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FOL Checking with Unification
FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t. 
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly 
infinite, but countable). Let G1, G2 …, be a sequence of finite subsets of G 
s.t. ∀g⊆G,|g|<ω, ∃n s.t. g⊆Gn. ∃n s.t. Unsat Gn  iff Unsat ψ (and Valid φ)

Unification: intelligently instantiate formulas

FO validity checker w/ unification: Given FO φ, negate & Skolemize to get 
universal ψ s.t. Valid(φ) iff UNSAT(ψ). Convert ψ into equivalent CNF 𝓚. 
Then, Unsat ψ iff ∅∈UResω(𝓚) iff ∃n s.t. ∅∈UResn(𝓚).


We say that U-resolution is refutation-compete: If Unsat(𝓚) then there is a 
proof using U-resolution (i.e., you can derive ∅), so we have a semi-
decision procedure for validity.
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FOL Checking Examples
FO validity checker w/ unification: Given FO φ, negate & Skolemize to get 
universal ψ s.t. Valid(φ) iff UNSAT(ψ). Convert ψ into equivalent CNF 𝓚. 
Then, Unsat(ψ) iff ∅∈UResω(𝓚) iff ∃n s.t. ∅∈UResn(𝓚).

σ = z ← x

𝒦 = {{R(x, y), Q(x)}, {¬R(x, g(x))}, {¬Q(y)}}

{(R(x, y), Q(x)} {¬Q(z)}

{(R(x, y)} {¬R(z, g(z))}

∅

ϕ = ¬⟨∀x, y (R(x, y) ∨ Q(x)) ∧ ¬R(x, g(x)) ∧ ¬Q(y)⟩

σ = z ← x, y ← g(x)

Let C, D be clauses (w/ no common 
variables). K is a U-resolvent of C, D 
iff there are non-empty C’⊆C, D’⊆D 
s.t. σ is a unifier for C’∪D’- and 
K=(C\C’ ∪ D\D’)σ.

ψ = ⟨∀x, y (R(x, y) ∨ Q(x)) ∧ ¬R(x, g(x)) ∧ ¬Q(y)⟩

So, Unsat(ψ) and Valid(φ) 
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U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can 
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D 
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

σ = y ← x
{¬S(x, x), S(x, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

Tautology, so useless

One possible U-resolution step
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U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can 
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D 
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

σ = y ← x
{¬S(x, x), S(x, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = x, y ← c

{¬S(c, c), S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

All are tautologies

(useless)

{¬S(c, c), S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = x, y ← c

{¬S(c, x), S(c, x)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = y ← x
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U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can 
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D 
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

{S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

{¬S(c, c)}

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

∅

σ = x, y ← cσ = x, y ← c

σ = ι the identity substitution
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U-resolvent example
Let C be a clause; if we negate all literals in C, we get C-

A unifier for a clause C={l1,…,ln} is a unifier for {(l1,l2), (l2, l3), …, (ln-1,ln)}

Let C, D be clauses (assume there are no common variables since we can 
rename vars). K is a U-resolvent of C, D iff there are non-empty C’⊆C, D’⊆D 
s.t. σ is a unifier for C’∪D’- and K=(C\C’ ∪ D\D’)σ. Note |C’|, |D’| can be >1

Try this: C = {¬S(c, x), ¬S(x, x)}, D = {S(x, x), S(c, x)}

∅

{¬S(c, x), ¬S(x, x)} {S(c, y), S(y, y)}

σ = x, y ← c

¬⟨∃b ⟨∀x S(b, x) ≡ ¬S(x, x)⟩⟩

This is the Barber of Seville problem: Prove that there is no barber who 
shaves all those, and those only, who do not shave themselves.



Slides by Pete Manolios for CS4820

Schedule
11/8: FOL/SMT

11/11: Temporal Logic/ Safety & Liveness/ Buchi (Veteran’s Day)

11/15: Refinement

11/18: Paper Presentations

11/22: Paper Presentations

11/29: Term Rewriting

12/2: Projects, Exam 2 (Take home)

12/6: Projects
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Proof Theory

Φ ⊢ φ denotes that φ is provable from Φ 


Provability should be machine checkable

It may seem hopeless to nail down what a proof is


don’t mathematicians expand their proof methods?

