
Lecture 17

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 17

Reasoning About Systems

S is correct if it satisfies f
f is a claim about the observable behaviors of S

Once we agree on f, the internals of S can be ignored
Typically, f is much simpler than S
Specs are reusable, allow for separation of concerns, …

Specifications should be as simple as possible to minimize
the cognitive load required for humans to accept them

inputs outputs
S

System S

Specification f

Sorting Specification

Ask Northeastern Logic and Computation freshmen to define a spec for sorting

Sorting Specification

The output is ordered
For all l, i, j s.t. l is a list of numbers, i, j are natural numbers and
i < j < (len (sort l)): (sort l)[i] ≤ (sort l)[j]

What if (sort l) is empty, but l is not?
For all l s.t. l is a list of numbers: (len (sort l)) = (len l)

What if n ∈ l, but n ∉ (sort l)?
For all l, n s.t. …: n ∈ l ⇒ n ∈ (sort l)

What if n appears i times in l, but j≠i times in (sort l) ?
(sort l) is a permutation of l

Define permutation
Are we done (are the properties complete)?
Are the properties independent?

Sorting Spec via Refinement

What about
For all l s.t. l is a list of numbers: (sort l) = (isort l)
Where isort is insertion sort?

Advantages
No need to define permutation, …
Defining isort is simple
Completeness trivial
Independence trivial
Easier spec to understand and accept

Reactive Systems
Refinement

I refines S if every behavior of I is allowed by S
Examples

Pipelined Microprocessors
Sequential Consistency
Communications Protocols
Event Processing Systems
Distributed Databases

Hardware Verification: Motivation

International Technology Roadmap for
Semiconductors, 2004 Edition.

Verification has become the dominant cost in the design process. On
current projects, verification engineers outnumber designers, with this
ratio reaching two or three to one for the most complex designs.
...
Without major breakthroughs, verification will be a non-scalable,
show-stopping barrier to further progress in the semiconductor
industry.
…
The overall trend from which these breakthroughs will emerge is the
shift from ad hoc verification methods to more structured, formal
processes.

 Hardware Verification Challenge

Pentium FDIV
(Floating point DIVision) bug in

Pentium 386 led to a
$475 million write-off by Intel

Bob Bently CAV $12B 2005 terms

∎ Verification costs range from 30%-70% of the entire design cost.
∎ R&D for typical CPU: 500+ team, costing $0.5-1B.
∎ Pentium 4 (Bob Bently CAV 2005).

▮ Full-chip simulation ~20Hz on Pentium 4.
▮ Used ~6K CPUs 24/7: ~3 years later <1 minute of simulation cycles.
▮ Exhaustive testing is impossible.
▮ First large-scale formal verification at Intel: 60 person years.
▮ Checked over 14K properties: Decode, Floating point, pipeline.
▮ Found bugs, but no silicon bugs found to date in these areas.

Outline
∎ Pleasantness Problem
∎ Refinement
∎ Local Reasoning
∎ Pipelined Machine Verification
∎ Automating Refinement
∎ Refinement Map Factor
∎ Compositional Reasoning
∎ Deductive Methods & Decision procedures
∎ Conclusions

Approaches to Verification
∎ Property Based.

▮ Relational, e.g., sorting.
▮ Temporal logic, e.g., reactive systems.

∎ Refinement.
▮ I refines S if every behavior of I is allowed by S.
▮ The dual of abstraction.
▮ Sorting.
▮ Pipelined machines.
▮ Communications Protocols.
▮ Distributed Databases.

Key Concepts in Refinement
Refinement: I refines S if every behavior of I is allowed by S
Identify what is observable

Transformational systems: input & output
Reactive systems: refinement maps, e.g., I may contain more
components and may use different data representations than S

Theoretical, semantic-based approach
Use Kripke structures M =〈S, ⇢, L〉
Language agnostic

Direct support for Stuttering
I may require several steps to match S

Refinement, the Picture

PC
RF

IM

DM

PC

RF

IM

DM

ISA-Abstract

MA-Abstract

MA-Abstract2

MA-Bit-Level

RF

IM DM

RF

IM
32 32

32

32

32 32
32

DM
32

DM

DM

∎ Formal connection
between different
abstraction levels.

