Lecture 16

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 16

FOL Checking with Unification

- FO validity checker: Given FO ϕ, negate \& Skolemize to get universal ψ s.t. Valid (ϕ) iff UNSAT (ψ). Let G be the set of ground instances of ψ (possibly infinite, but countable). Let $G_{1}, G_{2} \ldots$, be a sequence of finite subsets of G s.t. $\forall g \subseteq G,|g|<\omega$, $\exists n$ s.t. $g \subseteq G_{n}$. $\exists n$ s.t. Unsat G_{n} iff Unsat ψ (and Valid Φ)
- Unification: intelligently instantiate formulas
- FO validity checker w/ unification: Given FO ϕ, negate \& Skolemize to get universal ψ s.t. Valid (ϕ) iff UNSAT (ψ). Convert ψ into equivalent CNF \mathcal{K}. Then, Unsat ψ iff $\varnothing \in \mathrm{URes}_{\omega}(\mathcal{K})$ iff $\exists n$ s.t. $\varnothing \in \mathrm{URes}_{n}(\mathcal{K})$.
- We say that U-resolution is refutation-compete: If Unsat (\mathcal{K}) then there is a proof using U-resolution (i.e., you can derive \varnothing), so we have a semidecision procedure for validity.

FOL Checking Examples

- FO validity checker w/ unification: Given FO ϕ, negate \& Skolemize to get universal ψ s.t. Valid (ϕ) iff UNSAT (ψ). Convert ψ into equivalent CNF \mathcal{K}.
Then, Unsat (ψ) iff $\varnothing \in \operatorname{URes}_{\omega}(\mathcal{K})$ iff $\exists n$ s.t. $\varnothing \in \operatorname{URes}_{n}(\mathcal{K})$.

$$
\begin{aligned}
& \phi=\neg\langle\forall x, y(R(x, y) \vee Q(x)) \wedge \neg R(x, g(x)) \wedge \neg Q(y)\rangle \\
& \psi=\langle\forall x, y(R(x, y) \vee Q(x)) \wedge \neg R(x, g(x)) \wedge \neg Q(y)\rangle \\
& \mathscr{K}=\{\{R(x, y), Q(x)\},\{\neg R(x, g(x))\},\{\neg Q(y)\}\}
\end{aligned}
$$

Let C, D be clauses (w / no common variables). K is a U-resolvent of C, D iff there are non-empty $\underline{C}^{\prime} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D}^{\prime}$ and $K=\left(C \backslash \underline{C}^{\prime} \cup D \backslash \underline{D}^{\prime}\right) \sigma$.

So, Unsat((ψ) and Valid($\$$)

U-resolvent example

- Let C be a clause; if we negate all literals in C, we get C^{-}
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime}} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D^{\prime}}$ and $K=\left(C \backslash \underline{C} \underline{\prime}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be >1
- Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$

One possible U-resolution step

Tautology, so useless

U-resolvent example

- Let C be a clause; if we negate all literals in C, we get C^{-}
- A unifier for a clause $C=\left\{l_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime}} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D^{\prime}}$ and $K=\left(C \backslash \underline{C} \underline{C}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be >1
- Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$

$$
\{\neg S(c, c), S(c, c)\}
$$

All are tautologies

$$
\{\neg S(c, x), S(c, x)\}
$$ (useless)

U-resolvent example

- Let C be a clause; if we negate all literals in C, we get C^{-}
- A unifier for a clause $C=\left\{l_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime}} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D^{\prime}}$ and $K=\left(C \backslash \underline{C} \underline{C}^{\prime} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be >1
- Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$