FOL has a fairly simply set of obvious rules 

There are many equivalent ways of defining proof
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Sequent Calculus

A sequent is a nonempty sequence of formulas

Sequent rules:

Γ  ¬φ   ψ

Γ  ¬φ   ¬ψ                        if φ is a member of Γ

Γ   φ                  Γ   φ

The left rule says if you have a proof of both ¬ψ and ψ from Γ∪ {¬φ}, 
that constitutes a proof of φ from Γ

If there is a derivation of the sequent  Γ φ, then we write  ⊢ Γ φ and 
say that Γ φ is derivable

A formula φ is formally provable or derivable from a set Φ of formulas, 
written Φ ⊢ φ, iff there are finitely many formulas φ1, ..., φn in Φ        
s.t. ⊢ φ1 ... φn φ 
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Sequent Rules

A sequent Γ φ is correct if Γ ⊨ φ

A rule is correct: applied to correct sequents, it yields correct sequents

Notice that the sequent rules are correct
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Sequent Rules for ∨



Slides by Pete Manolios for CS4820

Derived Sequent Rules
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Sequent Rules
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Sequent Rules for ∃
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Gödel’s Completeness Part 1
For all Φ and φ, Φ ⊢ φ iff there is a finite Φ0 ⊆ Φ s.t. Φ0 ⊢ φ


Directly from definition of derivable


Easy part of Gödel’s completeness theorem

Φ ⊢ φ  implies  Φ ⊨ φ 


By induction on structure of derivations, using correctness of sequent rules


Φ is consistent, written Con Φ, iff there is no formula φ  such that           
Φ ⊢ φ  and Φ ⊢ ¬φ


Φ is inconsistent, written Inc Φ, iff Φ is not consistent, i.e., there is a 
formula φ such that Φ ⊢ φ  and Φ ⊢ ¬φ


Inc Φ iff for all φ, Φ ⊢ φ


Con Φ iff there is some φ s.t. not Φ ⊢ φ


For all Φ, Con Φ iff Con Φ0 for all finite subsets Φ0 of Φ
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Consistency and SAT

Sat Φ implies Con Φ

Inc Φ ⇒ Φ ⊢ φ  and Φ ⊢ ¬φ ⇒ Φ ⊨ φ  and Φ ⊨ ¬φ ⇒ not Sat  Φ


For all Φ and φ the following holds

Φ ⊢ φ iff Inc Φ ∪ {¬φ} 

Φ ⊢ ¬φ iff Inc Φ ∪ {φ}


If Con Φ, then Con Φ ∪ {φ} or Con Φ ∪ {¬φ}
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Gödel’s Completeness Theorem
We have show the easy part of the completeness theorem


Φ ⊢ φ  implies  Φ ⊨ φ 


What about the converse?

Gödel’s completeness theorem: Φ ⊨ φ  implies  Φ ⊢ φ


Lemma: Con Φ implies Sat Φ

Φ is consistent, written Con Φ, iff there is no formula φ  such that        
Φ ⊢ φ  and Φ ⊢ ¬φ 


Proof (of completeness):             Φ ⊨ φ 


iff  {previous lemma}                   not Sat (Φ ∪ {¬φ}) 


iff  {above lemma, soundness}   not Con (Φ ∪ {¬φ})


iff  {previous slide}                      Φ ⊢ φ



Slides by Pete Manolios for CS4820

Gödel’s Completeness Theorem

Φ ⊢ φ  iff  Φ ⊨ φ 


What does this mean for group theory?

What about new proof techniques?

