Lecture 10

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 10

DP SAT Algorithm

- Davis Putnam (1960)
- Input: CNF formula
- Output: SAT/UNSAT
- Idea: apply three rules until
 - Derive the empty clause: UNSAT (identity of \lor is false)
 - No clauses remain: SAT (identity of \land is true)
- Three "rules"
 - Pure literal rule (affirmative-negative rule)
 - Unit resolution rule (unit propagation, BCP, 1-literal rule)
 - Resolution (Called consensus, also used for logic minimization)

Pure Literal Rule

- Siven F, a set of clauses, and literal ℓ such
 - ▶ ℓ appears in F
 - ▶ ¬ ℓ does not appear in F
 - remove all clauses containing
- Equisatisfiable because we can make l true
- ${}^{\blacktriangleright}$ Notice that this always simplifies F
- Modern SAT solvers tend to not use the rule (efficiency)

Boolean Constraint Propagation

Unit resolution rule:

- ▶ BCP: given a set of clauses including {ℓ}
 - remove all other clauses containing { (subsumption)
 - ▶ remove all occurrences of ¬ℓ in clauses (unit resolution)
 - repeat until a fixpoint is reached

- Soundness of rule: above line implies below line
- If below line is SAT, so is above line (w/ side conditions)
- Given literal p, set of clauses S, let P be the clauses in S that contain p only positively and let N be the clauses that contain p only negatively.
 Let E be the rest of the clauses. Then S is SAT iff S' is SAT, where S'= E
 U the set of all p-resolvents of P and N.
- Proof: If A is an assignment for S, then if A(p)=true, all clauses in N, with ¬p removed are satisfied, so each p-resolvent is satisfied. Similarly if A(p)=false. If A is an assignment for S', then it satisfies all Ci or all Di: suppose it doesn't satisfy Ck, then it must satisfy all Di. If it satisfies all Ci, let A'(p)=false, else A'(p)=true and A'(x)=A(x) otherwise.

Resolution Example

Resolution rule:

$$\frac{C, v \qquad D, \neg v}{C, D} \qquad C, D \text{ are clauses, } \neg v \not\in C \text{ and } v \not\in D$$

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively and let N be the clauses that contain p only negatively. Let E be the rest of the clauses. Then S is SAT iff S' is SAT, where $S' = E \cup$ the set of all p-resolvents of P and N.

$$\{\{\neg p, q, r, s\}, \{p, \neg q, s\}, \{\neg p, \neg q, r, \neg s\}, \{p, \neg r, \neg r\}, \{p, q\}, \{\neg p, \neg q, s\} \}$$
Resolve on q

$$\{\neg p, p, r, s\}, \{\neg p, r, s\}, \{\neg p, r, s\}, \{p, s\} \}$$
Notice that clauses that contain a literal and its negation can be thrown away. Why?

Resolution Example

Resolution rule:

$$\frac{C, v \qquad D, \neg v}{C, D} \qquad C, D \text{ are clauses, } \neg v \notin C \text{ and } v \notin D$$

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively and let N be the clauses that contain p only negatively. Let E be the rest of the clauses. Then S is SAT iff S' is SAT, where S' = E U the set of all p-resolvents of P and N.

$$\{\{\neg p, q, r, s\}, \{p, \neg q, s\}, \{\neg p, \neg q, r, \neg s\}, \{p, \neg r, \neg s\}, \{p, q, \neg r\}, \{p, q\}, \{\neg p, \neg q, s\}\}$$

Resolve on q { $\neg p, p, r, s$ } {{ $p, \neg r, \neg s$ }, { $\neg p, r, s$ }, {p, s}}

Notice that clauses that contain a literal and its negation can be thrown away. Why?

Resolve on r

 $\{\{p,s\}\}$ Sat, resolve on p to get $\{\}$ or use pure literal rule

How do we generate a satisfying assignment? Next homework

DP SAT Algorithm

- Input: CNF formula, Output: SAT/UNSAT
- Base case: empty clause: UNSAT
- Base case: no clauses: SAT
 - Apply these two rules until fixpoint
 - Pure literal rule
 - ▶ BCP
 - Choose var, say x, perform all possible resolutions, remove trivial clauses and clauses containing x
 - Repeat
- Existentially quantify variables, one at a time
- Problem: space blow-up