U-resolvent example

- Let C be a clause; if we negate all literals in C, we get C^{-}
- A unifier for a clause $C=\left\{I_{1}, \ldots, I_{n}\right\}$ is a unifier for $\left\{\left(l_{1}, I_{2}\right),\left(I_{2}, I_{3}\right), \ldots,\left(I_{n-1}, I_{n}\right)\right\}$
- Let C, D be clauses (assume there are no common variables since we can rename vars). K is a U-resolvent of C, D iff there are non-empty $\underline{C^{\prime}} \subseteq C, \underline{D}^{\prime} \subseteq D$ s.t. σ is a unifier for $\underline{C}^{\prime} \cup \underline{D^{\prime}}$ and $K=\left(C \backslash \underline{Q^{\prime}} \cup D \underline{D^{\prime}}\right) \sigma$. Note $\left|\underline{C}^{\prime}\right|,\left|\underline{D^{\prime}}\right|$ can be >1
- Try this: $C=\{\neg S(c, x), \neg S(x, x)\}, D=\{S(x, x), S(c, x)\}$

- This is the Barber of Seville problem: Prove that there is no barber who shaves all those, and those only, who do not shave themselves.
$\neg\langle\exists b\langle\forall x S(b, x) \equiv \neg S(x, x)\rangle\rangle$

Schedule

- 11/8: FOL/SMT
- 11/11: Temporal Logic/Safety \& Liveness/Buchi (Veteran's Day)
- 11/15: Refinement
- 11/18: Paper Presentations
- 11/22: Paper Presentations
- 11/29: Term Rewriting
- 12/2: Projects, Exam 2 (Take home)
- 12/6: Projects

Proof Theory

$\bullet Ф \vdash \phi$ denotes that ϕ is provable from Φ

- Provability should be machine checkable
- It may seem hopeless to nail down what a proof is
- don't mathematicians expand their proof methods?
- FOL has a fairly simply set of obvious rules
- There are many equivalent ways of defining proof

Sequent Calculus

- A sequent is a nonempty sequence of formulas
- Sequent rules:
$\Gamma \neg \phi \psi$

- The left rule says if you have a proof of both $\neg \psi$ and ψ from $\Gamma \cup\{\neg \phi\}$, that constitutes a proof of ϕ from Γ
- If there is a derivation of the sequent $\Gamma \phi$, then we write $\vdash \Gamma \phi$ and say that $\Gamma \phi$ is derivable
- A formula Φ is formally provable or derivable from a set Φ of formulas, written $\Phi \vdash \phi$, iff there are finitely many formulas $\phi_{1}, \ldots, \phi_{\mathrm{n}}$ in Φ s.t. $\vdash \phi_{1} \ldots \phi_{n} \phi$

Sequent Rules

Antecedent Rule (Ant)

$$
\frac{\Gamma \varphi}{\Gamma^{\prime} \varphi} \text { if every member of } \Gamma \text { is also a member of } \Gamma^{\prime} .
$$

A sequent $\Gamma \phi$ is correct if $\Gamma \vDash \phi$
A rule is correct: applied to correct sequents, it yields correct sequents Notice that the sequent rules are correct

Assumption Rule (Assm)

$$
\overline{\Gamma \varphi} \text { if } \varphi \text { is a member of } \Gamma \text {. }
$$

Proof by Cases Rule (PC)

Γ	ψ	φ		
Γ	$\neg \psi \quad \varphi$			
Γ	φ			

Contradiction Rule (Ctr)

Sequent Rules for v

\vee-Rule for the Antecedent ($\vee \mathrm{A}$)

Γ	φ	ξ
Γ	ψ	ξ
Γ	$(\varphi \vee \psi)$	ξ

V-Rule for the Succedent (\vee S)
(a) $\frac{\Gamma \varphi}{\Gamma \quad(\varphi \vee \psi)}$
(b) $\frac{\Gamma \varphi}{\Gamma \quad(\psi \vee \varphi)}$

Derived Sequent Rules

Tertium non datur (Ctr)

$$
\overline{(\varphi \vee \neg \varphi)}
$$

Proof? We can prove it by assuming φ, getting $\varphi \vee \neg \varphi$ and similarly with $\neg \varphi$.