Once we show the equivalence between ⊢ φ  and  ⊨, we can 
transfer properties of one to the other


Compactness theorem:                                                              
(a) Φ ⊨ φ iff there is a finite Φ0 ⊆ Φ such that Φ0 ⊨ φ                 
(b) Sat Φ iff for all finite Φ0 ⊆ Φ, Sat Φ0 


From the proof, we get the Löwenheim-Skolem theorem: Every 
satisfiable and at most countable set of formulas is satisfiable over 
a domain which is at most countable
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Gödel’s 1st Incompleteness Theorem

A set is recursive iff ∈ can be decided by a Turing machine


Assuming Con(ZF), the set {φ : ZF ⊢ φ} is not recursive


More generally, for any consistent extension C of ZF:

{φ : C ⊢ φ} is not recursive


Intuitively clear: embed Turing machines in set theory

Encode halting problem! as a formula in set theory


Theorem: If C is a recursive consistent extension of ZF, then it is 
incomplete, i.e., there is a formula φ such that C ⊬ φ and C ⊬ ¬φ


Proof Outline: If not, then for every φ, either C ⊢ φ or C ⊢ ¬φ. We 
can now decide C ⊢ φ: enumerate all proofs of C. Stop when a 
proof for φ or ¬φ is found
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FOL Observations

In ZF, the axiom of choice is neither provable nor refutable

In ZFC, the continuum hypothesis is neither provable nor refutable 

By Gödel’s first incompleteness theorem, no matter how we extend 
ZFC, there will always be sentences which are neither provable nor 
refutable

There are non-standard models of ℕ, ℝ (un/countable)

Since any reasonable proof theory has to be decidable, and TMs can 
be formalized in FOL (set theory), any logic can be reduced to FOL 

Building reliable computing systems requires having programs that 
can reason about other programs and this means we have to really 
understand what a proof is so that we can program a computer to 
do it 
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Non-Standard Models
Let Ns = ⟨ω, s, 0⟩, where s is the successor function.  Ns satisfies:

(the successor of any number differs from that number) ⟨∀x  x≠s(x)⟩
(s is injective) ⟨∀x,y  x≠y  ⇒ s(x)≠s(y)⟩
(every non-0 number has a predecessor) ⟨∀x  x≠0  ⇒  ⟨∃y x=s(y)⟩⟩

Let Ψ = Th Ns ∪ {x≠0, x≠s(0), …, x≠sn(0), …}
Every finite subset of Ψ has a model, so Ψ has a model (compactness)
By Lowenheim-Skolem, let 𝖀 be a countable model of Ψ

𝖀 includes 0, s(0), …, sn(0), …, and a, a non-standard number
a has a successor, predecessor, and they have successors, predecessors
so a is part of a ℤ-chain 
hence, there is a countable model, 𝖀, which is not isomorphic to Ns

While there is a complete axiomatization for Th Ns, once the logic is powerful 
enough (add +, *, <), completeness goes out the window 

0, s(0), …, sn(0), …, a, s(a), …, sn(a), ……, pn(a), …,p(a),
p(a) is the predecessor of a

ℤ-chain
(isomophic to ℤ)
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First Order Theories
Signature Σ: set of constant, function, predicate symbols


Σ-term, Σ-atom, Σ-literal, Σ-formula, Σ-sentence


Σ-interpretation assigns meaning to vars, Σ symbols, formulas


Σ-theory is a set of Σ sentences


For Σ-theory T, a T-interpretation satisfies all sentences in T 

Validity problem for T: is φT-valid (true in all T-interpretations)?

Satisfiability problem: is φT-sat (true in some T-interpretation)?

Quantifier free versions of decision problems

Decision problem is decidable if there is a decision procedure
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First Order Theories

Theory of equality: Σ= = FOL symbols, empty theory

Validity problem undecidable (FOL)

Quantifier-free validity problem decidable (congruence closure) 


Theory of arrays: ΣA = {read, write}, array axioms


Validity problem undecidable 

Quantifier-free validity problem decidable  


Theory of lists, ΣL = (cons, car, cdr), list axioms

Validity problem decidable (Oppen) not elementary

Quantifier-free satisfiability solvable in linear time
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First Order Theories

Theory of integers, Σℤ = (+, -, ≤, constants), all true sentences

Validity problem decidable (Presburger 1929) 3EXP (Cooper)

Quantifier-free satisfiability NP-complete (ILP) (Papadimitriou)

Adding × leads to undecidability even quantifier-free (Matiyasevich)


Theory of reals, Σℝ = (Σℤ, rational constants), all true sentences

Validity problem decidable 2EXP (Ferrante and Rackoff)

Quantifier-free satisfiability problem in P (Khachiyan)

Adding × is still decidable (Tarski) 2EXP (Collins)
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Satisfiability Modulo Theories
Enabling technology: improved SAT solvers (CDCL)

Eager methods: compile to SAT


Bryant et. al., Pnueli, Strichman, ...

