Lecture 10

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 10



DP SAT Algorithm

» Davis Putnam (1960)
» Input: CNF formula
» Output: SAT/UNSAT

» |dea: apply three rules until
» Derive the empty clause: UNSAT (identity of V is false)

” No clauses remain: SAT (identity of A is true)

» Three “rules”
» Pure literal rule (affirmative-negative rule)
» Unit resolution rule (unit propagation, BCP, 1-literal rule)

» Resolution (Called consensus, also used for logic minimization)

Slides by Pete Manolios for CS4820



Pure Literal Rule

» Given F, a set of clauses, and literal £ such
» ¢ appears in F

» =f does not appear in I
» remove all clauses containing ¢

» Equisatisfiable because we can make { true

* Notice that this always simplifies [

» Modern SAT solvers tend to not use the rule (efficiency)

Slides by Pete Manolios for CS4820



Boolean Constraint Propagation

Unit resolution rule:
C, ¢ P
C

» BCP: given a set of clauses including {{}
» remove all other clauses containing £ (subsumption)
» remove all occurrences of =£ in clauses (unit resolution)

» repeat until a fixpoint is reached

Slides by Pete Manolios for CS4820



Resolution

Resolution rule: Resolution rule:

C,v D -v,v ¢ C,D Cip Dip
C,D Ci, Di

pgCeP.,pgDieN

» Soundness of rule: above line implies below line
> If below line is SAT, so is above line (w/ side conditions)

» Given literal p, set of clauses S, let P be the clauses in S that contain p
only positively and let N be the clauses that contain p only negatively.
Let E be the rest of the clauses. Then S is SAT iff S’ is SAT, where S’= E
U the set of all p-resolvents of P and N.

» Proof: If A is an assignment for S, then if A(p)=true, all clauses in N,
with =p removed are satisfied, so each p-resolvent is satisfied. Similarly
if A(p)=false. If A is an assignment for S’, then it satisfies all Ci or all Di:
suppose it doesn’t satisfy Ck, then it must satisfy all Di. If it satisfies all
Ci, let A’(p)=false, else A’(p)=true and A’(x)=A(x) otherwise.

Slides by Pete Manolios for CS4820



Resolution Example

Resolution rule:
C,V D, =v
C,D

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively
and let N be the clauses that contain p only negatively. Let E be the rest of the clauses.
Then S is SAT iff S” is SAT, where S’= E U the set of all p-resolvents of P and N.

C, D are clauses, —-v¢C and vgD

Resolve on g {7p.p,1,5}  Notice that clauses that contain a literal and
{@p =r, s, {—p,r,s), {p, s)) its negation can be thrown away. Why?

Slides by Pete Manolios for CS4820



Resolution Example

Resolution rule:
C,V D, =v
C,D

Given literal p, set of clauses S, let P be the clauses in S that contain p only positively
and let N be the clauses that contain p only negatively. Let E be the rest of the clauses.
Then S is SAT iff S” is SAT, where S’= E U the set of all p-resolvents of P and N.

C, D are clauses, —-v¢C and vgD

U p.qrsy,\p.7q. s}, {p.qg,r,mshAp, sy U p, g, oy, Ap. gt L p, g, st

Resolve on g {7p.p,1,5}  Notice that clauses that contain a literal and
HUp,—r,=s}, {—p,r,s}, {p,s}} its negation can be thrown away. Why?

Resolve onr

Hp,s}} Sat, resolve on p to get {} or use pure literal rule

How do we generate a satisfying assignment? Next homework

Slides by Pete Manolios for CS4820



DP SAT Algorithm

» Input: CNF formula, Output: SAT/UNSAT
» Base case: empty clause: UNSAT

» Base case: no clauses: SAT

» Apply these two rules until fixpoint

» Pure literal rule
» BCP

» Choose var, say x, perform all possible resolutions, remove trivial
clauses and clauses containing x

» Repeat
» Existentially quantify variables, one at a time

» Problem: space blow-up

Slides by Pete Manolios for CS4820



DPLL SAT Algorithm

» BCP

» Base case: empty clause: UNSAT

» Remove clauses containing pure literals (modern solvers don’t do this)
» Base case: no clauses: SAT

» Choose some var, say X
(if removing pure literals, x has to appear in both phases)

» Add {x} and recursively call DPLL
» Add {-x} and recursively call DPLL
» |f one of the calls returns SAT, return SAT
» Else return UNSAT
» Correctness follows from Shannon expansion

» |n contrast to DP, space is not a problem

Slides by Pete Manolios for CS4820



DPLL SAT Example

1. {A, B} AL

2. {B.C} g o

3. {-A,-X.Y) B=t 0
A= 4. {ﬂ A, X, Z} /.,'.,./ . f\

5. {—A,-Y, Z} C< X C=t

6. {—A,X,~Z} WA /s

(. {ﬁA, Y, 2 } Y, X X X

X XX X

» Note that when DPLL detects contradictions it backtracks chronologically

» When we get a contradiction with X, we try =X, then we go back and try -C and X, =X again, ...