∎ Compositional.

∎ Preservation of safety
and liveness.

∎ Avoid “leaky
abstractions.”

⊑
⊑

⊑

Behaviors
I refines S if every behavior of I is allowed by S
What are the behaviors of a system?

Linear time
Programs and properties are sets of infinite sequences
Trace containment, equivalence (PSPACE-complete)
LTL

Branching time
Programs and properties are sets of infinite trees
Simulation, bisimulation (in P)
ACTL*, CTL*, μ-calculus

a

b b

dc

a

b

dc

Existence of Refinement Maps
Abadi and Lamport. The Existence of Refinement Mappings,

Theoretical Computer Science, 1991.
Spec: state machine & supplementary property (fairness)
Proving that I refines S requires reasoning about infinite sequences:
if I allows 〈〈e0,z0〉, 〈e1,z1〉, 〈e2,z2〉, …〉, then
S allows 〈〈e0,y0〉, 〈e1,y1〉, 〈e2,y2〉, …〉
Reason locally (structurally)!
Definition: If f(en,zn) = 〈en,yn〉, f can be used to prove, locally, that I
preserves safety properties of S. If f preserves liveness, then it is a
refinement mapping.
Theorem: If the machine-closed specification I implements S, a
specification that has finite invisible nondeterminism and is internally
continuous, then there is a specification Ih obtained from I by adding
a history variable and a specification Ihp obtained from Ih by adding a
prophecy variable such that there exists a refinement mapping from
Ihp to S.

My Refinement Results
A compositional theory of refinement that deals with
liveness
Branching time

Theorem: If I implements S, there exists a refinement mapping
from I to S.

Linear time
Theorem: If I implements S, then there is a specification Io,
obtained from I by adding an oracle variable, such that there
exists a refinement mapping from Io to S.

Proofs show how to construct refinement maps &
provide key insights for mechanization

Outline
∎ Pleasantness Problem
∎ Refinement
∎ Local Reasoning
∎ Pipelined Machine Verification
∎ Automating Refinement
∎ Refinement Map Factor
∎ Compositional Reasoning
∎ Deductive Methods & Decision procedures
∎ Conclusions

Refinement

∎ Transition System (TS) M = 〈S,  , L〉
∎ Let

∎ We say that M is a simulation refinement of M’ with respect to
refinement map r, written M ⊑r M’, if there exists a relation, B,
such that:
▮ 〈∀s∈S :: sB(r.s)〉
▮ B is an STS on the TS 〈S ⊎ S’,  ⊎ ’, L〉, where

L.s = L’(s) for s an S’ state, else L.s = L’(r.s).

∎ Compositional: M ⊑r M’ ∧ M’ ⊑q M’’ ⇒ M ⊑r ;q M’’

– M = 〈S,  , L〉 (the implementation)

– M’ = 〈S’,  ’ , L’〉 (the specification)
– r : S → S’

Stuttering Simulation
Transition System (TS) M = 〈S,  , L〉

B is a stuttering simulation (STS) on M iff for
all s, w such that sBw:

1. L.s = L.w

s
w

: B: B
: L

Stuttering Simulation
Transition System (TS) M = 〈S,  , L〉

B is a stuttering simulation (STS) on M iff for
all s, w such that sBw:

1. L.s = L.w
2. 〈∀σ :fp.σ.s : 〈∃δ :fp.δ.w : match(B,σ,δ)〉〉

s
w

σ
δ

… …

: B
: L

Stuttering Simulation
Transition System (TS) M = 〈S,  , L〉

B is a stuttering simulation (STS) on M iff for
all s, w such that sBw:

1. L.s = L.w
2. 〈∀σ :fp.σ.s : 〈∃δ :fp.δ.w : match(B,σ,δ)〉〉

match(B,σ,δ): σ,δ can be partitioned into
non-empty, finite segments such that
states in related segments are related
by B.

s
w

σ
δ

… …

: B
: L

 An Example

: r
: L

M ⊑r M’ with witness B, the relation induced by r.