DPLL SAT Algorithm

▶ BCP

- Base case: empty clause: UNSAT
- Remove clauses containing pure literals (modern solvers don't do this)
- Base case: no clauses: SAT
- Choose some var, say x (if removing pure literals, x has to appear in both phases)
 - Add {x} and recursively call DPLL
 - Add {¬x} and recursively call DPLL
 - If one of the calls returns SAT, return SAT
 - Else return UNSAT
- Correctness follows from Shannon expansion
- In contrast to DP, space is not a problem

DPLL SAT Example

Note that when DPLL detects contradictions it backtracks chronologically

- ▶ When we get a contradiction with X, we try ¬X, then we go back and try ¬C and X, ¬X again, ...
- But the real problem was that we set A; can we avoid this exponential search?

Yes: non-chronological backtracking, a major improvement

Examples/figures from chp. 3 SAT handbook: pure literals not removed

Slides by Pete Manolios for CS4820

Implication Graphs

 $1. \{A, B\}$ $2. \{B, C\}$ $3. \{\neg A, \neg X, Y\}$ $4. \{\neg A, X, Z\}$ $5. \{\neg A, \neg Y, Z\}$ $6. \{\neg A, X, \neg Z\}$ $7. \{\neg A, \neg Y, \neg Z\}$

- If node implied, justification recorded (clause #, edges from assignments)
- {} denotes contradiction

Conflict-Driven Clauses

- Consider any cut of the implication graph that separates decision vars from {}
- The nodes with an edge that crosses the cut are in conflict set
- Negate the assignments in the set to obtain a conflict-driven clause
- Conflict clauses: Cut1: {¬A,¬X}, Cut2: {¬A, ¬Y}, Cut3: {¬A, ¬Z, ¬Y}
- Conflict–driven clauses generated from cuts that contain exactly one variable assigned at the level of conflict are said to be asserting: Cut1 & Cut2 (not Cut 3)

Non-Chronological Backtracking

- Asserting conflict clauses: Cut1: 8. {¬A,¬X}, Cut2: {¬A, ¬Y}
- Assertion level: 2nd highest level in asserting clause (0 for cuts 1, 2) or -1
- Backtrack to assertion level and add a learned clause (non-chronological!)
- ▶ We can now immediately infer (BCP) ¬X (we use Cut1), so we have A, ¬X
- ▶ Then by BCP: Z (4), ¬Z (6) so we get a new implication graph
- Asserting clauses: {¬A} at level -1, so we have ¬A, BCP: B and we're done
- Compare to previous search, where the algorithm had to go back a level at a time
- Clause learning can generate exponentially shorter proofs of unsat!

Slides by Pete Manolios for CS4820

Modern CDCL Solvers

- Based on DPLL, but with conflict-driven clause learning
- Data structures to speed up BCP: 2-watched literal scheme
- Data structures for clause learning
- Decision heuristics: select recently active literals (VSIDS)
- Preprocessing: greedy variable elimination
- Inprocessing: interleave preprocessing & search
- Clause deletion: learned clauses lead to memory & efficiency problems, so delete large, inactive clauses
- Random restarts: keep learned clauses, but restart
 - avoids getting stuck in hard part of search space
 - phase saving: pick last phase of assignment

HornSAT

A CNF formula is Horn if every clause has at most one positive literal

▶ (¬a,b), (¬a,¬b,¬c,¬d), (a),(¬b,¬a,d),(¬c)

- Think of clauses as rules that "fire" under assignment A, if LHS holds
 - ▶ $a \Rightarrow b$, $abcd \Rightarrow false$, a, $ba \Rightarrow d$, $c \Rightarrow false$ (or $\neg c$)
- HornSAT is in P
 - BCP (until fixpoint), constructing a partial assignment
 - If empty clause, return unsat
 - Else return sat (set remaining vars to false)
- Minimal assignment returned: all lits that have to be true in all sat assignments
- Note: if all clauses have 1 pos literal, then SAT (assign true to every var)
- Linear time: BCP
- Dual horn: every clause has at most one negative literal
- Same problem

Renamable Horn

- ▶ What about {x, y, ¬z}, {¬x, y, ¬z}?
- Renamable horn: There is a subset of variables such that if we negate every occurrence, we have a horn formula
- Can determine if renamable horn in Ptime
- Can solve such problems in Ptime
- Lemma: F is renamable Horn iff there exists an interpretation such that at most one literal per clause is false
- So, we can test for renamability of F by using 2SAT
 - Find sat. assignment for $\land c \in F \land u, v \in c$ ($u \lor v$)
 - Rename variables occurring positively in assignment
- Unit propagation can solve renamable horn problems (and more) in linear time (so no need to check for renamability)

