Lecture 15

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 15

Unification Basics

> Unification Problem: Given a set of pairs of terms S = {(s1,t1), ..., (Sn,tn)} a
unifier of S is a substitution o such that si|o = ti|o (we’ll write sio = tio)

> U(S) is the set of all unifiers of S; notice that if o is a unifier, so is Teo
> 0 is more general than T, o < T, iff T = 60 (600) for some substitution 6
» < is a preorder; let 0 be the identify for reflexivity

> transitivity: if o <1, T< 0 thent=060, 0 =yt =Yy(d0) = (y0)O

>0~ TIff 0 <T, T< 0. Notice that if o=x+Vy, T=ye«Xx,theno-~ T

» 0 ~ T iff there is a renaming (bijection on Vars) 6 s.t. 0 = 01
> A most general unifier mgu) isoc e U(S) s.t. forall tTe U(S),o<T

> What is an mgu for x=y? x«y? y«Xx? X<z, y«z? X<y, zew, wez?
> A substitution is idempotent if oo = o (rules out last case above)

» 0 is idempotent iff Domain(o) is disjoint from Vars(Range(o))
> If a unification problem has a solution, then it has an idempotent mgu
» We want an algorithm that finds an mgu, if a unifier exists

Slides by Pete Manolios for CS4820

Unification Algorithm

> S ={(x1,t1), ..., (Xn,tn)} is in solved form if the x; are distinct variables and

don’t occur in any of the ti. Then Sl= {x1<t4, ..., Xn+1tn}

> If S is in solved form and ocU(S), then 0=0S | (0, 0S| agree on all vars)

»If S is in solved form, then S is an idempotent mgu

» Algorithm: Nondeterministic transition system based on the following rules

» Delete {t=t} uS =S useful way of thinking about algorithms: SMT/IMT

» Decompose {f(t1, ..., tn) = f(S1, ..., Sn)} v S = {t1=S1, ...,In=Sn} U S
»QOrient{t=x} v S = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|x«t, if xeVars(S) - Vars(t)

> Unify(S) = apply rules nondeterministically; if solved return S, else fail

> Try it with: {x=f(a), g(x,x)=g(x,y)}

Slides by Pete Manolios for CS4820

Unification Algorithm

» Algorithm: Nondeterministic transition system based on the following rules
» Delete {t=t} v S =S
» Decompose {f(t7, ..., tn) = f(S1, ..., Sn)} w S = {t1=S1, ..., th=Sn} U S
»QOrient{t=x} v S = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|x+t, if xeVars(S) - Vars(t)

x=f(a), g(x,x)=g(x,y) = decompose what other rules can | use?
x=f(@), x=x, x=y — delete can’t use eliminate on x=x; why?
x=f(a), x=y — eliminate x ¢an’t use orient on x=y; why?
o can eliminate using x=f(a)

y=f(@), x=y — eliminate y
y=f(a), x=f(a) — return S

> Try it with: {(x, f(y)), (v, gX))}

> Try it with: {(P(f(w), fv)), Pix, fg(u))), (Px.u), P(v.g(v))}

> Try it with: {(fla,0,9(x,x).9(y.y),2), fg(v,v).g(a.a).y,z,b))}

Slides by Pete Manolios for CS4820

Unification Algorithm Termination

» Algorithm: Nondeterministic transition system based on the following rules
»Delete {t=t} u S =S
» Decompose {f(ts, ..., tn) = f(S1, ..., Sn)} v S = {ti=S1, ..., th=Sn} U S
»QOrient{t=x} v S = {x=t} U S, iftis not avariable
> Eliminate {x=t} v S = {x=t} U S|x+t, if xeVars(S) - Vars(t)

» Termination: our measure function will be on ordinals (infinite numbers)

» 0,1, 2, ..., w the first infinite ordinal (why stop with the naturals?)
» Keep going: o+1, o+2, ..., 0+w =02, 02+1, ..., w3, ..., w0 = ®?,

3 W PRONE

w7, L, oY L, w? =€, ACL2s measures can use ordinals
» Lexicographic ordering on tuples of natural numbers is = ww
B (X0, ey Xn-1, Xn) — W'X0 + *** + WXn-1 + Xn

» There is an order-preserving bijection from n+1-tuples of Nats to w”

> There is a theorem of this in the ACL2 ordinals books; you can define a
relation, prove it is well-founded and use it in termination proofs

Slides by Pete Manolios for CS4820

Unification Algorithm Termination

» Algorithm: Nondeterministic transition system based on the following rules
» Delete{t=t} uS =S
» Decompose {f(t1, ..., tn) = f(s71, ..., Sn)} v S = {t1=s7, ...,th=Sn} U S
»Qrient{t=x}vS = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|x+t, if xeVars(S) - Vars(t)

» Termination: our measure function will be on ordinals (infinite numbers)
» X Is solved in S iff x=t € S and x only appears once in S

» Measure: (vars in S not solved, size of S, # of equations t=xin S)
» Delete < why not =? < Maybe xet, xgS
» Decompose < <
» Orient < — <
» Eliminate <

for every rule we have (< | =)*<, so the lexicographic order is decreasing
(and well-founded), i.e., any algorithm based on these rules terminates

Slides by Pete Manolios for CS4820

Unification Algorithm Soundness

» Algorithm: Nondeterministic transition system based on the following rules

» Delete{t=t} u S =S

» Decompose {f(ts, ..., tn) = f(S1, ..., Sn)} v S = {t1=S1, ..., th=Sn} U S
»QOrient{t=x} v S = {x=t} U S, iftis not a variable

> Eliminate {x=t} v S = {x=t} U S|x+t, if xeVars(S) - Vars(t)

»If V= T then U(V)=U(T): Easy: delete, decompose, orient; for eliminate:

> let oeU(V), B=x+t. By lemma, 0=00 if xo=to, since x=t is in solved form
» lemma: If X is in solved form then c=0X/! for all ceU(X)
» Proof: o, oX| agree on all vars by case analysis on yeDomain(X1!)

