
Lecture 14

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 14

Slides by Pete Manolios for CS4820

Discussion

Exams returned

Safety, liveness

Refinement

Hardware verification

Refinement

Temporal Logic

Systems Verification Day

Commercial Verification Tools

Etc

Slides by Pete Manolios for CS4820

Question 3
R1. (R (A x y)) = (A (R y) (R x))
R2. (A y x) = (A x y)
R3. (A (A x y) z) = (A x (A y z))

Rewriting is the most important part
of ACL2, so remember:

1. Left to right
2. Inside-out
3. Reverse chronological

Plus special handling of
permutative rules, type reasoning,
linear arithmetic, tau, conditional

rewriting, forward chaining, …
(most of which I didn’t test)

(A (A (R (A x y)) z) w)
= { R1 }
(A (A (A (R y) (R x)) z) w)
= { R2 }
(A (A (A (R x) (R y)) z) w)
= { R3 }
(A (A (R x) (A (R y) z)) w)
= { R2 }
(A (A (R x) (A z (R y))) w)
= { R3 }
(A (R x) (A (A z (R y)) w))
= { R3 }
(A (R x) (A z (A (R y) w)))
= { R2 }
(A (R x) (A z (A w (R y))))

Slides by Pete Manolios for CS4820

FOL Checking
FO validity checker: Given FO φ, negate & Skolemize to get universal ψ s.t.
Valid(φ) iff UNSAT(ψ). Let G be the set of ground instances of ψ (possibly
infinite, but countable). Let G1, G2 …, be a sequence of finite subsets of G
s.t. ∀g⊆G,|g|<ω, ∃n s.t. g⊆Gn. If ∃n s.t. Unsat Gn, then Unsat ψ and Valid φ

Question 1: SAT checking

Gilmore (1960): Maintain conjunction of instances so far in DNF, so SAT
checking is easy, but there is a blowup due to DNF

Davis Putnam (1960): Convert ψ to CNF, so adding new instances does
not lead to blowup

In general, any SAT solver can be used, eg, DPLL much better than DNF

Question 2: How should we generate Gi?

Gilmore: Instances over terms with at most 0, 1, … , functions

Any such “naive” method leads to lots of useless work, eg, the book has
code for minimizing instances and reductions can be drastic

Slides by Pete Manolios for CS4820

Unification
Better idea: intelligently instantiate formulas. Consider the clauses

{Q(g(u), y)}

Instead of blindly instantiating, use x=g(u), v=f(y) so that we can resolve
{P(x, f(y)) ∨ Q(x, y), ¬P(g(u), v)}

Now, resolution gives us
{P(g(u), f(y)) ∨ Q(g(u), y), ¬P(g(u), f(y))}

Much better than waiting for our enumeration to allow some resolutions

Unification: Given a set of pairs of terms S = {(s1,t1), …, (sn,tn)} a unifier of S
is a substitution σ such that si|σ = ti|σ

We want an algorithm that finds a most general unifier if it exists

σ is more general than τ, σ ≤ τ, iff τ = δ∘σ for some substitution δ

Notice that if σ is a unifier, so is τ∘σ

Similar to solving a set of simultaneous equations, e.g., find unifiers for

{(P(f(w), f(y)), P(x, f(g(u))), (P(x,u), P(v,g(v))} and {(x, f(y)), (y, g(x))}

Slides by Pete Manolios for CS4820

Using Unification
Assume we have a unification algorithm. How do we use it?

Consider DP. When we instantiate a set of clauses, say
{P(x, f(y)) ∨ Q(x, y), ¬P(g(u), v)}σ, σ = {x ← g(u), u ← f(y)}
We obtain
{P(g(u), f(y)) ∨ Q(g(u), y), ¬P(g(u), f(y))}
The original clauses state
⟨∀x, y, u, v (P(x, f(y)) ∨ Q(x, y)) ∧ ¬P(g(u), v)⟩

⟨∀x, y P(x, f(y)) ∨ Q(x, y)⟩ ⇏ ⟨∀x, y P(x, f(y))⟩ ∨ ⟨∀x, y Q(x, y)⟩

The instantiated clauses are implied because they state

Notice that we are free to further instantiate the above instantiated clauses

In contrast, if we use DPLL and case split, then we have to be careful, e.g.,
if we first assume P(x,f(y)) and then Q(x,y), then in subsequent
instantiations, x and y have to be instantiated the same way because

⟨∀u, y (P(g(u), f(y)) ∨ Q(g(u), y)) ∧ ¬P(g(u), f(y))⟩

DP is local or bottom-up, whereas DPLL is global or top-down

Slides by Pete Manolios for CS4820

Unification Basics
Unification Problem: Given a set of pairs of terms S = {(s1,t1), …, (sn,tn)} a
unifier of S is a substitution σ such that si|σ = ti|σ (we’ll write siσ = tiσ)

U(S) is the set of all unifiers of S; notice that if σ is a unifier, so is τ∘σ

σ is more general than τ, σ ≤ τ, iff τ = δσ (δ∘σ) for some substitution δ

≤ is a preorder; let δ be the identify for reflexivity

transitivity: if σ ≤ τ, τ ≤ θ then τ = δσ, θ = γτ = γ(δσ) = (γδ)σ

σ ∼ τ iff σ ≤ τ, τ ≤ σ. Notice that if σ=x←y, τ =y←x, then σ ∼ τ

σ ∼ τ iff there is a renaming (bijection on Vars) θ s.t. σ = θτ

A most general unifier (mgu) is σ ∈ U(S) s.t. for all τ ∈ U(S), σ ≤ τ

What is an mgu for x=y? x←y? y←x? x←z, y←z? x←y, z←w, w←z?

A substitution is idempotent if σσ = σ (rules out last case above)

σ is idempotent iff Domain(σ) is disjoint from Vars(Range(σ))

If a unification problem has a solution, then it has an idempotent mgu

We want an algorithm that finds an mgu, if a unifier exists

