
Lecture 10

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 10

Slides by Pete Manolios for CS4820

DP SAT Algorithm
Davis Putnam (1960)

Input: CNF formula

Output: SAT/UNSAT

Idea: apply three rules until

Derive the empty clause: UNSAT (identity of is false)

No clauses remain: SAT (identity of is true)

Three “rules”

Pure literal rule (affirmative-negative rule)

Unit resolution rule (unit propagation, BCP, 1-literal rule)

Resolution (Called consensus, also used for logic minimization)

∨
∧

Slides by Pete Manolios for CS4820

Pure Literal Rule

Given , a set of clauses, and literal ℓ such

ℓ appears in

¬ℓ does not appear in

remove all clauses containing ℓ

Equisatisfiable because we can make ℓ true

Notice that this always simplifies

Modern SAT solvers tend to not use the rule (efficiency)

F
F

F

F

Slides by Pete Manolios for CS4820

Boolean Constraint Propagation

BCP: given a set of clauses including {ℓ}

remove all other clauses containing ℓ (subsumption)

remove all occurrences of ¬ℓ in clauses (unit resolution)

repeat until a fixpoint is reached

Unit resolution rule:

C, ¬ℓ ℓ

C

Slides by Pete Manolios for CS4820

Resolution

Soundness of rule: above line implies below line

If below line is SAT, so is above line (w/ side conditions)

Given literal p, set of clauses S, let P be the clauses in S that contain p
only positively and let N be the clauses that contain p only negatively.
Let E be the rest of the clauses. Then S is SAT iff S’ is SAT, where S’= E
U the set of all p-resolvents of P and N.

Proof: If A is an assignment for S, then if A(p)=true, all clauses in N,
with ¬p removed are satisfied, so each p-resolvent is satisfied. Similarly
if A(p)=false. If A is an assignment for S’, then it satisfies all Ci or all Di:
suppose it doesn’t satisfy Ck, then it must satisfy all Di. If it satisfies all
Ci, let A’(p)=false, else A’(p)=true and A’(x)=A(x) otherwise.

Resolution rule:

C, v D, ¬v

C, D

¬v,v ∉ C,D

Resolution rule:

Ci, p Di, ¬p

Ci, Di

¬p ∉ Ci ∈ P ,p ∉ Di ∈ N

Slides by Pete Manolios for CS4820

Resolution Example
Resolution rule:

C, v D, ¬v

C, D

C, D are clauses, ¬v∉C and v∉D

{{¬p, q, r, s}, {p, ¬q, s}, {¬p, ¬q, r, ¬s}, {p, ¬r, ¬s}, {¬p, ¬q, ¬r}, {p, q}, {¬p, ¬q, s}}

{{p, ¬r, ¬s}, {¬p, r, s}, {p, s}}

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively
and let N be the clauses that contain p only negatively. Let E be the rest of the clauses.
Then S is SAT iff S’ is SAT, where S’= E U the set of all p-resolvents of P and N.

Resolve on q {¬p, p, r, s} Notice that clauses that contain a literal and

its negation can be thrown away. Why?

Slides by Pete Manolios for CS4820

Resolution Example
Resolution rule:

C, v D, ¬v

C, D

C, D are clauses, ¬v∉C and v∉D

{{¬p, q, r, s}, {p, ¬q, s}, {¬p, ¬q, r, ¬s}, {p, ¬r, ¬s}, {¬p, ¬q, ¬r}, {p, q}, {¬p, ¬q, s}}

{{p, ¬r, ¬s}, {¬p, r, s}, {p, s}}

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively
and let N be the clauses that contain p only negatively. Let E be the rest of the clauses.
Then S is SAT iff S’ is SAT, where S’= E U the set of all p-resolvents of P and N.

Resolve on q

Resolve on r

{{p, s}} Sat, resolve on p to get {} or use pure literal rule

{¬p, p, r, s} Notice that clauses that contain a literal and

its negation can be thrown away. Why?