» But the real problem was that we set A; can we avoid this exponential search?

» Yes: non-chronological backtracking, a major improvement
Examples/figures from chp. 3 SAT handbook: pure literals not removed

Slides by Pete Manolios for CS4820



Implication Graphs

A
N, 1. {A, B}
B 2. {B.C}
) /, ‘\_»_\ B =t {) 3. { — A, ﬂ/Y, }r}
/ N A= 4.{-AX.Z)
C ) \ \. X C —1 H. {ﬂ A, —.Y, YA }
6. {-4,X.-Z)
/ f 7 X 7. {-A,-Y,=Z}
X/ pX XX

/ -
» Nodes are I/V=v: var V settov @ level | Y B=1

» If node implied, justification recorded Ve
(clause #, edges from assignments) SI0 =1 /

» {} denotes contradiction .
3/ X =t

Slides by Pete Manolios for CS4820



Conflict-Driven Clauses

{A,B)
{B.C}
A=A, =X, Y}
{-AX.Z)
{=A,-Y, Z)
{=A, X, ~Z)
A=A, Y, -2}

|
-] S O ol WO =

Cut 2 Cut 3

» Consider any cut of the implication graph that separates decision vars from {}
» The nodes with an edge that crosses the cut are in conflict set

» Negate the assignments in the set to obtain a conflict-driven clause

» Conflict clauses: Cut1: {-A,-X}, Cut2: {-A, Y}, Cut3: {-A, =Z, Y}

» Conflict—driven clauses generated from cuts that contain exactly one variable
assigned at the level of conflict are said to be asserting: Cut1 & Cut2 (not Cut 3)

Slides by Pete Manolios for CS4820



Non-Chronological Backtracking

0/A=t

A, B}
{B.C} o)
(-4, -X.YV)
{_’A, .X'. Z}

~A, Y, Z)

3/7Z =t

7
. N A
: 3/{}
2=y Y
/ Cut 2 Cut 3
3/ X =t

Cut |

|/B=t

o 1o

-] & O
A
i
-

e

J

AN
——

» Asserting conflict clauses: Cut1: 8. {-A,—-X}, Cut2: {-A, =Y}

» Assertion level: 2nd highest level in asserting clause (0 for cuts 1, 2) or -1

» Backtrack to assertion level and add a learned clause (non-chronologicall)

» We can now immediately infer (BCP) =X (we use Cut1), so we have A, =X

» Then by BCP: Z (4), -Z (6) so we get a new implication graph

» Asserting clauses: {—A} at level -1, so we have —-A, BCP: B and we’re done

» Compare to previous search, where the algorithm had to go back a level at a time

» Clause learning can generate exponentially shorter proofs of unsat!

Slides by Pete Manolios for CS4820



Modern CDCL Solvers

» Based on DPLL, but with conflict-driven clause learning

» Data structures to speed up BCP: 2-watched literal scheme
» Data structures for clause learning

» Decision heuristics: select recently active literals (VSIDS)

» Preprocessing: greedy variable elimination

» Inprocessing: interleave preprocessing & search

» Clause deletion: learned clauses lead to memory & efficiency
problems, so delete large, inactive clauses

» Random restarts: keep learned clauses, but restart
» avoids getting stuck in hard part of search space

» phase saving: pick last phase of assignment

Slides by Pete Manolios for CS4820



HornSAT

» A CNF formula is Horn if every clause has at most one positive literal
» (-a,b), (-a,—-b,—c,~d), (a),(-b,—a,d),(—C)
» Think of clauses as rules that “fire” under assignment A, if LHS holds

» a=b, abcd=false, a, ba=d, c=false (or —C)

» HornSAT is in P
» BCP (until fixpoint), constructing a partial assignment
» If empty clause, return unsat

» Else return sat (set remaining vars to false)
» Minimal assignment returned: all lits that have to be true in all sat assignments
» Note: if all clauses have 1 pos literal, then SAT (assign true to every var)
» Linear time: BCP
» Dual horn: every clause has at most one negative literal

» Same problem

Slides by Pete Manolios for CS4820



Renamable Horn

» What about {x, y, =z}, {-X%, y, =z}?

