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Schedule
11/29: Temporal Logic & Model Checking

12/2: Projects, Exam 2 (Take home)

12/6: Projects



Model Checking
Does a finite state program satisfy a temporal property? 
Search an implicit graph for errors 
Explicit state model checking 

Start with initial states 
Choose an unexplored state and check it 
    If error report; else generate successors & repeat
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Initially: c = 0; m = 10 
Transition relation: c := c+2 mod m || c := c+6 mod m 
Property: G(c < m-1)

0 2 4 6 8

finite program

property implicit graph

Holds?



Model Checking
Does a finite state program satisfy a temporal property? 
Search an implicit graph for errors 
Explicit state model checking 

Start with initial states 
Choose an unexplored state and check it 
    If error report; else generate successors & repeat
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Initially: c = 0; m = 10 
Transition relation: c := c+2 mod m || c := c+6 mod m 
Property: G(c < m-1)

0 2 4 6 8

finite program

property implicit graph

Yes!



Model Checking: Concurrency
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Initially n = 0 (global, shared variable) 
Processes Pi, 1 ≤ i ≤ m 
initially reg, counter = 0, 0 (local variables)  
while counter < 100 { 
     reg := n 
     reg++ 
     n := reg 
     counter ++ }

What values can n have after all processes terminate? 
G(terminate ⇒ 100≤n≤100m) holds? 
G(terminate ⇒ 2≤n≤100m)

No



Model Checking
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Model: program and graph (can be exponentially bigger) 
Checking: temporal logic formula (more later)  
Nondeterministic: e.g., multiple transitions from 0 
Explicit state: explicitly represent states   
On the fly: only reachable states computed; quit on error 
Counterexample: report a path from initial to error state 
Probabilistic: use of hashing to store visited states 
Optimizations: symmetry & partial order reductions 
Abstraction: used to tame complexity 
Automata: can represent temporal logic and models 
Symbolic: represent states symbolically (BDDs, SAT) 
Infinite State: programs are typically infinite state
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Transition System (TS)  M = 〈S, ⇢ , L〉 where  
S is a set of states 
⇢  ⊆S×S is the transition relation (left-total) 
L is the labeling function: shows what is observable  

A path (trace) σ is a sequence of states s.t. σi ⇢  σi+1 

A fullpath is an infinite path (ω-trace) 
The suffix 〈σi, σi+1, ...〉 of σ is denoted σi 
S0 ⊆ S is the set of initial states (L identifies initial states) 
L : S ➝ ℘(AP) is common, for AP a set of atomic prop vars 
Transition systems = Kripke structures = labeled graphs  
Sometimes transitions are also labeled

Transition Systems
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Transition System (TS)  M =〈S, ⇢ , L〉where  
S is a set of states 
⇢  ⊆S×S is the transition relation (left-total) 
L is the labeling function: shows what is observable 

Transition System Example

S = { 0, 2, 4, 6, 8 } 
⇢ = {〈0, 2〉, 〈0, 6〉, 〈2, 4〉, 〈2, 8〉, 〈4, 6〉, 〈4, 0〉, ...} 
L = identity = {〈0, 0〉, 〈2, 2〉, 〈4, 4〉, 〈6, 6〉, 〈8, 8〉}  
L = div3? = {〈0, true〉, 〈2, false〉, 〈4, false〉, 〈6, true〉, 〈8, false〉} 

0 2 4 6 8
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The syntax of LTL formulas: 
e, where e is an expression 
f ∧ g and ¬f, where f, g are formulas 
X f, f U g, where f, g are formulas 

LTL Syntax & Intuition

0 2 4 6 8M =

e e.g., div3?; ⟦e⟧ = {0, 3, 6, 9, 12, ...} (the predicate denoted by e)

0 2 4 6 8 0 ...σ =

...σ =

2 8 4 6 8 ...σ = 0

✔
✖
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The syntax of LTL formulas: 
e, where e is an expression 
f ∧ g and ¬f, where f, g are formulas 
X f, f U g, where f, g are formulas 

LTL X Intuition

M =

X f

0 2 4 6 8 0 ...σ =

...σ =

2 8 4 6 8 ...σ = 0

e.g., X >5

✔
✖

0 2 4 6 8
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The syntax of LTL formulas: 
e, where e is an expression 
f ∧ g and ¬f, where f, g are formulas 
X f, f U g, where f, g are formulas 

LTL U Intuition

f U g

2 8 4 6 8 ...σ =

e.g., 
<5 U >6

✔

0 2 4 6 8 ...σ = ✖

8 0 6 2 4 ...σ = ✔
0 2 4 0 2 ...σ = ✖

...σ =
f ∧ ¬g f ∧ ¬g... g
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The syntax of LTL formulas: 
e, where e is an expression 
f ∧ g and ¬f, where f, g are formulas 
X f, f U g, where f, g are formulas  

The semantics of LTL formulas wrt M, σ 

M, σ ⊨ e  iff  L(σ0) ∈ ⟦e⟧ 
M, σ ⊨ f ∧ g  iff  M, σ ⊨ f and M, σ ⊨ g  
M, σ ⊨ ¬f  iff it is not the case that M, σ ⊨ f 
M, σ ⊨ X f  iff M, σ1 ⊨ f 
M, σ ⊨ f U g iff ∃ i s.t. M, σi ⊨ g and ∀ j < i, M, σj ⊨ f 

M ⊨ f iff ∀ fullpaths σ starting from an initial state: M, σ ⊨ f

LTL Semantics
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LTL F Intuition

F g

2 8 4 6 8 ...σ =

e.g., 
F >6

✔

0 2 4 6 2 ...σ = ✖

8 0 6 2 4 ...σ = ✔

...σ = ... g

F g means eventually g 
Formally, F g is an abbreviation for true U g
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G f means always f 
Formally, G f is an abbreviation for ¬(F ¬f)

LTL G Intuition

G f

2 4 0 2 4 ...σ =

e.g., 
G <6

✔

0 2 4 6 8 ...σ = ✖

...σ = ... f fff
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Express infinitely often (e.g., Pi executes infinitely often)  
Express eventually always 

LTL Fairness

G(F g) ... g ... g ...