1.	φ	φ	(Ant)
2.	φ	$(\varphi \vee \neg \varphi)$	(V S)
3.	$\neg \varphi$	$\neg \varphi$	(Ant)
4.	$\neg \varphi$	$(\varphi \vee \neg \varphi)$	(V S)
5.		$(\varphi \vee \neg \varphi)$	(PC)

Sequent Rules

Reflexivity Rule for Equality (\equiv)

$$
\overline{t \equiv t}
$$

Substitution Rule for Equality (Sub)

$$
\begin{array}{cc}
\Gamma & \varphi \frac{t}{x} \\
\hline \Gamma & t \equiv t^{\prime} \\
\varphi^{t^{\prime}}
\end{array}
$$

Sequent Rules for \exists

\exists-Introduction in the Succedent ($\exists \mathbf{S}$)

$\Gamma \quad \varphi_{x}$
$\Gamma \quad \exists x \varphi$

Proof Suppose $\Gamma \models \varphi_{\frac{t}{x}}$. If $\mathcal{J} \models \Gamma$, we have $\mathcal{J} \models \varphi_{\frac{t}{x}}$. By the substitution lemma, $\mathcal{J} \frac{\mathcal{J} . t}{x} \models \varphi$ and thus $\mathcal{J} \models \exists x \varphi$. \square
\exists-Introduction in the Antecedent (\exists A)

$$
\frac{\Gamma \quad \varphi_{x}^{y}}{\Gamma} \quad \psi \text { if } y \text { is not free in } \Gamma \exists x \varphi \psi \text {. }
$$

Proof So, $\Gamma \varphi \frac{y}{x} \models \psi$. Suppose $\mathcal{J} \models \Gamma$ and $\mathcal{J} \models \exists x \varphi$. Then there is an a such that $\mathcal{J} \frac{a}{x} \models \varphi$, but by the coincidence lemma, $\left(\mathcal{J}_{\frac{a}{y}}\right) \frac{a}{x} \models \varphi$. Since $\mathcal{J} \frac{a}{y}(y)=a$, we have $\left(\mathcal{J} \frac{a}{y}\right) \frac{\mathcal{J} \frac{a}{y}(y)}{x} \models \varphi$ and by substitution lemma $\mathcal{J} \frac{a}{y} \models \varphi_{x}^{y}$. Since $\mathcal{J} \models \Gamma$ and $y \notin$ free. Γ, we get $\mathcal{J} \frac{a}{y} \models \Gamma$. Now, we get $\mathcal{J} \frac{a}{y} \models \psi$ and therefore $\mathcal{J} \models \psi$ because $y \notin$ free. ψ.

Gödel's Completeness Part 1

- For all Φ and $\phi, \Phi \vdash \phi$ iff there is a finite $\Phi_{0} \subseteq \Phi$ s.t. $\Phi_{0} \vdash \phi$
- Directly from definition of derivable
- Easy part of Gödel's completeness theorem
- $\Phi \vdash \phi$ implies $\Phi \vDash \Phi$
- By induction on structure of derivations, using correctness of sequent rules
- Φ is consistent, written Con Φ, iff there is no formula Φ such that $\Phi \vdash \Phi$ and $\Phi \vdash \neg \Phi$
\bullet - is inconsistent, written Inc Φ, iff Φ is not consistent, i.e., there is a formula ϕ such that $\Phi \vdash \phi$ and $\Phi \vdash \neg \Phi$
- Inc Φ iff for all $\Phi, \Phi \vdash \phi$
- Con Φ iff there is some ϕ s.t. not $\Phi \vdash \phi$
- For all Φ, Con Φ iff Con Φ_{0} for all finite subsets Φ_{0} of Φ

