Lecture 16

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 16

FOL Checking with Unification

- FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t. Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly infinite, but countable). Let G₁, G₂ ..., be a sequence of finite subsets of G s.t. ∀g⊆G, |g|<ω, ∃n s.t. g⊆G_n. ∃n s.t. Unsat G_n iff Unsat ψ (and Valid φ)
- Unification: intelligently instantiate formulas
- FO validity checker w/ unification: Given FO φ, negate & Skolemize to get universal ψ s.t. Valid(φ) iff UNSAT(ψ). Convert ψ into equivalent CNF *K*. Then, Unsat ψ iff Ø∈URes_ω(*K*) iff ∃*n* s.t. Ø∈URes_n(*K*).
- We say that U-resolution is *refutation-compete*: If Unsat(𝔅) then there is a proof using U-resolution (*i.e.*, you can derive Ø), so we have a semidecision procedure for validity.

FOL Checking Examples

► FO validity checker w/ unification: Given FO φ, negate & Skolemize to get universal ψ s.t. Valid(φ) iff UNSAT(ψ). Convert ψ into equivalent CNF *K*.
Then, Unsat(ψ) iff Ø∈URes_ω(*K*) iff ∃*n* s.t. Ø∈URes_n(*K*). *Φ* = ¬(∀x, y) (*P*(x, y)) (*O*(x)), *Δ* = *P*(x, g(x)), *Δ* = *O*(y))

$$\phi = \neg \langle \forall x, y \ (R(x, y) \lor Q(x)) \land \neg R(x, g(x)) \land \neg Q(y) \rangle$$

 $\psi = \langle \forall x, y \ (R(x, y) \lor Q(x)) \land \neg R(x, g(x)) \land \neg Q(y) \rangle$

 $\mathcal{K} = \{\{R(x, y), Q(x)\}, \{\neg R(x, g(x))\}, \{\neg Q(y)\}\}$

Let *C*, *D* be clauses (w/ no common variables). *K* is a U-resolvent of *C*, *D* iff there are non-empty $\underline{C} \subseteq C$, $\underline{D} \subseteq D$ s.t. σ is a unifier for $\underline{C} \cup \underline{D}^{-}$ and $K = (C \setminus \underline{C}' \cup D \setminus \underline{D}') \sigma$.

So, $Unsat(\psi)$ and $Valid(\phi)$

- ▶ Let C be a clause; if we negate all literals in C, we get C-
- ▶ A unifier for a clause $C = \{I_1, ..., I_n\}$ is a unifier for $\{(I_1, I_2), (I_2, I_3), ..., (I_{n-1}, I_n)\}$
- ▶ Let *C*, *D* be clauses (assume there are no common variables since we can rename vars). *K* is a **U-resolvent** of *C*, *D* iff there are non-empty $\underline{C}' \subseteq C$, $\underline{D}' \subseteq D$ s.t. σ is a unifier for $\underline{C}' \cup \underline{D}'^-$ and $K = (C \setminus \underline{C}' \cup D \setminus \underline{D}')\sigma$. Note $|\underline{C}'|$, $|\underline{D}'|$ can be >1
- ▶ Try this: $C = \{ \neg S(c, x), \neg S(x, x) \}, D = \{ S(x, x), S(c, x) \}$

One possible U-resolution step

Tautology, so useless

Slides by Pete Manolios for CS4820

- ▶ Let C be a clause; if we negate all literals in C, we get C-
- ▶ A unifier for a clause $C = \{I_1, ..., I_n\}$ is a unifier for $\{(I_1, I_2), (I_2, I_3), ..., (I_{n-1}, I_n)\}$
- ▶ Let *C*, *D* be clauses (assume there are no common variables since we can rename vars). *K* is a U-resolvent of *C*, *D* iff there are non-empty $\underline{C}' \subseteq C$, $\underline{D}' \subseteq D$ s.t. σ is a unifier for $\underline{C}' \cup \underline{D}'^-$ and $K = (C \setminus \underline{C}' \cup D \setminus \underline{D}')\sigma$. Note $|\underline{C}'|$, $|\underline{D}'|$ can be >1