M M’

 An Example

: r
: L

M ⊑r M’ with witness B, the relation induced by r.

M M’

Stuttering Simulation

∎ For every TS M, there is a greatest STS on M:
▮ Let C be a set of STS’s, then ⋃B∈C is an STS.

∎ If B is an STS, so is B*.
▮ B* = ⋃i∈ℕ Bi.
▮ The identity relation is an STS.
▮ If R and S are STSs, so is R;S, their composition.

∎ The greatest STS, G, on M is a preorder.
▮ G* is an STS.
▮ G ⊆ G*, but also G* ⊆ G.

Stuttering Simulation
Theorem:

Let B be a STS on M and let sBw.
For every ACTL*\X formula f,
 if M,w ⊨ f, then M,s ⊨ f.

Outline
∎ Pleasantness Problem
∎ Refinement
∎ Local Reasoning
∎ Pipelined Machine Verification
∎ Automating Refinement
∎ Refinement Map Factor
∎ Compositional Reasoning
∎ Deductive Methods & Decision procedures
∎ Conclusions

Proof Considerations

∎ Proving 〈∀σ:fp.σ.s : 〈∃δ:fp.δ.w : match(B,σ,δ)〉〉 requires
global reasoning; to do it mechanically is arduous.

∎ We define WFS and show it is equivalent to STS.
▮ Soundness (easy).
▮ Completeness (harder).

∎ Reasoning about WFS is local.
∎ The branching time result does not require machine

closure, finite invisible nondeterminism, internal
continuity, history variables, prophecy variables, etc.

∎ The linear time result only needs oracle variables.

Refinement via Local Reasoning

PC

RF

IM

DM

PC

RF

IM

DM

PC

RF

IM

DM

r

r

r

r

ISA0

ISA1

ISA2

MA1

PC

32 32

32

32

32
32 32

IM

RF

DM

MA2

PC

32 32

32

32

32
32 32

IM

RF

DM

MA3

PC

32 32

32

32

32
32 32

IM

RF

DM

MA0

PC

32 32

32

32

32
32 32

IM

RF

DM

∎ Refinement requires
matching infinite traces of
the implementation and
specification.

∎ Refinement maps allow a
local check.

Technical overview:
∎ Define well-founded

simulation & bisimulation.
∎ Local notions.
∎ Show soundness &

completeness.

〈∀s,u,w ∈ S : (sBw ∧ s  u) :
 〈∃v : w  v : uBv〉

Well-founded Simulation (WFS)

v

s w

u

1. 〈∀s,w ∈ S : sBw : L.s = L.w〉
2. There are functions rankt: S2 → W, rankl: S3 → ℕ such

that 〈W, ≺〉 is well-founded and

〈∀s,u,w ∈ S : (sBw ∧ s  u) :
 〈∃v : w  v : uBv〉
 ∨ (uBw ∧ rankt(u,w) ≺ rankt(s,w)

Well-founded Simulation (WFS)

s w

u v

s w

u

or

rankt(u,w) ≺ rankt(s,w)

1. 〈∀s,w ∈ S : sBw : L.s = L.w〉
2. There are functions rankt: S2 → W, rankl: S3 → ℕ such

that 〈W, ≺〉 is well-founded and

〈∀s,u,w ∈ S : (sBw ∧ s  u) :
 〈∃v : w  v : uBv〉
 ∨ (uBw ∧ rankt(u,w) ≺ rankt(s,w)
 ∨ 〈∃v : w  v : sBv ∧ rankl(v,s,u) < rankl(w,s,u)〉〉

Well-founded Simulation (WFS)

or

v

s w

u

s w

u v

s w

u

or

rankt(u,w) ≺ rankt(s,w) rankl(v,s,u) < rankl(w,s,u)

1. 〈∀s,w ∈ S : sBw : L.s = L.w〉
2. There are functions rankt: S2 → W, rankl: S3 → ℕ such

that 〈W, ≺〉 is well-founded and

 An Example

: r,B
: L

rankl(v,s,u) = tag of v
rankt(u,w) = tag of u

1 0

0 0

0
0

M M’