How do we generate a satisfying assignment? Next homework

Slides by Pete Manolios for CS4820

DP SAT Algorithm
Input: CNF formula, Output: SAT/UNSAT

Base case: empty clause: UNSAT

Base case: no clauses: SAT

Apply these two rules until fixpoint

Pure literal rule

BCP

Choose var, say x, perform all possible resolutions, remove trivial
clauses and clauses containing x

Repeat

Existentially quantify variables, one at a time

Problem: space blow-up

Slides by Pete Manolios for CS4820

DPLL SAT Algorithm
BCP

Base case: empty clause: UNSAT

Remove clauses containing pure literals (modern solvers don’t do this)

Base case: no clauses: SAT

Choose some var, say x
(if removing pure literals, x has to appear in both phases)

Add {x} and recursively call DPLL

Add {¬x} and recursively call DPLL

If one of the calls returns SAT, return SAT

Else return UNSAT

Correctness follows from Shannon expansion

In contrast to DP, space is not a problem

Slides by Pete Manolios for CS4820

DPLL SAT Example

Note that when DPLL detects contradictions it backtracks chronologically

When we get a contradiction with X, we try ¬X, then we go back and try ¬C and X, ¬X again, …

But the real problem was that we set A; can we avoid this exponential search?

Yes: non-chronological backtracking, a major improvement

Examples/figures from chp. 3 SAT handbook: pure literals not removed

Slides by Pete Manolios for CS4820

Implication Graphs

Nodes are l/V=v: var V set to v @ level l

If node implied, justification recorded
(clause #, edges from assignments)

{} denotes contradiction

Slides by Pete Manolios for CS4820

Conflict-Driven Clauses

Consider any cut of the implication graph that separates decision vars from {}

The nodes with an edge that crosses the cut are in conflict set

Negate the assignments in the set to obtain a conflict-driven clause

Conflict clauses: Cut1: {¬A,¬X}, Cut2: {¬A, ¬Y}, Cut3: {¬A, ¬Z, ¬Y}

Conflict–driven clauses generated from cuts that contain exactly one variable
assigned at the level of conflict are said to be asserting: Cut1 & Cut2 (not Cut 3)

Slides by Pete Manolios for CS4820

Non-Chronological Backtracking

Asserting conflict clauses: Cut1: 8. {¬A,¬X}, Cut2: {¬A, ¬Y}

Assertion level: 2nd highest level in asserting clause (0 for cuts 1, 2) or -1

Backtrack to assertion level and add a learned clause (non-chronological!)

We can now immediately infer (BCP) ¬X (we use Cut1), so we have A, ¬X

Then by BCP: Z (4), ¬Z (6) so we get a new implication graph

Asserting clauses: {¬A} at level -1, so we have ¬A, BCP: B and we’re done

Compare to previous search, where the algorithm had to go back a level at a time

Clause learning can generate exponentially shorter proofs of unsat!

Slides by Pete Manolios for CS4820

Based on DPLL, but with conflict-driven clause learning

Data structures to speed up BCP: 2-watched literal scheme

Data structures for clause learning

Decision heuristics: select recently active literals (VSIDS)

Preprocessing: greedy variable elimination

Inprocessing: interleave preprocessing & search

Clause deletion: learned clauses lead to memory & efficiency
problems, so delete large, inactive clauses

Random restarts: keep learned clauses, but restart

avoids getting stuck in hard part of search space

phase saving: pick last phase of assignment

Modern CDCL Solvers

Slides by Pete Manolios for CS4820

HornSAT
A CNF formula is Horn if every clause has at most one positive literal

(¬a,b), (¬a,¬b,¬c,¬d), (a),(¬b,¬a,d),(¬c)

Think of clauses as rules that “fire” under assignment A, if LHS holds

a⇒b, abcd⇒false, a, ba⇒d, c⇒false (or ¬c)

HornSAT is in P

BCP (until fixpoint), constructing a partial assignment

If empty clause, return unsat

Else return sat (set remaining vars to false)

Minimal assignment returned: all lits that have to be true in all sat assignments

Note: if all clauses have 1 pos literal, then SAT (assign true to every var)

Linear time: BCP

Dual horn: every clause has at most one negative literal

Same problem

Slides by Pete Manolios for CS4820

Renamable Horn
What about {x, y, ¬z}, {¬x, y, ¬z}?