▶ Try this:
$$C = \{ \neg S(c, x), \neg S(x, x) \}, D = \{ S(x, x), S(c, x) \}$$

 $\{ \underline{\neg S(c, x), \neg S(x, x)} \} \{ \underbrace{S(c, y), S(y, y)} \} \{ \overline{\neg S(c, x), \neg S(x, x)} \} \{ \underbrace{S(c, y), S(y, y)} \}$ $\sigma = y \leftarrow x$ $\{ \neg S(x, x), S(x, x) \}$ $\{ \neg S(c, c), S(c, c) \}$

Slides by Pete Manolios for CS4820

- ▶ Let C be a clause; if we negate all literals in C, we get C-
- ▶ A unifier for a clause $C = \{I_1, ..., I_n\}$ is a unifier for $\{(I_1, I_2), (I_2, I_3), ..., (I_{n-1}, I_n)\}$
- ▶ Let *C*, *D* be clauses (assume there are no common variables since we can rename vars). *K* is a U-resolvent of *C*, *D* iff there are non-empty $\underline{C}' \subseteq C$, $\underline{D}' \subseteq D$ s.t. σ is a unifier for $\underline{C}' \cup \underline{D}'^-$ and $K = (C \setminus \underline{C}' \cup D \setminus \underline{D}')\sigma$. Note $|\underline{C}'|$, $|\underline{D}'|$ can be >1
- Try this: $C = \{ \neg S(c, x), \neg S(x, x) \}, D = \{ S(x, x), S(c, x) \}$

- ▶ Let C be a clause; if we negate all literals in C, we get C-
- ▶ A unifier for a clause $C = \{I_1, ..., I_n\}$ is a unifier for $\{(I_1, I_2), (I_2, I_3), ..., (I_{n-1}, I_n)\}$
- ▶ Let *C*, *D* be clauses (assume there are no common variables since we can rename vars). *K* is a **U-resolvent** of *C*, *D* iff there are non-empty $\underline{C}' \subseteq C$, $\underline{D}' \subseteq D$ s.t. σ is a unifier for $\underline{C}' \cup \underline{D}'^-$ and $K = (C \setminus \underline{C}' \cup D \setminus \underline{D}')\sigma$. Note $|\underline{C}'|$, $|\underline{D}'|$ can be >1
- ▶ Try this: $C = \{ \neg S(c, x), \neg S(x, x) \}, D = \{ S(x, x), S(c, x) \}$

- This is the Barber of Seville problem: Prove that there is no barber who shaves all those, and those only, who do not shave themselves.
 - $\neg \langle \exists b \ \langle \forall x \ S(b, x) \equiv \neg S(x, x) \rangle \rangle$

Schedule

- ▶ 11/8: FOL/SMT
- 11/11: Temporal Logic/ Safety & Liveness/ Buchi (Veteran's Day)
- 11/15: Refinement
- 11/18: Paper Presentations
- 11/22: Paper Presentations
- 11/29: Term Rewriting
- 12/2: Projects, Exam 2 (Take home)
- 12/6: Projects

Proof Theory

- ▶ $\Phi \vdash \varphi$ denotes that φ is provable from Φ
- Provability should be machine checkable
- It may seem hopeless to nail down what a proof is
 - don't mathematicians expand their proof methods?
- FOL has a fairly simply set of obvious rules
- There are many equivalent ways of defining proof

Sequent Calculus

- A sequent is a nonempty sequence of formulas
- Sequent rules:

- ▶ The left rule says if you have a proof of both $\neg \psi$ and ψ from $\Gamma \cup \{\neg \phi\}$, that constitutes a proof of ϕ from Γ
- ▶ If there is a derivation of the sequent $\Gamma \phi$, then we write $\vdash \Gamma \phi$ and say that $\Gamma \phi$ is *derivable*
- A formula φ is *formally provable* or *derivable* from a set Φ of formulas, written Φ ⊢ φ, iff there are *finitely* many formulas φ₁, ..., φ_n in Φ s.t. ⊢ φ₁ ... φ_n φ

Sequent Rules

Antecedent Rule (Ant)

$$\frac{\Gamma - \varphi}{\Gamma' - \varphi} \text{ if every member of } \Gamma \text{ is also a member of } \Gamma'.$$

A sequent $\Gamma \varphi$ is *correct* if $\Gamma \vDash \varphi$

A rule is *correct*: applied to correct sequents, it yields correct sequents Notice that the sequent rules are correct

