Lecture 14

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 14

Discussion

» Exams returned

» Safety, liveness

» Refinement

» Hardware verification

» Refinement

» Temporal Logic

» Systems Verification Day

» Commercial Verification Tools
> Etc

Slides by Pete Manolios for CS4820

(A CA (R (A
1 R1 }
(A CA CA (R
1 R2 }
(A CACACR
1 R3 }
(A CA (R Xx)
1 R2 }
(A CA (R Xx)
1 R3 }
(A (R x) (A
1 R3 }
(A (R x) (A
1 R2 }
(A (R x) (A

Question 3

RI. R (A xy)) =C Ry (R X))

X ¥)) 2) W) RZ. (Ay x) = (A Xxy)
R3. (A (A X z) = (Ax (Ay z
v R X)) 2) W) (ACAxy)z)={((Ay z))
Rewriting is the most important part
X) (Ry)) z) w) of ACL2, so remember:
(A (Ry)) w 1. Left to right
2. Inside-out
(Az Ryl w 3. Reverse chronological
(Az (Ry)w) Plus special handling of

z (A (R y)w)))

z (Aw Ry

permutative rules, type reasoning,
linear arithmetic, tau, conditional
rewriting, forward chaining, ...
(most of which | didn’t test)

Slides by Pete Manolios for CS4820

FOL Checking

» FO validity checker: Given FO ¢, negate & Skolemize to get universal ¢ s.t.
Valid(o) iff UNSAT(p). Let G be the set of ground instances of { (possibly
infinite, but countable). Let G+, G2 ..., be a sequence of finite subsets of G
s.t. vgcG,|g|<w, 3n s.t. g<Gp. If an s.t. Unsat G, then Unsat and Valid ¢

» Question 1: SAT checking

> Gilmore (1960): Maintain conjunction of instances so far in DNF, so SAT
checking is easy, but there is a blowup due to DNF

» Davis Putnam (1960): Convert to CNF, so adding new instances does
not lead to blowup

» In general, any SAT solver can be used, eg, DPLL much better than DNF
» Question 2: How should we generate G;?
» Gilmore: Instances over terms with at most O, 1, ..., functions

» Any such “naive” method leads to lots of useless work, eg, the book has
code for minimizing instances and reductions can be drastic

Slides by Pete Manolios for CS4820

Unitication

» Better idea: intelligently instantiate formulas. Consider the clauses
P, f() vV Ox, y), ~P(g(u), v) }

» Instead of blindly instantiating, use x=g(u), v=f(y) so that we can resolve
{P(g(), f(y) V O(g(w),y), ~P(g(u), f())}

» Now, resolution gives us
10(8(u), y)}

» Much better than waiting for our enumeration to allow some resolutions

» Unification: Given a set of pairs of terms S = {(s4,t1), ..., (Sn,tn)} @ unifier of S
is a substitution o such that silo = tjo

» We want an algorithm that finds a most general unifier if it exists
» 0 is more general than T, 0 < T, iff T = 600 for some substitution 6
» Notice that if o is a unifier, SO IS Tc0O
> Similar to solving a set of simultaneous equations, e.g., find unifiers for

> {(P(f(w), 1ly)), Px, flg())), (Pix,u), P(v.g(v))} and {(x, f{y)), (v, gX))}

Slides by Pete Manolios for CS4820

Using Unification

» Assume we have a unification algorithm. How do we use it?

» Consider DP. When we instantiate a set of clauses, say
{PCx, f(¥) V O, y), 7 P(g(u), v)}o, o= {x < gw),u < f(y)}
» We obtain

(P(gu), () v O(g(u), y), 7" P(gw), f(¥))}

» The original clauses state
(Vx,y,u,v (P(x, f(3)) V O(x,) A =P(g(u),v))
» The instantiated clauses are implied because they state

(Vu,y (P(g(w), f(y) Vv Q(g(u),y)) A =P(gu), f(y))

» Notice that we are free to further instantiate the above instantiated clauses

» In contrast, if we use DPLL and case split, then we have to be careful, e.qg.,
if we first assume P(x,f(y)) and then Q(x,y), then in subsequent
instantiations, x and y have to be instantiated the same way because

(Vx,y P(x, f(y)) V Q(x,) & (Vx,y P(x, f(¥)) V(Vx,y O(x,))
» DP is local or bottom-up, whereas DPLL is global or top-down

Slides by Pete Manolios for CS4820

Unification Basics

» Unification Problem: Given a set of pairs of terms S = {(s1,t1), ..., (Sn,tn)} @
unifier of S is a substitution o such that si|o = ti|jo (we’ll write sio = t0)

> U(S) is the set of all unifiers of S; notice that if o is a unifier, so is Tc0
» 0 is more general than T, 0 < T, iff T = 60 (6°0) for some substitution 6
» < is a preorder; let 0 be the identify for reflexivity

> transitivity: if o <1, T< 0 thent= 60, 0 =yt =Yy(d0) = (yO)O

>0~ TIiff o <71, T< 0. Notice that if o=x+Vy, T=y«Xx,theno-~ T

» 0 ~ T iff there is a renaming (bijection on Vars) 0 s.t. 0 = 0T
» A most general unifier (mgu) is o e U(S) s.t. forall Te U(S),o<T

> What is an mgu for x=y? x«y? y«Xx? X<z, y«z? X<y, zew, wez?
> A substitution is idempotent if 0o = o (rules out last case above)

» 0 is idempotent iff Domain(o) is disjoint from Vars(Range(o))
> If a unification problem has a solution, then it has an idempotent mgu
> We want an algorithm that finds an mqgu, if a unifier exists

Slides by Pete Manolios for CS4820