» Renamable horn: There is a subset of variables such that if we negate
every occurrence, we have a horn formula

» Can determine if renamable horn in Ptime
» Can solve such problems in Ptime

» Lemma: F is renamable Horn iff there exists an interpretation such that
at most one literal per clause is false

» S0, we can test for renamability of F by using 2SAT
» Find sat. assignment for AceF au,vec (u v v)
» Rename variables occurring positively in assignment

» Unit propagation can solve renamable horn problems (and more) in
linear time (so no need to check for renamability)

Slides by Pete Manolios for CS4820



SAT Solving Algorithms

» Symbolic SAT solving
» Use BDDs, but try hard to not get blowup of intermediate BDDs
» S0, existential quantification and other techniques are used
» The goal is to minimize the size of intermediate BDDs
» SAT by inference rules
» Stalmarck’s Algorithm
» Preprocess the formula
» Apply simple inference rules: 0-saturation

» Apply dilemma rule: for each variable x, 0-saturate f|¢£ and f|-£, and
all common conclusions to f. Repeat until fixpoint: 1-saturation

» n-saturation: case split over all combinations on n variables

Slides by Pete Manolios for CS4820



First Order Logic

» Example: Group Theory

> (G1)
> (G2)
> (G3)

-or a

~or a

-or a

X, ¥,Zi(Xey)ez=X"(y "2
X:X*e=X

X thereisaysuchthat: x-y=e

» Theorem: For every X, thereisay suchthaty *x=¢€

» Examples of groups: Nat, +, 0?; Int, +, 0?, Real, *, 17

» Proof:

By (G3) thereis:ayst.x*y=eandazst.y+z=¢

NOw:ye*X=ye*Xee=yeXeyezZ=yreezZ=y*z=¢€

» |Is this true for all groups? Why?

» How many groups are there?

» Are there true statements about groups with no proof?

Slides by Pete Manolios for CS4820



First Order Logic

» First Order Logic forms the foundation of mathematics

» We study various objects, e.g., groups

» Properties of objects captured by “non-logical” axioms
» (G1-G3 in our example)

» Theory consists of all consequences of “non-logical” axioms
» Derivable via logical reasoning alone
» That’s it; no appeals to intuition

» Separation into non-logical axioms logical reasoning is astonishing: all
theories use exactly same reasoning

» But, what is a proof (O ~ ¢)?
» Question leads to computer science

» Proof should be so clear, even a machine can check it

Slides by Pete Manolios for CS4820



First Order Logic: Syntax

» Every FOL (first order language) includes
» Variables vo, v1, Vo, ...

» Boolean connectives: v, =
» Equality: =
» Parenthesis: (, )

» Quantifiers: 3
» The symbol set of a FOL contains (possibly empty) sets of

» relation symbols, each with an arity > 0

» function symbols, each with an arity > 0

» constant symbols

» Example: groups 2-ary function symbol « and constant e

» Set theory: €, a 2-ary relation symboal, ...

Slides by Pete Manolios for CS4820



First Order Logic: Terms

» Terms denote objects of study, e.g., group elements
» The set of S-terms is the least set closed under:

» Every variable is a term

» Every constant is a term

v If t1, ..., th are terms and f is an n-ary function symbol, then
f(ts, ..., tn) Is a term

Slides by Pete Manolios for CS4820



First Order Logic: Formulas

» Formulas: statements about the objects of study
» An atomic formula of S is
p t1 =1 oOr

> R(t, ..., tn), where t; is an S-term and R is an n-ary relation
symbol in S

» The set of S-formulas is the least set closed under:
» Every atomic formula is a formula

> If ¢, P are S-formulas and x is a variable, then
=@, (d v ), and axp are S-formulas

» All Boolean connectives can be defined in terms of = and v

» We can define vx¢ to be —ax-¢

Slides by Pete Manolios for CS4820



Definitions on Terms & Formulas

» Define the notion of a free variable for an S-formula
» The definition of formula depends on that of term
» S0, we’re going to need an auxiliary definition:
var(x) = {x}
var(c) = {}
var(f(ts, ..., tn)) = var(ts) u --- v var(t)
» |Is this a definition? (termination!)
free(t: = to) = var(ts) u var(to)
free(R(t1, ..., tn)) = var(ti) u --- u var(ty)
free(—®) = free(d)
free((d v V) = free(P) u free(P)
(

free(ax®) = free(d) \ {x}

Slides by Pete Manolios for CS4820



