
Lecture 16

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 16

Slides by Pete Manolios for CS4820

FOL Checking with Unification
FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t.
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly
infinite, but countable). Let G1, G2 …, be a sequence of finite subsets of G
s.t. ∀g⊆G,|g|<ω, ∃n s.t. g⊆Gn. ∃n s.t. Unsat Gn iff Unsat ψ (and Valid φ)

Unification: intelligently instantiate formulas

FO validity checker w/ unification: Given FO φ, negate & Skolemize to get
universal ψ s.t. Valid(φ) iff UNSAT(ψ). Convert ψ into equivalent CNF 𝓚.
Then, Unsat ψ iff ∅∈UResω(𝓚) iff ∃n s.t. ∅∈UResn(𝓚).

We say that U-resolution is refutation-compete: If Unsat(𝓚) then there is a
proof using U-resolution (i.e., you can derive ∅), so we have a semi-
decision procedure for validity.

Slides by Pete Manolios for CS4820

FOL Checking Examples
FO validity checker w/ unification: Given FO φ, negate & Skolemize to get
universal ψ s.t. Valid(φ) iff UNSAT(ψ). Convert ψ into equivalent CNF 𝓚.
Then, Unsat(ψ) iff ∅∈UResω(𝓚) iff ∃n s.t. ∅∈UResn(𝓚).

σ = z ← x

𝒦 = {{R(x, y), Q(x)}, {¬R(x, g(x))}, {¬Q(y)}}

{(R(x, y), Q(x)} {¬Q(z)}

{(R(x, y)} {¬R(z, g(z))}

∅

ϕ = ¬⟨∀x, y (R(x, y) ∨ Q(x)) ∧ ¬R(x, g(x)) ∧ ¬Q(y)⟩

σ = z ← x, y ← g(x)

Let C, D be clauses (w/ no common
variables). K is a U-resolvent of C, D
iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and
K=(C\C’ ∪ D\D’)σ.

ψ = ⟨∀x, y (R(x, y) ∨ Q(x)) ∧ ¬R(x, g(x)) ∧ ¬Q(y)⟩

So, Unsat(ψ) and Valid(φ)

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

σ = y ← x
{¬S(x, x), S(x, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

Tautology, so useless

One possible U-resolution step

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

σ = y ← x
{¬S(x, x), S(x, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = x, y ← c

{¬S(c, c), S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

All are tautologies

(useless)

{¬S(c, c), S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = x, y ← c

{¬S(c, x), S(c, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = y ← x

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

{S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

{¬S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

∅

σ = x, y ← cσ = x, y ← c

σ = ι the identity substitution

Slides by Pete Manolios for CS4820

U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

∅

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = x, y ← c

¬⟨∃b ⟨∀x S(b, x) ≡ ¬S(x, x)⟩⟩

This is the Barber of Seville problem: Prove that there is no barber who
shaves all those, and those only, who do not shave themselves.

Slides by Pete Manolios for CS4820

Schedule
11/8: FOL/SMT

11/11: Temporal Logic/ Safety & Liveness/ Buchi (Veteran’s Day)

11/15: Refinement

11/18: Paper Presentations

11/22: Paper Presentations

11/29: Term Rewriting

12/2: Projects, Exam 2 (Take home)

12/6: Projects

Slides by Pete Manolios for CS4820

Proof Theory

Φ ⊢ φ denotes that φ is provable from Φ

Provability should be machine checkable

It may seem hopeless to nail down what a proof is

don’t mathematicians expand their proof methods?