» oeU({x=t}uS) iff xo=to A ocU(S) iff xo=to A cBeU(S) iff xo=to A ocU(S0) iff
ocU({x=t} U S6)

» Soundness: If Unify returns o, then o is an idempotent mgu of S

Slides by Pete Manolios for CS4820

Unification Algorithm Completeness

» Algorithm: Nondeterministic transition system based on the following rules
» Delete{t=t} u S =S
» Decompose {f(ts, ..., tn) = f(S1, ..., Sn)} v S = {t1=S1, ..., th=Sn} U S
»QOrient{t=x} v S = {x=t} U S, iftis not a variable
> Eliminate {x=t} v S = {x=t} U S|x+t, if xeVars(S) - Vars(t)
» Completeness: If S is solvable, then Unify(S) does not fail
» Lemmas
»f(...)=9(...) has no solution if f 2 g
» x=t, where x=# t and xeVars(t) has no solution (|xo| < |to| for all o)

» Proof: If S is solvable and in normal form wrt =, then S is in solved form. S

cannot contain pairs of form f(...) = f(...) (decompose) or f(...) = g(...)
(lemma) or x=x (delete) or t=x where t is not a var (orient), so all equations
are of form x=t where x ¢ Vars(t) (lemma). Also x cannot occur twice in S

(eliminate), so S is in solved form.

Slides by Pete Manolios for CS4820

Unification Algorithm Improvements

» Algorithm: Nondeterministic transition system based on the following rules

»Delete {t=t} u S =S

» Decompose {f(ts, ..., tn) = f(S1, ..., Sn)} v S = {t1=S1, ..., th=Sn} U S
»Qrient{t=x} vS = {x=t} U S, iftis not a variable

> Eliminate {x=t} v S = {x=t} U S|x+t, if xeVars(S) - Vars(t)

> Clash {f(ts, ..., tn) = 9(S1, ..., Sm)} u S = Liff#g

» Occurs-Check {x=t} w S = L if xeVars(t) Ax =t

» This is justified by the lemmas used for completeness

»f(...) =9(...) has no solution if fz g
» x=t, where x= t and xeVars(t) has no solution (|xo| < |to| for all o)

» Early termination when 3 no solution, saving (how much?) time

Slides by Pete Manolios for CS4820

Complexity of Unification

» Algorithm: Nondeterministic transition system based on the following rules

» Delete {t=t} v S =S

» Decompose {f(t1, ..., tn) = f(S7, ..., Sn)} v S = {ti=s1, ...,sn=th} U S
»QOrient{t=x} v S = {x=t} U S, iftis not a variable

> Eliminate {x=t} v S = {x=t} U S|x+t, if xeVars(S) - Vars(t)

> Clash {f(ts, ..., tn)) = 9(S1, ..., Sm)} u S = Liffzg

» Occurs-Check {x=t} w S = 1 if xeVars(t) Ax #t

> Exponential blow up: {(x1=f(xo0,x0)), Xo=f(x1,x1), X3=f(X2,X2), ..., Xn=F(Xn-1,Xn-1)}

» Notice that the output is exponential

» Can we do better?

» Yes, by using a dag to represent terms and returning a dag

» General idea: operate on a concise representation of problem
» BDDs are concise representations of truth tables, decision trees, etc
» Model checking searches an implicitly given graph (transition system)

Slides by Pete Manolios for CS4820

History of Unification

» What we have studied is syntactic, first-order unification
» syntactic: substitutions should make terms syntactically equal
» equational unification: unification modulo an equational theory
» eg for commutative 7, f(x,f(x,x)) = f(f(x,x),x) is E-unifiable not syntactically unifiable
» first-order: no higher-order variables (no variables ranging over functions)
» Herbrand gave a nondeterministic algorithm in his 1930 thesis
» Robinson (1965) introduced FO theorem proving using resolution, unification
» Required exponential time & space

» Robinson (1971) & Boyer-Moore (1972): structure sharing algorithms that were space
efficient, but required exponential time

» Venturini-Zilli (1975): reduction to quadratic time using marking scheme

» Huet (1976) worked on higher-order unification led to na(n) time: almost linear
Robinson also discovered this algorithm

» Paterson and Wegman (1976) linear time algorithm
> Martelli and Montanari (1976) linear time algorithm based on Boyer-Moore

Slides by Pete Manolios for CS4820

Unification Applications

» First-order theorem proving
» Matching (ACL2) is a special case: given s,t find o s.t. so=t
» Prolog (logic programming)
» Higher-order theorem proving
» Undecidable for third-order logic (Huet 1973)
» Undecidable for second-order logic (Goldfarb 1981)
» Natural language processing
» Unification-based grammars
» Equational theories
» Commutative, Associative, Distributative, etc
» Term rewrite systems
» Type inference (eg ML, Haskell, etc)
» Logic programming
» Machine learning: generalization is a dual of unification

Slides by Pete Manolios for CS4820

Schedule

»11/8: FOL/SMT

» 1 A+Temporat-bogie/Satety-&Livenress/-Buehi (Veteran’s Day)
» 11/15: Refinement

» 11/18: Paper Presentations

» 11/22: Paper Presentations

» 11/29: Term Rewriting

» 12/2: Projects, Exam 2 (Take home)
» 12/6: Projects

Slides by Pete Manolios for CS4820

Projects & Presentations

» 3 Minute Pitch, discussion

Slides by Pete Manolios for CS4820