STS is WFS
Proof Outline.
1. Define rankt(s,w):
tree(s,w) is defined to be the
largest subtree of the
computation tree rooted at s
s.t. at every non-root node
〈s, …, x〉, we have xBw and
〈∀v : w  v : ¬(xBv)〉

〈∀s,u,w ∈ S : (sBw ∧ s  u) :
 〈∃v : w  v : uBv〉
 ∨ (uBw ∧ rankt(u,w) ≺ rankt(s,w)
 ∨ 〈∃v : w  v : sBv ∧ rankl(v,s,u) < rankl(w,s,u)〉〉

v

s w

u

s w

u v

s w

u

rankt(u,w) ≺ rankt(s,w) rankl(v,s,u) < rankl(w,s,u)

s w

x

STS is WFS
Proof Outline.
1. Define rankt(s,w):
tree(s,w) is defined to be the
largest subtree of the
computation tree rooted at s
s.t. at every non-root node
〈s, …, x〉, we have xBw and
〈∀v : w  v : ¬(xBv)〉

〈∀s,u,w ∈ S : (sBw ∧ s  u) :
 〈∃v : w  v : uBv〉
 ∨ (uBw ∧ rankt(u,w) ≺ rankt(s,w)
 ∨ 〈∃v : w  v : sBv ∧ rankl(v,s,u) < rankl(w,s,u)〉〉

v

s w

u

s w

u v

s w

u

rankt(u,w) ≺ rankt(s,w) rankl(v,s,u) < rankl(w,s,u)

Lemma: Every path of tree is finite. s w

x

STS is WFS
Proof Outline.
1. Define rankt(s,w):
tree(s,w) is defined to be the
largest subtree of the
computation tree rooted at s
s.t. at every non-root node
〈s, …, x〉, we have xBw and
〈∀v : w  v : ¬(xBv)〉

〈∀s,u,w ∈ S : (sBw ∧ s  u) :
 〈∃v : w  v : uBv〉
 ∨ (uBw ∧ rankt(u,w) ≺ rankt(s,w)
 ∨ 〈∃v : w  v : sBv ∧ rankl(v,s,u) < rankl(w,s,u)〉〉

v

s w

u

s w

u v

s w

u

rankt(u,w) ≺ rankt(s,w) rankl(v,s,u) < rankl(w,s,u)

Lemma: Every path of tree is finite.
Label nodes in tree using standard
set-theory “rank” function.
Lemma: If |S| ≤ κ (where ω ≤ κ), then

for all s,w∈S, tree(s,w) is labeled with

an ordinal of cardinality ≤ κ.

s w

x

STS is WFS
Proof Outline.
1. Define rankt(s,w):
tree(s,w) is defined to be the
largest subtree of the
computation tree rooted at s
s.t. at every non-root node
〈s, …, x〉, we have xBw and
〈∀v : w  v : ¬(xBv)〉

〈∀s,u,w ∈ S : (sBw ∧ s  u) :
 〈∃v : w  v : uBv〉
 ∨ (uBw ∧ rankt(u,w) ≺ rankt(s,w)
 ∨ 〈∃v : w  v : sBv ∧ rankl(v,s,u) < rankl(w,s,u)〉〉

v

s w

u

s w

u v

s w

u

rankt(u,w) ≺ rankt(s,w) rankl(v,s,u) < rankl(w,s,u)

Lemma: Every path of tree is finite.
Label nodes in tree using standard
set-theory “rank” function.
Lemma: If |S| ≤ κ (where ω ≤ κ), then

for all s,w∈S, tree(s,w) is labeled with

an ordinal of cardinality ≤ κ.

Def: rankt = l.tree, where 〈W, ≺〉 is 〈(|S|+ ω)+, ≺〉.

s w

x

Existence of Refinement Maps

∎ Branching time:
Theorem: If I implements S, then there is a refinement
map r such that I ⊑r S.

∎ Linear time:
Theorem: If I implements S (the set of traces of I is a
subset of the traces of S), then there exists I’, where I’
is obtained from I by adding an oracle variable, and a
refinement map r such that I’ ⊑r S.