FOL has a fairly simply set of obvious rules

There are many equivalent ways of defining proof

Slides by Pete Manolios for CS4820

Sequent Calculus

A sequent is a nonempty sequence of formulas

Sequent rules:

Γ ¬φ ψ

Γ ¬φ ¬ψ if φ is a member of Γ

Γ φ Γ φ

The left rule says if you have a proof of both ¬ψ and ψ from Γ∪ {¬φ},
that constitutes a proof of φ from Γ

If there is a derivation of the sequent Γ φ, then we write ⊢ Γ φ and
say that Γ φ is derivable

A formula φ is formally provable or derivable from a set Φ of formulas,
written Φ ⊢ φ, iff there are finitely many formulas φ1, ..., φn in Φ
s.t. ⊢ φ1 ... φn φ

Slides by Pete Manolios for CS4820

Sequent Rules

A sequent Γ φ is correct if Γ ⊨ φ

A rule is correct: applied to correct sequents, it yields correct sequents

Notice that the sequent rules are correct

Slides by Pete Manolios for CS4820

Sequent Rules for ∨

Slides by Pete Manolios for CS4820

Derived Sequent Rules

Slides by Pete Manolios for CS4820

Sequent Rules

Slides by Pete Manolios for CS4820

Sequent Rules for ∃

Slides by Pete Manolios for CS4820

Gödel’s Completeness Part 1
For all Φ and φ, Φ ⊢ φ iff there is a finite Φ0 ⊆ Φ s.t. Φ0 ⊢ φ

Directly from definition of derivable

Easy part of Gödel’s completeness theorem

Φ ⊢ φ implies Φ ⊨ φ

By induction on structure of derivations, using correctness of sequent rules

Φ is consistent, written Con Φ, iff there is no formula φ such that
Φ ⊢ φ and Φ ⊢ ¬φ

Φ is inconsistent, written Inc Φ, iff Φ is not consistent, i.e., there is a
formula φ such that Φ ⊢ φ and Φ ⊢ ¬φ

Inc Φ iff for all φ, Φ ⊢ φ

Con Φ iff there is some φ s.t. not Φ ⊢ φ

For all Φ, Con Φ iff Con Φ0 for all finite subsets Φ0 of Φ

Slides by Pete Manolios for CS4820

Consistency and SAT

Sat Φ implies Con Φ

Inc Φ ⇒ Φ ⊢ φ and Φ ⊢ ¬φ ⇒ Φ ⊨ φ and Φ ⊨ ¬φ ⇒ not Sat Φ

For all Φ and φ the following holds

Φ ⊢ φ iff Inc Φ ∪ {¬φ}

Φ ⊢ ¬φ iff Inc Φ ∪ {φ}

If Con Φ, then Con Φ ∪ {φ} or Con Φ ∪ {¬φ}

Slides by Pete Manolios for CS4820

Gödel’s Completeness Theorem
We have show the easy part of the completeness theorem

Φ ⊢ φ implies Φ ⊨ φ

What about the converse?

Gödel’s completeness theorem: Φ ⊨ φ implies Φ ⊢ φ

Lemma: Con Φ implies Sat Φ

Φ is consistent, written Con Φ, iff there is no formula φ such that
Φ ⊢ φ and Φ ⊢ ¬φ

Proof (of completeness): Φ ⊨ φ

iff {previous lemma} not Sat (Φ ∪ {¬φ})

iff {above lemma, soundness} not Con (Φ ∪ {¬φ})

iff {previous slide} Φ ⊢ φ

Slides by Pete Manolios for CS4820

Gödel’s Completeness Theorem

Φ ⊢ φ iff Φ ⊨ φ

What does this mean for group theory?

What about new proof techniques?

Once we show the equivalence between ⊢ φ and ⊨, we can
transfer properties of one to the other

Compactness theorem:
(a) Φ ⊨ φ iff there is a finite Φ0 ⊆ Φ such that Φ0 ⊨ φ
(b) Sat Φ iff for all finite Φ0 ⊆ Φ, Sat Φ0

From the proof, we get the Löwenheim-Skolem theorem: Every
satisfiable and at most countable set of formulas is satisfiable over
a domain which is at most countable

Slides by Pete Manolios for CS4820

Gödel’s 1st Incompleteness Theorem

A set is recursive iff ∈ can be decided by a Turing machine

Assuming Con(ZF), the set {φ : ZF ⊢ φ} is not recursive

More generally, for any consistent extension C of ZF:

{φ : C ⊢ φ} is not recursive

Intuitively clear: embed Turing machines in set theory

Encode halting problem! as a formula in set theory

Theorem: If C is a recursive consistent extension of ZF, then it is
incomplete, i.e., there is a formula φ such that C ⊬ φ and C ⊬ ¬φ

