⇒ (B ⇒ C) ≡ (A ∧ B) ⇒ C

B
C

A

Slides by Pete Manolios for CS4820

ER Example
(=> (and (tlp x)
 (tlp y)
 (consp x)
 (not (equal a (first x)))
 (=> (and (tlp (rest x))
 (in a (rest x)))
 (in a (app (rest x) y)))
 (in a x))
 (in a (app x y)))))

Exportation again: A ⇒ (B ⇒ C) ≡ (A ∧ B) ⇒ C

B
C

A

Slides by Pete Manolios for CS4820

ER Example
(=> (and (tlp x)
 (tlp y)
 (consp x)
 (not (equal a (first x)))
 (=> (and (tlp (rest x))
 (in a (rest x)))
 (in a (app (rest x) y)))
 (in a x))
 (in a (app x y)))))

Notice that we cannot use exportation in the 5th hypothesis

Slides by Pete Manolios for CS4820

Equational Reasoning

Second Step: contract completion
do we need any hypotheses?

You can do this first, but it is easier to check after Exportation

(=> (and (tlp x)
 (tlp y)
 (consp x)
 (not (equal a (first x)))
 (=> (and (tlp (rest x))
 (in a (rest x)))
 (in a (app (rest x) y)))
 (in a x))
 (in a (app x y)))))

Slides by Pete Manolios for CS4820

Equational Reasoning

Third Step: Generate context
List all hypotheses, derived context
Can then focus on remaining goal

(=> (and (tlp x)
 (tlp y)
 (consp x)
 (not (equal a (first x)))
 (=> (and (tlp (rest x))
 (in a (rest x)))
 (in a (app (rest x) y)))
 (in a x))
 (in a (app x y)))))

Slides by Pete Manolios for CS4820

ER Example
C1. (tlp x)
C2. (tlp y)
C3. (consp x)
C4. a ≠ (first x)
C5. (tlp (rest x)) ∧ (in a (rest x))
 ⇒ (in a (app (rest x) y))
C6. (in a x)
———————————————————————————————————————-——————
D1. (tlp (rest x)) { C1, Def tlp, C3 }
D2. (in a (rest x)) { C6, Def in, C3, C4, PL }
D3. (in a (app (rest x) y)) { C5, MP, D1, D2 }

Goal: (in a (app x y))

(=> (and (tlp x)
 (tlp y)
 (consp x)
 (not (equal a (first x)))
 (=> (and (tlp (rest x))
 (in a (rest x)))
 (in a (app (rest x) y)))
 (in a x))
 (in a (app x y)))))

(definec in (a :all X :tl) :bool
 (and (consp X)
 (or (== a (first X))
 (in a (rest X)))))

(definec tlp (l :all) :bool
 (if (consp l)
 (tlp (rest l))
 (equal l ())))

Slides by Pete Manolios for CS4820

C1. (tlp x)
C2. (tlp y)
C3. (consp x)
C4. a ≠ (first x)
C5. (tlp (rest x)) ∧ (in a (rest x))
 ⇒ (in a (app (rest x) y))
C6. (in a x)
———————————————————————————————————————-——————
D1. (tlp (rest x)) { C1, Def tlp, C3 }
D2. (in a (rest x)) { C6, Def in, C3, C4, PL }
D3. (in a (app (rest x) y)) { C5, MP, D1, D2 }

Goal: (in a (app x y))

Equational Reasoning

Fourth Step: Prove the goal
Term manipulation is now limited to the goal!

Slides by Pete Manolios for CS4820

ER Example
C1. (tlp x)
C2. (tlp y)
C3. (consp x)
C4. a ≠ (first x)
C5. (tlp (rest x)) ∧ (in a (rest x))
 ⇒ (in a (app (rest x) y))
C6. (in a x)
——-—————
D1. (tlp (rest x)) { C1, Def tlp, C3 }
D2. (in a (rest x)) { C6, Def in, C3, C4, PL }
D3. (in a (app (rest x) y)) { C5, MP, D1, D2 }

Goal: (in a (app x y))

 (in a (app x y))
= { Def app, C3 }
 (in a (cons (first x) (app (rest x) y)))
= { Def in, car-cdr-cons axioms }
 (or (equal a (first x)) (in a (app (rest x) y)))
= { D3, PL }
 t

(definec tlp (l :all) :bool
 (if (consp l)
 (tlp (rest l))
 (equal l ())))

(definec in (a :all X :tl) :bool
 (and (consp X)
 (or (== a (first X))
 (in a (rest X)))))

(definec app (x :tl y :tl) :tl
 (if (endp x)
 y
 (cons (first x)
 (app (rest x) y))))

Slides by Pete Manolios for CS4820

Equational Reasoning is
Easy Peasy Lemon Squeezy

Fermat's last theorem:

For all positive integers and , where ,

I have a truly marvelous proof of this proposition which this margin is too
narrow to contain.

Fermat, 1637

It took 357 years for a correct proof to be found (by Andrew Wiles in 1995).

x, y, z n n > 2 xn + yn ≠ zn

Slides by Pete Manolios for CS4820

Fermat’s Last Theorem
For all positive integers and , where ,

We can use Fermat's last theorem to construct a conjecture that is hard to prove.

(definec fermat (x :pos y :pos z :pos n :pos) :bool
 :ic (> n 2)
 (!= (+ (expt x n) (expt y n)) (expt z n)))

(property (x :pos y :pos z :pos n :pos)
 (=> (> n 2)
 (fermat x y z n)))

OR we can define a function that is hard to admit:

(defdata true t)
(definec fermat (x :pos y :pos z :pos n :pos) :true
 :ic (> n 2)
 (!= (+ (expt x n) (expt y n)) (expt z n)))

x, y, z n n > 2 xn + yn ≠ zn

We can play this trick with
any conjecture.

Even restricted to integers,
=, +, *, the validity problem is
undecidable, so equational
reasoning can be hard.

Homework 2

HWK 2 went up today

Due in a week (9/27)

Get partners!

Questions?