Consistency and SAT

- Sat Φ implies Con Φ
- Inc $\Phi \Rightarrow \Phi \vdash \Phi$ and $\Phi \vdash \neg \Phi \Rightarrow \Phi \vDash \Phi$ and $\Phi \vDash \neg \Phi \Rightarrow$ not Sat Φ
- For all Φ and Φ the following holds
- $\boldsymbol{\Phi} \vdash \boldsymbol{\phi}$ iff Inc $\boldsymbol{\Phi} \cup\{\neg \Phi\}$
- $\Phi \vdash \neg \Phi$ iff Inc $\Phi \cup\{\phi\}$
- If Con Φ, then Con $\Phi \cup\{\phi\}$ or $\operatorname{Con} \Phi \cup\{\neg \Phi\}$

Gödel's Completeness Theorem

- We have show the easy part of the completeness theorem
- $\Phi \vdash \Phi$ implies $\Phi \vDash \phi$
- What about the converse?
- Gödel's completeness theorem: $\Phi \vDash \Phi$ implies $\Phi \vdash \varnothing$
- Lemma: Con Φ implies Sat Φ
- Φ is consistent, written Con Φ, iff there is no formula Φ such that $\Phi \vdash \Phi$ and $\Phi \vdash \neg \Phi$
- Proof (of completeness): $\quad \Phi \vDash \phi$
iff \{previous lemma\}
not Sat ($\Phi \cup\{\neg \varnothing\})$
iff $\{$ above lemma, soundness $\}$ not $\operatorname{Con}(\Phi \cup\{\neg \Phi\})$
iff \{previous slide\}
Ф \vdash

Gödel's Completeness Theorem

- $\Phi \vdash \phi$ iff $\Phi \vDash \Phi$
- What does this mean for group theory?
- What about new proof techniques?
- Once we show the equivalence between $\vdash \phi$ and \vDash, we can transfer properties of one to the other
- Compactness theorem:
(a) $\Phi \vDash \phi$ iff there is a finite $\Phi_{0} \subseteq \Phi$ such that $\Phi_{0} \vDash \phi$
(b) Sat Φ iff for all finite $\Phi_{0} \subseteq \Phi$, Sat Φ_{0}
- From the proof, we get the Löwenheim-Skolem theorem: Every satisfiable and at most countable set of formulas is satisfiable over a domain which is at most countable

Gödel's 1st Incompleteness Theorem

- A set is recursive iff \in can be decided by a Turing machine
- Assuming Con(ZF), the set $\{\phi: Z F \vdash \phi\}$ is not recursive
- More generally, for any consistent extension C of ZF:
- $\{\phi: C \vdash \phi\}$ is not recursive
- Intuitively clear: embed Turing machines in set theory
- Encode halting problem! as a formula in set theory
- Theorem: If C is a recursive consistent extension of ZF , then it is incomplete, i.e., there is a formula ϕ such that $\mathrm{C} \nvdash \phi$ and $\mathrm{C} \forall \neg \phi$
- Proof Outline: If not, then for every ϕ, either $C \vdash \phi$ or $C \vdash \neg \phi$. We can now decide $C \vdash \phi$: enumerate all proofs of C. Stop when a proof for ϕ or $\neg \phi$ is found

FOL Observations

- In ZF, the axiom of choice is neither provable nor refutable
- In ZFC, the continuum hypothesis is neither provable nor refutable
- By Gödel's first incompleteness theorem, no matter how we extend ZFC, there will always be sentences which are neither provable nor refutable
- There are non-standard models of \mathbb{N}, \mathbb{R} (un/countable)
- Since any reasonable proof theory has to be decidable, and TMs can be formalized in FOL (set theory), any logic can be reduced to FOL
- Building reliable computing systems requires having programs that can reason about other programs and this means we have to really understand what a proof is so that we can program a computer to do it