Proof Outline: If not, then for every φ, either C ⊢ φ or C ⊢ ¬φ. We
can now decide C ⊢ φ: enumerate all proofs of C. Stop when a
proof for φ or ¬φ is found

Slides by Pete Manolios for CS4820

FOL Observations

In ZF, the axiom of choice is neither provable nor refutable

In ZFC, the continuum hypothesis is neither provable nor refutable

By Gödel’s first incompleteness theorem, no matter how we extend
ZFC, there will always be sentences which are neither provable nor
refutable

There are non-standard models of ℕ, ℝ (un/countable)

Since any reasonable proof theory has to be decidable, and TMs can
be formalized in FOL (set theory), any logic can be reduced to FOL

Building reliable computing systems requires having programs that
can reason about other programs and this means we have to really
understand what a proof is so that we can program a computer to
do it

Slides by Pete Manolios for CS4820

Non-Standard Models
Let Ns = ⟨ω, s, 0⟩, where s is the successor function. Ns satisfies:

(the successor of any number differs from that number) ⟨∀x x≠s(x)⟩
(s is injective) ⟨∀x,y x≠y ⇒ s(x)≠s(y)⟩
(every non-0 number has a predecessor) ⟨∀x x≠0 ⇒ ⟨∃y x=s(y)⟩⟩

Let Ψ = Th Ns ∪ {x≠0, x≠s(0), …, x≠sn(0), …}
Every finite subset of Ψ has a model, so Ψ has a model (compactness)
By Lowenheim-Skolem, let 𝖀 be a countable model of Ψ

𝖀 includes 0, s(0), …, sn(0), …, and a, a non-standard number
a has a successor, predecessor, and they have successors, predecessors
so a is part of a ℤ-chain
hence, there is a countable model, 𝖀, which is not isomorphic to Ns

While there is a complete axiomatization for Th Ns, once the logic is powerful
enough (add +, *, <), completeness goes out the window

0, s(0), …, sn(0), …, a, s(a), …, sn(a), ……, pn(a), …,p(a),
p(a) is the predecessor of a

ℤ-chain
(isomophic to ℤ)

Slides by Pete Manolios for CS4820

First Order Theories
Signature Σ: set of constant, function, predicate symbols

Σ-term, Σ-atom, Σ-literal, Σ-formula, Σ-sentence

Σ-interpretation assigns meaning to vars, Σ symbols, formulas

Σ-theory is a set of Σ sentences

For Σ-theory T, a T-interpretation satisfies all sentences in T

Validity problem for T: is φT-valid (true in all T-interpretations)?

Satisfiability problem: is φT-sat (true in some T-interpretation)?

Quantifier free versions of decision problems

Decision problem is decidable if there is a decision procedure

Slides by Pete Manolios for CS4820

First Order Theories

Theory of equality: Σ= = FOL symbols, empty theory

Validity problem undecidable (FOL)

Quantifier-free validity problem decidable (congruence closure)

Theory of arrays: ΣA = {read, write}, array axioms

Validity problem undecidable

Quantifier-free validity problem decidable

Theory of lists, ΣL = (cons, car, cdr), list axioms

Validity problem decidable (Oppen) not elementary

Quantifier-free satisfiability solvable in linear time

Slides by Pete Manolios for CS4820

First Order Theories

Theory of integers, Σℤ = (+, -, ≤, constants), all true sentences

Validity problem decidable (Presburger 1929) 3EXP (Cooper)

Quantifier-free satisfiability NP-complete (ILP) (Papadimitriou)

Adding × leads to undecidability even quantifier-free (Matiyasevich)

Theory of reals, Σℝ = (Σℤ, rational constants), all true sentences

Validity problem decidable 2EXP (Ferrante and Rackoff)

Quantifier-free satisfiability problem in P (Khachiyan)

Adding × is still decidable (Tarski) 2EXP (Collins)

Slides by Pete Manolios for CS4820

Satisfiability Modulo Theories
Enabling technology: improved SAT solvers (CDCL)

Eager methods: compile to SAT

Bryant et. al., Pnueli, Strichman, ...