Assumption Rule (Assm)

$$\frac{1}{\Gamma - \varphi} \text{ if } \varphi \text{ is a member of } \Gamma.$$

Proof by Cases Rule (PC) $\Gamma \quad \psi \quad \varphi$ $\frac{\Gamma \quad \neg \psi \quad \varphi}{\Gamma \quad \varphi}$

Contradiction Rule (Ctr)

$$egin{array}{ccc} \Gamma &
eg arphi & \psi \ \Gamma &
eg arphi &
eg arphi & arphi \ arphi & arphi & arphi \ arphi & arphi & arphi \end{array}$$

Slides by Pete Manolios for CS4820

Sequent Rules for v

$\begin{array}{l} \lor \textbf{V-Rule for the Antecedent (\lor A)} \\ \Gamma \quad \varphi \quad \xi \\ \hline \Gamma \quad \psi \quad \xi \\ \hline \Gamma \quad (\varphi \lor \psi) \quad \xi \end{array} \end{array}$

\lor -Rule for the Succedent (\lor S)

$$(a)\frac{\Gamma \quad \varphi}{\Gamma \quad (\varphi \lor \psi)} \qquad \qquad (b)\frac{\Gamma \quad \varphi}{\Gamma \quad (\psi \lor \varphi)}$$

Derived Sequent Rules

Tertium non datur (Ctr)

 $\overline{(\varphi \lor \neg \varphi)}$ Proof? We can prove it by assuming φ , getting $\varphi \lor \neg \varphi$ and similarly with $\neg \varphi$.

1.
$$\varphi$$
 φ (Ant)2. φ $(\varphi \lor \neg \varphi)$ $(\lor S)$ 3. $\neg \varphi$ $\neg \varphi$ (Ant)4. $\neg \varphi$ $(\varphi \lor \neg \varphi)$ $(\lor S)$ 5. $(\varphi \lor \neg \varphi)$ ($\lor S)$

Sequent Rules

Reflexivity Rule for Equality (\equiv)

 $t \equiv t$

Substitution Rule for Equality (Sub)

$$\frac{\Gamma}{\Gamma} \qquad \frac{\varphi \frac{t}{x}}{t \equiv t' \quad \varphi \frac{t'}{x}}$$

Slides by Pete Manolios for CS4820

Sequent Rules for a

\exists -Introduction in the Succedent (\exists S)

 $\frac{\Gamma \quad \varphi \frac{t}{x}}{\Gamma \quad \exists x \varphi}$

Proof Suppose $\Gamma \models \varphi \frac{t}{x}$. If $\mathcal{J} \models \Gamma$, we have $\mathcal{J} \models \varphi \frac{t}{x}$. By the substitution lemma, $\mathcal{J} \frac{\mathcal{J} \cdot t}{x} \models \varphi$ and thus $\mathcal{J} \models \exists x \varphi$. \Box

\exists -Introduction in the Antecedent (\exists A)

$$\frac{\Gamma \quad \varphi \frac{y}{x} \quad \psi}{\Gamma \quad \exists x \varphi \quad \psi} \text{ if } y \text{ is not free in } \Gamma \ \exists x \varphi \ \psi.$$

Proof So, $\Gamma \varphi_x^{\underline{y}} \models \psi$. Suppose $\mathcal{J} \models \Gamma$ and $\mathcal{J} \models \exists x \varphi$. Then there is an a such that $\mathcal{J}_{\overline{x}}^{\underline{a}} \models \varphi$, but by the coincidence lemma, $(\mathcal{J}_{\overline{y}}^{\underline{a}})_{\overline{x}}^{\underline{a}} \models \varphi$. Since $\mathcal{J}_{\overline{y}}^{\underline{a}}(y) = a$, we have $(\mathcal{J}_{\overline{y}}^{\underline{a}})\frac{\mathcal{J}_{\overline{y}}^{\underline{a}}(y)}{x} \models \varphi$ and by substitution lemma $\mathcal{J}_{\overline{y}}^{\underline{a}} \models \varphi_{\overline{x}}^{\underline{y}}$. Since $\mathcal{J} \models \Gamma$ and $y \notin$ free. Γ , we get $\mathcal{J}_{\overline{y}}^{\underline{a}} \models \Gamma$. Now, we get $\mathcal{J}_{\overline{y}}^{\underline{a}} \models \psi$ and therefore $\mathcal{J} \models \psi$ because $y \notin$ free. ψ . \Box