Non-Standard Models

- Let $N_{s}=\langle\omega, s, 0\rangle$, where s is the successor function. N_{s} satisfies:
${ }^{-}$(the successor of any number differs from that number) $\langle\forall x x \neq s(x)\rangle$
- (s is injective) $\langle\forall x, y x \neq y \Rightarrow s(x) \neq s(y)\rangle$
${ }^{\bullet}$ (every non-0 number has a predecessor) $\langle\forall x x \neq 0 \Rightarrow\langle\exists y x=s(y)\rangle\rangle$
- Let $\Psi=$ Th $N_{s} \cup\left\{x \neq 0, x \neq s(0), \ldots, x \neq S^{n}(0), \ldots\right\}$
- Every finite subset of Ψ has a model, so Ψ has a model (compactness)
- By Lowenheim-Skolem, let \mathfrak{U} be a countable model of Ψ
- \mathfrak{U} includes $0, s(0), \ldots, s^{n}(0), \ldots$, and a, a non-standard number
- a has a successor, predecessor, and they have successors, predecessors
${ }^{\bullet}$ so a is part of a \mathbb{Z}-chain
- hence, there is a countable model, \mathfrak{U}, which is not isomorphic to N_{s}
${ }^{-}$While there is a complete axiomatization for $\mathrm{Th} N_{s}$, once the logic is powerful enough (add $+,{ }^{*},<$), completeness goes out the window
$0, s(0), \ldots, s^{n}(0), \ldots, \quad \ldots, p^{n}(a), \ldots, p(a), a, s(a), \ldots, s^{n}(a), \ldots \quad \mathbb{Z}$-chain $p(a)$ is the predecessor of a (isomophic to \mathbb{Z})

First Order Theories

- Signature Σ : set of constant, function, predicate symbols
- Σ-term, Σ-atom, Σ-literal, Σ-formula, Σ-sentence
- Σ-interpretation assigns meaning to vars, Σ symbols, formulas
- Σ-theory is a set of Σ sentences
- For Σ-theory T, a T-interpretation satisfies all sentences in T
- Validity problem for T : is $\varphi \mathrm{T}$-valid (true in all T-interpretations)?
- Satisfiability problem: is φ T-sat (true in some T-interpretation)?
- Quantifier free versions of decision problems
- Decision problem is decidable if there is a decision procedure

First Order Theories

- Theory of equality: $\Sigma_{==}=$FOL symbols, empty theory
- Validity problem undecidable (FOL)
- Quantifier-free validity problem decidable (congruence closure)
- Theory of arrays: $\Sigma_{\mathrm{A}}=\{$ read, write $\}$, array axioms
- Validity problem undecidable
- Quantifier-free validity problem decidable
- Theory of lists, $\Sigma_{\mathrm{L}}=$ (cons, car, cdr), list axioms
- Validity problem decidable (Oppen) not elementary
- Quantifier-free satisfiability solvable in linear time

First Order Theories

- Theory of integers, $\Sigma_{\mathbb{Z}}=(+,-, \leq$, constants), all true sentences
- Validity problem decidable (Presburger 1929) 3EXP (Cooper)
- Quantifier-free satisfiability NP-complete (ILP) (Papadimitriou)
- Adding \times leads to undecidability even quantifier-free (Matiyasevich)
- Theory of reals, $\Sigma_{\mathbb{R}}=\left(\Sigma_{\mathbb{Z}}\right.$, rational constants $)$, all true sentences
- Validity problem decidable 2EXP (Ferrante and Rackoff)
- Quantifier-free satisfiability problem in P (Khachiyan)
- Adding \times is still decidable (Tarski) 2EXP (Collins)

Satisfiability Modulo Theories

- Enabling technology: improved SAT solvers (CDCL)
- Eager methods: compile to SAT
- Bryant et. al., Pnueli, Strichman, ...
- Systems: UCLID [LS04], BAT [MVS07]
- Sometimes this is the best option
- Lazy methods:
- SAT solver is used to orchestrate theory cooperation
- Barrett, Cimatti, Dill, deMoura, Ruess, Stump, ...
- Systems: ICS[F..01], CVC [BDS02], MathSAT[A..02],...