Renamable horn: There is a subset of variables such that if we negate
every occurrence, we have a horn formula

Can determine if renamable horn in Ptime

Can solve such problems in Ptime

Lemma: F is renamable Horn iff there exists an interpretation such that
at most one literal per clause is false

So, we can test for renamability of F by using 2SAT

Find sat. assignment for ∧c∈F ∧u,v∈c (u ∨ v)

Rename variables occurring positively in assignment

Unit propagation can solve renamable horn problems (and more) in
linear time (so no need to check for renamability)

Slides by Pete Manolios for CS4820

SAT Solving Algorithms
Symbolic SAT solving

Use BDDs, but try hard to not get blowup of intermediate BDDs

So, existential quantification and other techniques are used

The goal is to minimize the size of intermediate BDDs

SAT by inference rules

Stalmarck’s Algorithm

Preprocess the formula

Apply simple inference rules: 0-saturation

Apply dilemma rule: for each variable x, 0-saturate f|ℓ and f|¬ℓ, and
all common conclusions to f. Repeat until fixpoint: 1-saturation

n-saturation: case split over all combinations on n variables

Slides by Pete Manolios for CS4820

First Order Logic
Example: Group Theory

(G1) For all x, y, z: (x • y) • z = x • (y • z)

(G2) For all x: x • e = x

(G3) For all x there is a y such that: x • y = e

Theorem: For every x, there is a y such that y • x = e

Examples of groups: Nat, +, 0?; Int, +, 0?, Real, *, 1?

Proof:

 By (G3) there is: a y s.t. x • y = e and a z s.t. y • z = e

 Now: y • x = y • x • e = y • x • y • z = y • e • z = y • z = e

Is this true for all groups? Why?

How many groups are there?

Are there true statements about groups with no proof?

Slides by Pete Manolios for CS4820

First Order Logic
First Order Logic forms the foundation of mathematics

We study various objects, e.g., groups

Properties of objects captured by “non-logical” axioms

(G1-G3 in our example)

Theory consists of all consequences of “non-logical” axioms

Derivable via logical reasoning alone

That’s it; no appeals to intuition

Separation into non-logical axioms logical reasoning is astonishing: all
theories use exactly same reasoning

But, what is a proof (Φ ⊢ φ)?

Question leads to computer science

Proof should be so clear, even a machine can check it

Slides by Pete Manolios for CS4820

First Order Logic: Syntax
Every FOL (first order language) includes

Variables v0, v1, v2, ...

Boolean connectives: ∨, ¬

Equality: =

Parenthesis: (,)

Quantifiers: ∃

The symbol set of a FOL contains (possibly empty) sets of

relation symbols, each with an arity > 0

function symbols, each with an arity > 0

constant symbols

Example: groups 2-ary function symbol • and constant e

Set theory: ∈, a 2-ary relation symbol, ...

Slides by Pete Manolios for CS4820

First Order Logic: Terms

Terms denote objects of study, e.g., group elements

The set of S-terms is the least set closed under:

Every variable is a term

Every constant is a term

If t1, ..., tn are terms and f is an n-ary function symbol, then
f(t1, ..., tn) is a term

Slides by Pete Manolios for CS4820

First Order Logic: Formulas

Formulas: statements about the objects of study

An atomic formula of S is

t1 = t2 or

R(t1, ..., tn), where ti is an S-term and R is an n-ary relation
symbol in S

The set of S-formulas is the least set closed under:

Every atomic formula is a formula

If φ, ψ are S-formulas and x is a variable, then
¬φ, (φ ∨ ψ), and ∃xφ are S-formulas

All Boolean connectives can be defined in terms of ¬ and ∨

We can define ∀xφ to be ¬∃x¬φ

Slides by Pete Manolios for CS4820

Definitions on Terms & Formulas

Define the notion of a free variable for an S-formula

The definition of formula depends on that of term

So, we’re going to need an auxiliary definition:

var(x) = {x}

var(c) = {}

var(f(t1, ..., tn)) = var(t1) ∪ ⋯ ∪ var(tn)

Is this a definition? (termination!)

free(t1 = t2) = var(t1) ∪ var(t2)

free(R(t1, ..., tn)) = var(t1) ∪ ⋯ ∪ var(tn)

free(¬φ) = free(φ)

free((φ ∨ ψ)) = free(φ) ∪ free(ψ)

free(∃xφ) = free(φ) \ {x}