Gödel's Completeness Part 1

- ▶ For all Φ and ϕ , $\Phi \vdash \phi$ iff there is a finite $\Phi_0 \subseteq \Phi$ s.t. $\Phi_0 \vdash \phi$
 - Directly from definition of derivable
- Easy part of Gödel's completeness theorem
 - $\blacktriangleright \Phi \vdash \varphi \text{ implies } \Phi \vDash \varphi$
 - By induction on structure of derivations, using correctness of sequent rules
- Φ is *consistent*, written Con Φ , iff there is no formula ϕ such that $\Phi \vdash \phi$ and $\Phi \vdash \neg \phi$
- Φ is *inconsistent*, written Inc Φ , iff Φ is not consistent, i.e., there is a formula ϕ such that $\Phi \vdash \phi$ and $\Phi \vdash \neg \phi$
- ▶ Inc Φ iff for all φ , $\Phi \vdash \varphi$
- ▶ Con Φ iff there is some ϕ s.t. not $\Phi \vdash \phi$
- ▶ For all Φ , Con Φ iff Con Φ_0 for all finite subsets Φ_0 of Φ

Consistency and SAT

Sat Φ implies Con Φ

▶ Inc $\Phi \Rightarrow \Phi \vdash \phi$ and $\Phi \vdash \neg \phi \Rightarrow \Phi \models \phi$ and $\Phi \models \neg \phi \Rightarrow$ not Sat Φ

- For all Φ and ϕ the following holds
 - Φ ⊢ φ iff Inc Φ ∪ {¬φ}
 - $\blacktriangleright \Phi \vdash \neg \phi \text{ iff Inc } \Phi \cup \{\phi\}$
 - ▶ If Con Φ , then Con $\Phi \cup {\phi}$ or Con $\Phi \cup {\neg\phi}$

Gödel's Completeness Theorem

- We have show the easy part of the completeness theorem
 - $\blacktriangleright \Phi \vdash \phi \text{ implies } \Phi \vDash \phi$
- What about the converse?
- ▶ Gödel's completeness theorem: $\Phi \vDash \phi$ implies $\Phi \vdash \phi$
- Lemma: Con Φ implies Sat Φ
- Φ is *consistent*, written Con Φ , iff there is no formula ϕ such that $\Phi \vdash \phi$ and $\Phi \vdash \neg \phi$
- ▶ Proof (of completeness): $\Phi \vDash \varphi$
 - iff {previous lemma} not Sat ($\Phi \cup \{\neg \varphi\}$)
 - iff {above lemma, soundness} not Con ($\Phi \cup \{\neg \varphi\}$)
 - iff {previous slide}

Slides by Pete Manolios for CS4820

 $\Phi \vdash \Phi$

Gödel's Completeness Theorem

- $\blacktriangleright \Phi \vdash \varphi \ \text{ iff } \ \Phi \vDash \varphi$
- What does this mean for group theory?
- What about new proof techniques?
- ▶ Once we show the equivalence between $\vdash \phi$ and \models , we can transfer properties of one to the other
 - Compactness theorem: (a) $\Phi \models \phi$ iff there is a finite $\Phi_0 \subseteq \Phi$ such that $\Phi_0 \models \phi$ (b) Cet Φ iff for all finite $\Phi \subseteq \Phi$. Cet Φ
 - (b) Sat Φ iff for all finite $\Phi_0 \subseteq \Phi$, Sat Φ_0
- From the proof, we get the Löwenheim-Skolem theorem: Every satisfiable and at most countable set of formulas is satisfiable over a domain which is at most countable

Gödel's 1st Incompleteness Theorem

- A set is *recursive* iff \in can be decided by a Turing machine
- ▶ Assuming Con(ZF), the set { ϕ : ZF $\vdash \phi$ } is not recursive
- More generally, for any consistent extension C of ZF:
 - ▶ $\{\varphi : C \vdash \varphi\}$ is not recursive
 - Intuitively clear: embed Turing machines in set theory
 - Encode halting problem! as a formula in set theory
- ▶ Theorem: If C is a recursive consistent extension of ZF, then it is incomplete, i.e., there is a formula ϕ such that C $\vdash \phi$ and C $\vdash \neg \phi$
- Proof Outline: If not, then for every φ, either C ⊢ φ or C ⊢ ¬φ. We can now decide C ⊢ φ: enumerate all proofs of C. Stop when a proof for φ or ¬φ is found