Systems: UCLID [LS04], BAT [MVS07]

Sometimes this is the best option

Lazy methods:

SAT solver is used to orchestrate theory cooperation

Barrett, Cimatti, Dill, deMoura, Ruess, Stump, ...

Systems: ICS[F..01], CVC [BDS02], MathSAT[A..02],...

Slides by Pete Manolios for CS4820

Bit-level Analysis Tool (BAT)

simplify
Unroll NICE +

mem operationsBAT
Specification

Abstract
memories

Translate to CNF
CNF

Solve with SAT

example
Counter−

mem operations
NICE + next +Inline functions

NICE dag
Invalid
Valid/

Hardware Description Language
Strongly typed language w/ type inference
Support for user defined functions
Memories are first-class objects
Syntax extensions enabled by Lisp
Parameterized models are easy to define
Extensional theory of arrays
Bounded model-checking & k-induction
Used for pipeline machine verification,
system assembly, computational biology

Slides by Pete Manolios for CS4820

BAT Decision Procedure

NICE +
mem ops

BAT
Specification

NICE + next
+ mem ops

Valid/
Invalid

CNF NICE

Inline
Simplify

Unroll

Abstract
Memories

Generate CNF

Solve w/ SAT

Counterexample

[MSV’06]
[CMV’09]

[MSV’07]

Slides by Pete Manolios for CS4820

BAT Memory Abstraction

 (= (set m1 a1 v1)

 (set m2 a1 v2))

 (not (= (set m1 a1 v1)

 (set m2 a1 v2)))

Extensional theory of arrays:
Memories are treated as first class objects.

Memories can be directly compared in all contexts.

Slides by Pete Manolios for CS4820

BAT Memory Abstraction

 (get (set (set m a1 v1) a2 v2) a3)

Determine number of unique gets and sets (n).
Generate abstract memory consisting of n words.
Apply abstraction to original addresses.
Note: size of abstract addresses is lg(n).

Abstracted memory

Slides by Pete Manolios for CS4820

Combining Decision Procedures

Pioneers

Nelson-Oppen combination method [1979]

Nelson-Oppen congruence closure procedure [1980]

Shostak combination method [1984]

Integrating Decision Procedures into Theorem Provers [1988]

Systems

Nqthm [BM 1997]

Simplify [DNS 2005]

Slides by Pete Manolios for CS4820

Nelson-Oppen Method
Decide satisfiability of quantifier-free φ over Σ1 and Σ2

Convert into a conjunction of literals (DNF)

Purify: convert into a conjunction Γ1∪Γ2 s.t.

each literal in Γi is a Σi literal

Γ1∪Γ2 is Σ1∪Σ2 SAT iff φ is

Check: For each equivalence E over shared vars V

Γi ∪ α(V,E) is Ti-SAT

α(V,E) = {x=y : xEy} ∪ {x≠y : not xEy} (arrangement)

If there is such an equivalence, SAT, else UNSAT

Can extend to many theories

Slides by Pete Manolios for CS4820

Example

0≤x ∧ x≤1 ∧ f(x)≠f(1) ∧ f(x)≠f(0)

Purification?

Γℤ = 0≤x ∧ x≤1 ∧ u=1 ∧v=0

Γ= = f(x)≠f(u) ∧ f(x)≠f(v)

Shared variables S = {x, u, v}, so 5 arrangements

SAT?

For all arrangements over S we have Tℤ or T= unsat

Slides by Pete Manolios for CS4820

Nelson-Oppen Method
Disjoint signatures Σ1, Σ2

T1, T2 decidable and stably infinite

For every T-satisfiable quantifier-free φ there exists a T-
interpretation with an infinite domain satisfying φ

Tℝ, Tℤ, T=, TA, and TL are all stably infinite.

T= {(∀x : x=a ∨ x=b)} is not stably infinite.

a=b ∧ f(c) ≠ f(d) is T-Unsat, yet NO method says Sat

Complexity: How many equivalences? Bell number

If T1, T2 in NP, so is the combined decision procedure