Systems: UCLID [LS04], BAT [MVS07]

Sometimes this is the best option


Lazy methods:  

SAT solver is used to orchestrate theory cooperation

Barrett, Cimatti, Dill, deMoura, Ruess, Stump, ...

Systems: ICS[F..01], CVC [BDS02], MathSAT[A..02],...
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Bit-level Analysis Tool (BAT)

simplify
Unroll NICE + 

mem operationsBAT
Specification

Abstract
memories

Translate to CNF
CNF

Solve with SAT

example
Counter−

mem operations
NICE + next +Inline functions

NICE dag
Invalid
Valid/

Hardware Description Language
Strongly typed language w/ type inference
Support for user defined functions
Memories are first-class objects
Syntax extensions enabled by Lisp
Parameterized models are easy to define
Extensional theory of arrays
Bounded model-checking & k-induction
Used for pipeline machine verification, 
system assembly, computational biology
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BAT Decision Procedure

NICE + 
mem ops

BAT 
Specification

NICE + next 
+ mem ops

Valid/
Invalid

CNF NICE

Inline
Simplify

Unroll

Abstract
Memories

Generate CNF

Solve w/ SAT

Counterexample

[MSV’06]
[CMV’09]

[MSV’07]
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BAT Memory Abstraction

        (= (set m1 a1 v1)   

           (set m2 a1 v2))


   

   (not (= (set m1 a1 v1)   

           (set m2 a1 v2)))

Extensional theory of arrays:
Memories are treated as first class objects.

Memories can be directly compared in all contexts.
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BAT Memory Abstraction

   (get (set (set m a1 v1) a2 v2) a3)

   

Determine number of unique gets and sets (n).
Generate abstract memory consisting of n words. 
Apply abstraction to original addresses.
Note: size of abstract addresses is lg(n).

Abstracted memory
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Combining Decision Procedures

Pioneers

Nelson-Oppen combination method [1979]

Nelson-Oppen congruence closure procedure [1980]

Shostak combination method [1984]

Integrating Decision Procedures into Theorem Provers [1988]


Systems

Nqthm [BM 1997]

Simplify [DNS 2005]
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Nelson-Oppen Method
Decide satisfiability of quantifier-free φ over Σ1 and Σ2

Convert into a conjunction of literals (DNF)

Purify: convert into a conjunction Γ1∪Γ2 s.t.


each literal in Γi is a Σi literal

Γ1∪Γ2  is Σ1∪Σ2 SAT iff φ is


Check: For each equivalence E over shared vars V

Γi ∪ α(V,E) is Ti-SAT

α(V,E) = {x=y : xEy} ∪ {x≠y : not xEy} (arrangement)


If there is such an equivalence, SAT, else UNSAT

Can extend to many theories
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Example

0≤x ∧ x≤1 ∧ f(x)≠f(1) ∧ f(x)≠f(0)

Purification?

Γℤ = 0≤x ∧ x≤1 ∧ u=1 ∧v=0

Γ= = f(x)≠f(u) ∧ f(x)≠f(v)

Shared variables S = {x, u, v}, so 5 arrangements

SAT?

For all arrangements over S we have Tℤ or  T= unsat
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Nelson-Oppen Method
Disjoint signatures Σ1, Σ2

T1, T2 decidable and stably infinite


For every T-satisfiable quantifier-free φ there exists a T-
interpretation with an infinite domain satisfying φ


Tℝ, Tℤ,  T=, TA, and TL  are all stably infinite.

T= {(∀x : x=a ∨ x=b)} is not stably infinite.

a=b ∧ f(c) ≠ f(d) is T-Unsat, yet NO method says Sat

Complexity: How many equivalences? Bell number


If T1, T2 in NP, so is the combined decision procedure  