FOL Observations

- In ZF, the axiom of choice is neither provable nor refutable
- In ZFC, the continuum hypothesis is neither provable nor refutable
- By Gödel's first incompleteness theorem, no matter how we extend ZFC, there will always be sentences which are neither provable nor refutable
- There are non-standard models of \mathbb{N} , \mathbb{R} (un/countable)
- Since any reasonable proof theory has to be decidable, and TMs can be formalized in FOL (set theory), any logic can be reduced to FOL
- Building reliable computing systems requires having programs that can reason about other programs and this means we have to really understand what a proof is so that we can program a computer to do it

Non-Standard Models

- Let $N_s = \langle \omega, s, 0 \rangle$, where *s* is the successor function. N_s satisfies:
 - ▶ (the successor of any number differs from that number) $\langle \forall x \ x \neq s(x) \rangle$
 - ▷ (s is injective) $\langle \forall x, y | x \neq y \rangle \Rightarrow s(x) \neq s(y) \rangle$
 - [▶] (every non-0 number has a predecessor) $\langle \forall x \ x \neq 0 \Rightarrow \langle \exists y \ x = s(y) \rangle \rangle$
- ▶ Let Ψ = Th $N_s \cup \{x \neq 0, x \neq s(0), \dots, x \neq s^n(0), \dots\}$
- Every finite subset of Ψ has a model, so Ψ has a model (compactness)
- By Lowenheim-Skolem, let \mathfrak{U} be a countable model of Ψ
 - ▶ \mathfrak{U} includes 0, s(0), ..., $s^n(0)$, ..., and a, a non-standard number
 - *a* has a successor, predecessor, and they have successors, predecessors
 - so *a* is part of a \mathbb{Z} -chain
 - ▶ hence, there is a countable model, \mathfrak{U} , which is *not* isomorphic to N_s
- While there is a complete axiomatization for Th N_s, once the logic is powerful enough (add +, *, <), completeness goes out the window</p>

0, $s(0), \ldots, s^n(0), \ldots, \dots, p^n(a), \ldots, p(a), a, s(a), \ldots, s^n(a), \ldots \mathbb{Z}$ -chain p(a) is the predecessor of a (isomophic to \mathbb{Z})

Slides by Pete Manolios for CS4820

First Order Theories

- Signature Σ : set of constant, function, predicate symbols
- Σ -term, Σ -atom, Σ -literal, Σ -formula, Σ -sentence
- Σ -*interpretation* assigns meaning to vars, Σ symbols, formulas
- Σ -*theory* is a set of Σ sentences
- For Σ-theory T, a T-interpretation satisfies all sentences in T
- Validity problem for T: is φT-valid (true in all T-interpretations)?
- Satisfiability problem: is φT-sat (true in some T-interpretation)?
- Quantifier free versions of decision problems
- Decision problem is *decidable* if there is a decision procedure

First Order Theories

- Theory of equality: $\Sigma_{=} = FOL$ symbols, empty theory
 - Validity problem undecidable (FOL)
 - Quantifier-free validity problem decidable (congruence closure)
- Theory of arrays: $\Sigma_A = \{\text{read}, \text{write}\}, \text{ array axioms}$
 - Validity problem undecidable
 - Quantifier-free validity problem decidable
- Theory of lists, $\Sigma_L = (cons, car, cdr)$, list axioms
 - Validity problem decidable (Oppen) not elementary
 - Quantifier-free satisfiability solvable in linear time

First Order Theories

- Theory of integers, $\Sigma_{\mathbb{Z}} = (+, -, \leq, \text{ constants})$, all true sentences
 - Validity problem decidable (Presburger 1929) 3EXP (Cooper)
 - Quantifier-free satisfiability NP-complete (ILP) (Papadimitriou)
 - Adding × leads to undecidability even quantifier-free (Matiyasevich)
- Theory of reals, $\Sigma_{\mathbb{R}} = (\Sigma_{\mathbb{Z}}, \text{ rational constants})$, all true sentences
 - Validity problem decidable 2EXP (Ferrante and Rackoff)
 - Quantifier-free satisfiability problem in P (Khachiyan)
 - Adding × is still decidable (Tarski) 2EXP (Collins)