Home
Papers
Download
Documentation
Examples
Benchmarks
Malling Lists
Release Notes
License

Hardware Description Language Strongly typed language w/ type inference Support for user defined functions
Memories are first-class objects
Syntax extensions enabled by Lisp
Parameterized models are easy to define Extensional theory of arrays Bounded model-checking \& k-induction Used for pipeline machine verification, system assembly, computational biology

BAT Decision Procedure

BAT Memory Abstraction

Extensional theory of arrays: Memories are treated as first class objects.

$$
\left.\left.\begin{array}{rl}
(= & \left(\operatorname{set} \mathrm{m}_{1}\right. \\
a_{1} & \left.v_{1}\right) \\
& \left(\operatorname{set} \mathrm{m}_{2}\right. \\
a_{1} & v_{2}
\end{array}\right)\right) .
$$

Memories can be directly compared in all contexts.

$$
\left.\left.\left.\begin{array}{rl}
(\operatorname{not} \quad(= & \left(\operatorname{set} m_{1}\right. \\
a_{1} & \left.v_{1}\right) \\
& \left(\operatorname{set} m_{2}\right. \\
a_{1} & v_{2}
\end{array}\right)\right)\right)
$$

BAT Memory Abstraction

(get (set (set man v_{1}) $\mathrm{a}_{2} \mathrm{v}_{2}$) a_{3})

Abstracted memory

- Determine number of unique gets and sets (n).
- Generate abstract memory consisting of n words.
- Apply abstraction to original addresses.
\square Note: size of abstract addresses is $\lg (n)$.

Combining Decision Procedures

- Pioneers
- Nelson-Oppen combination method [1979]
- Nelson-Oppen congruence closure procedure [1980]
- Shostak combination method [1984]
- Integrating Decision Procedures into Theorem Provers [1988]

Systems

- Nqthm [BM 1997]
- Simplify [DNS 2005]

Nelson-Oppen Method

- Decide satisfiability of quantifier-free φ over Σ_{1} and Σ_{2}
- Convert into a conjunction of literals (DNF)
- Purify: convert into a conjunction $\Gamma_{1} \cup \Gamma_{2}$ s.t.
- each literal in Γ_{i} is a Σ_{i} literal
- $\Gamma_{1} \cup \Gamma_{2}$ is $\Sigma_{1} \cup \Sigma_{2}$ SAT iff φ is
- Check: For each equivalence E over shared vars V
- $\Gamma_{i} \cup \mathrm{a}(V, E)$ is T_{i}-SAT
- $\alpha(V, E)=\{x=y: x E y\} \cup\{x \neq y: \operatorname{not} x E y\}$ (arrangement)
- If there is such an equivalence, SAT, else UNSAT
- Can extend to many theories

Example

- $0 \leq x \wedge x \leq 1 \wedge f(x) \neq f(1) \wedge f(x) \neq f(0)$
- Purification?
- $\Gamma_{\mathbb{Z}}=0 \leq x \wedge x \leq 1 \wedge u=1 \wedge v=0$
- $\Gamma_{=}=f(x) \neq f(u) \wedge f(x) \neq f(v)$
- Shared variables $S=\{x, u, v\}$, so 5 arrangements
- SAT?
- For all arrangements over S we have $T_{\mathbb{Z}}$ or $T_{=}$unsat

Nelson-Oppen Method

- Disjoint signatures Σ_{1}, Σ_{2}
- $\mathrm{T}_{1}, \mathrm{~T}_{2}$ decidable and stably infinite
- For every T-satisfiable quantifier-free φ there exists a Tinterpretation with an infinite domain satisfying φ
- $T_{\mathbb{R}}, T_{\mathbb{Z}}, T_{=}, T_{A}$, and T_{L} are all stably infinite.
- $T=\{(\forall x: x=a \vee x=b)\}$ is not stably infinite.
- $a=b \wedge f(c) \neq f(d)$ is T-Unsat, yet NO method says Sat
- Complexity: How many equivalences? Bell number
- If T_{1}, T_{2} in NP, so is the combined decision procedure