SAT Solving Algorithms

Symbolic SAT solving

- Use BDDs, but try hard to not get blowup of intermediate BDDs
- So, existential quantification and other techniques are used
- The goal is to minimize the size of intermediate BDDs
- SAT by inference rules
- Stalmarck's Algorithm
 - Preprocess the formula
 - Apply simple inference rules: 0-saturation
 - Apply dilemma rule: for each variable x, 0-saturate f|l and f|¬l, and all common conclusions to f. Repeat until fixpoint: 1-saturation
 - n-saturation: case split over all combinations on n variables

First Order Logic

- Example: Group Theory
 - (G1) For all x, y, z: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - (G2) For all x: x e = x
 - (G3) For all x there is a y such that: $x \cdot y = e$
- Theorem: For every x, there is a y such that y x = e
- Examples of groups: Nat, +, 0?; Int, +, 0?, Real, *, 1?
- ▶ Proof:

By (G3) there is: a y s.t. $x \cdot y = e$ and a z s.t. $y \cdot z = e$

Now: $y \cdot x = y \cdot x \cdot e = y \cdot x \cdot y \cdot z = y \cdot e \cdot z = y \cdot z = e$

- Is this true for all groups? Why?
- How many groups are there?
- Are there true statements about groups with no proof?

First Order Logic

- First Order Logic forms the foundation of mathematics
- We study various objects, e.g., groups
- Properties of objects captured by "non-logical" axioms
 - ▶ (G1-G3 in our example)
- Theory consists of all consequences of "non-logical" axioms
 - Derivable via logical reasoning alone
 - That's it; no appeals to intuition
- Separation into non-logical axioms logical reasoning is astonishing: all theories use exactly same reasoning
- ▶ But, what is a proof $(\Phi \vdash \phi)$?
- Question leads to computer science
- Proof should be so clear, even a machine can check it

First Order Logic: Syntax

- Every FOL (first order language) includes
 - Variables v₀, v₁, v₂, ...
 - Boolean connectives: v, ¬
 - Equality: =
 - Parenthesis: (,)
 - Quantifiers: 3
- The symbol set of a FOL contains (possibly empty) sets of
 - relation symbols, each with an arity > 0
 - function symbols, each with an arity > 0
 - constant symbols
- Example: groups 2-ary function symbol and constant e
- Set theory: ∈, a 2-ary relation symbol, ...

First Order Logic: Terms

- Terms denote objects of study, e.g., group elements
- The set of S-terms is the least set closed under:
 - Every variable is a term
 - Every constant is a term
 - If $t_1, ..., t_n$ are terms and f is an n-ary function symbol, then $f(t_1, ..., t_n)$ is a term

First Order Logic: Formulas

- Formulas: statements about the objects of study
- An atomic formula of S is
 - ▶ $t_1 = t_2$ or
 - $R(t_1, \ldots, t_n)$, where t_i is an S-term and R is an n-ary relation symbol in S
- The set of S-formulas is the least set closed under:
 - Every atomic formula is a formula
 - If φ, ψ are S-formulas and x is a variable, then ¬φ, (φ ∨ ψ), and ∃xφ are S-formulas
- \blacktriangleright All Boolean connectives can be defined in terms of \neg and \lor
- ▶ We can define $\forall x \phi$ to be $\neg \exists x \neg \phi$

Definitions on Terms & Formulas

- Define the notion of a free variable for an S-formula
- The definition of formula depends on that of term
- So, we're going to need an auxiliary definition:
 - $var(x) = \{x\}$
 - *var*(*c*) = {}
 - $var(f(t_1, ..., t_n)) = var(t_1) \cup \cdots \cup var(t_n)$
- Is this a definition? (termination!)
 - $free(t_1 = t_2) = var(t_1) \cup var(t_2)$
 - $free(R(t_1, ..., t_n)) = var(t_1) \cup \cdots \cup var(t_n)$
 - $free(\neg \phi) = free(\phi)$
 - $free((\phi \lor \psi)) = free(\phi) \cup free(\psi)$
 - $free(\exists x \phi) = free(\phi) \setminus \{x\}$