Satisfiability Modulo Theories

- Enabling technology: improved SAT solvers (CDCL)
- Eager methods: compile to SAT
 - Bryant et. al., Pnueli, Strichman, ...
 - Systems: UCLID [LS04], BAT [MVS07]
 - Sometimes this is the best option
- Lazy methods:
 - SAT solver is used to orchestrate theory cooperation
 - Barrett, Cimatti, Dill, deMoura, Ruess, Stump, ...
 - Systems: ICS[F..01], CVC [BDS02], MathSAT[A..02],...

BAT Bit-level Analysis Tool, version 0.2

Hardware Description Language Strongly typed language w/ type inference Support for user defined functions Memories are first-class objects Syntax extensions enabled by Lisp Parameterized models are easy to define Extensional theory of arrays Bounded model-checking & k-induction

Used for pipeline machine verification, system assembly, computational biology

BAT Decision Procedure

Slides by Pete Manolios for CS4820

BAT Memory Abstraction

Extensional theory of arrays: Memories are treated as first class objects.

$$(= (set m_1 a_1 v_1) \\ (set m_2 a_1 v_2))$$

Memories can be directly compared in all contexts.

(not (= (set
$$m_1 a_1 v_1$$
)
(set $m_2 a_1 v_2$))

BAT Memory Abstraction

(get (set (set m $a_1 v_1$) $a_2 v_2$) a_3)

Abstracted memory

- Determine number of unique gets and sets (*n*).
- Generate abstract memory consisting of *n* words.
- □ Apply abstraction to original addresses.
- □ Note: size of abstract addresses is lg(n).

Combining Decision Procedures

Pioneers

- Nelson-Oppen combination method [1979]
- Nelson-Oppen congruence closure procedure [1980]
- Shostak combination method [1984]
- Integrating Decision Procedures into Theorem Provers [1988]

Systems

- Nqthm [BM 1997]
- Simplify [DNS 2005]

Nelson-Oppen Method

- Decide satisfiability of quantifier-free ϕ over Σ_1 and Σ_2
- Convert into a conjunction of literals (DNF)
- Purify: convert into a conjunction $\Gamma_1 \cup \Gamma_2$ s.t.
 - each literal in Γ_i is a Σ_i literal
 - $\Gamma_1 \cup \Gamma_2$ is $\Sigma_1 \cup \Sigma_2$ SAT iff φ is
- Check: For each equivalence E over shared vars V
 - Γ_i ∪ α(V,E) is T_i-SAT
 - $\alpha(V,E) = \{x=y : xEy\} \cup \{x\neq y : \text{not } xEy\} \text{ (arrangement)}$
- If there is such an equivalence, SAT, else UNSAT
- Can extend to many theories

Example

- $0 \le x \land x \le 1 \land f(x) \ne f(1) \land f(x) \ne f(0)$
- Purification?
 - $\Gamma_{\mathbb{Z}} = 0 \le x \land x \le 1 \land u = 1 \land v = 0$
 - $\Gamma_{=} = f(\mathbf{x}) \neq f(\mathbf{u}) \land f(\mathbf{x}) \neq f(\mathbf{v})$
- Shared variables S = {x, u, v}, so 5 arrangements
- SAT?
- For all arrangements over S we have $T_{\mathbb{Z}}$ or $T_{=}$ unsat

Nelson-Oppen Method

- Disjoint signatures $Σ_1$, $Σ_2$
- T₁, T₂ decidable and stably infinite
 - For every T-satisfiable quantifier-free φ there exists a Tinterpretation with an infinite domain satisfying φ
- $T_{\mathbb{R}}, T_{\mathbb{Z}}, T_{=}, T_{A}$, and T_{L} are all stably infinite.
- T= {($\forall x : x=a \lor x=b$)} is not stably infinite.
- $a=b \land f(c) \neq f(d)$ is T-Unsat, yet NO method says Sat
- Complexity: How many equivalences? Bell number
 - If T₁, T₂ in NP, so is the combined decision procedure