F(G f)

F g F g

...  G f ... ...f f

Does G (F g)  ⇒ F (G f)? 

Does F (G f)   ⇒ G (F g)?

No

Yes

F(G f)



Model Checking LTL
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Model M is given implicitly as a program 
this is the Kripke structure/ graph/ transition system 
can be concurrent, nondeterministic, reactive 
gives rise to the set M of fullpaths (traces) from S0 

Property is given as an LTL formula f 
usually the conjunction of formulae 
can include fairness constraints  
gives rise to the set P of fullpaths satisfying f 

Model checking means 
checking M ⊨ f (as defined before) 
equivalent to checking whether M ⊆ P
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Lamport classified properties as: 
Safety: nothing bad ever happens 
Liveness: something good eventually happens 
Neither: neither of the above 

Safety properties: can always be falsified with a finite trace 
Liveness properties: can never be falsified with a finite trace 

Safety and Liveness

G f ...σ = ...
...F g ...σ = ...

G f  ∧  F g is neither a safety nor a liveness property. Why?
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Transformational systems 
type/stack/memory safety 
no reachable structures are deallocated 
partial correctness 

Reactive systems 
only one process is in its critical section at any point in time 
transactions appear to be atomic 
messages are authenticated 
requests are processed within k steps

Safety
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Transformational systems 
termination 
unreachable structures are deallocated eventually 

Reactive systems 
requests are eventually processed 
weak fairness (eventually always enabled ⇒ taken) 

strong fairness (infinitely often enabled ⇒ taken)

Liveness



Slides by Pete Manolios for CS4820

Specification: partial/total correctness, fairness, etc. 
Different proof methods employed  

safety: proofs by induction 
liveness: construction of well-founded relations 

For some problems, safety is decidable but not liveness 
Model checking safety is easier 
Security: enforceable security properties = safety properties 
Topological & lattice-theoretic characterizations 
Decomposition theorem 

every property is the conjunction of a safety and liveness prop 
extremal: strongest safety and weakest liveness

Safety and Liveness
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The syntax of CTL* formulas: 
e, where e is an expression 
f ∧ g and ¬f, where f, g are formulas 
X f, f U g, E f, where f, g are formulas 

Temporal Logic: CTL*

M =
0

2

4

6

6

288

0 840 40 4...Consider EF >6
Consider EG <6

✔
✔

Consider EG >2 ✖
Consider EFG >2 ✔

Computation tree obtained 
by unrolling transition relation

0 2 4 6 8
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A Intuition CTL*

M =

0

2

4

6

6

288

0 840 40 4...
Consider AX >4
Consider AF >4
Consider AF =0
Consider AXGF =0

A g means for all paths, g 
Formally, A g is an abbreviation for ¬E¬g

✔
✖

✖
✖

0 2 4 6 8
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The syntax of CTL* formulas: 
e, where e is an expression 
f ∧ g and ¬f, where f, g are formulas 
X f, f U g, E f, where f, g are formulas  

The semantics of CTL* formulas wrt M, σ 

M, σ ⊨ e  iff  L(σ0)  ⟦e⟧ 
M, σ ⊨ f ∧ g  iff  M, σ ⊨ f and M, σ ⊨ g  
M, σ ⊨ ¬f  iff it is not the case that M, σ ⊨ f 
M, σ ⊨ X f  iff M, σ1 ⊨ f 
M, σ ⊨ f U g iff ∃ i s.t. M, σi ⊨ g and ∀ j < i, M, σj ⊨ f  
M, σ ⊨ E f  iff ∃ δ = 〈σ0, ...〉 in M s.t. M, δ ⊨ f 

M ⊨ f iff ∀ fullpaths σ starting from an initial state: M, σ ⊨ f

Temporal Logic: CTL*

State formulas: 
formulas depending 

only on first state
Can write M, s ⊨ f 
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The syntax of CTL* formulas: 
e, where e is an expression 

f ∧ g and ¬f, where f, g are formulas 
X f, f U g, E f, where f, g are formulas  

The syntax of CTL formulas: replace third line with: 
EX f, E(f U g), E¬(f U g), where f, g are formulas 

Note:  
Path quantifiers are paired with temporal operators 
Use CTL to represent AX f  
Use CTL can represent A(f U g)  
CTL can represent EFf, AFf, EGf, AGf 

Temporal Logic: CTL

(¬EX ¬f) 
¬(E¬(f U g)) 

E(true U f), A(true U f), E¬(true U ¬f), A¬(true U ¬f)
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CTL* subsumes CTL and LTL 
Find an LTL formula not expressible in CTL  
Find a CTL formula not expressible in LTL   
Find a CTL* formula not expressible in LTL or CTL

Temporal Logic Hierarchy

CTL*

LTLCTL

p

¬p

  p

A(FG p) 
holds

AF(AG p) 
does not

AG(EF p) 
holds

LTL only considers 
fullpaths, so 

¬p, ¬p, ¬p, ... 
can provide no evidence 

for EFp

¬p

p

A(FG p)
AG(EF p)

A(FG p) ∨ AG(EF p)

??
??


