CS4820, Fall 2021, Lecture 31 $\,$

Pete Manolios

Nov 29, 2021

Contents

1	Exa	m 2: Dec 2nd	1
2	Pre	sentations	1
3	Terr	m Rewrite Systems	1
	3.1	Basic Definitions	1
	3.2	Equational Reasoning	2
		3.2.1 Main Question: Validity	2
	3.3	Motivating Example for Completion	3
	3.4	Critical Pairs	4
		3.4.1 Definition	4
		3.4.2 Critical Pairs Example	5
		3.4.3 Completion Example	6
	3.5	More Examples	6
		3.5.1 Group Theory Example	6
	3.6	Commutativity	7
	3.7	Conditional Rewriting	7

1 Exam 2: Dec 2nd

- Up to material covered to end of November
- Focus on material after exam 1
- Take home option: due midnight on Thursday. Released after class.

2 Presentations

• See the schedule: next week

3 Term Rewrite Systems

3.1 Basic Definitions

- Rewrite rule: an equation l = r, ofter written $l \to r$ such that
 - -l is not a var

$$- Vars(l) \subseteq Vars(r)$$

* book doesn't require this, neither does ACL2s, but standard

• Term Rewrite System (TRS)

a set of rewrite rules

- Reduction relation for Term Rewrite System R, \rightarrow_R :
 - Pairs (s,t) st. t is s after applying a rewrite rule
 - $\{(s,t) \mid \exists (l,r) \in R \text{ st. } s \text{ has subterm } l\sigma, \text{ for some substitution } \sigma \\ \text{and } t \text{ is } s \text{ with the subterm replaced by } r\sigma \}$
- We may drop the subscript and write \rightarrow instead of \rightarrow_R
- Above fleshes out how to relate Term Rewriting Systems with Reduction Relations, something we considered last time
- A reduction relation is *canonical* (or *convergent*) iff it is terminating and confluent
- \rightarrow_R is canonical iff it is terminating & locally confluent (Newman's lemma)
- If \rightarrow_R is canonical, every term has a unique normal form (last time)
- If s has a unique normal form, we write it as $s \downarrow_R$

3.2 Equational Reasoning

3.2.1 Main Question: Validity

- Given E, a set of equalities (eg, TRS), prove $E \models s = t$
- Alternatively, prove $s \leftrightarrow_E^* t$
 - where \leftrightarrow_E^* is the reflexive, symmetric, transitive closure of the reduction relation of E.
 - follows from Birkoff's theorem
- Theorem: if \rightarrow_E is canonical, then $s \leftrightarrow_E^* t$ is decidable
 - Proof Sketch:
 - * C1: \rightarrow_E is canonical
 - * D1: $s \leftrightarrow_E^* t$ iff $s \downarrow_E = t \downarrow_E \{C1, Previous Results\}$
 - * D2: \downarrow_E is decidable: given *s* check if there is a subterm that can we rewrited with \rightarrow_E , which requires matching (special case of unification) & substitution, hence decidable; by {C1} we can only do this finitely many times, hence decidable.
 - * D3: $s \leftrightarrow_E^* t$ is decidable {D1, D2}

3.3 Motivating Example for Completion

• Consider the rules R

$$- f(f(x,y),z) \to f(x,f(y,z))$$
$$- f(i(x),x) \to e$$

- Can we decide $R \models s = t$ using above theorem (canonicity)?
 - Termination: yes (we won't focus on that here)
 - Confluent?
 - * Consider s = f(f(i(x), x), z)
 - * Apply rule 1 to s: f(i(x), f(x, z))
 - * Apply rule 2 to s: f(e, z)
 - * Notice that the new terms are irreducible (in normal form)
 - * So, not confluent
 - * We found an s which can be rewritten to non-joinable terms

- But, we now have a proof that f(i(x), f(x, z)) = f(e, z)
- So, add rule 3, to define R_1

$$- f(f(x,y)z) \to f(x,f(y,z))$$

$$-f(i(x),x) \to e$$

$$- f(i(x), f(x, z)) \to f(e, z)$$

- Note that \leftrightarrow^* has not changed
- But, we can now use the above theorem
 - Termination holds
 - So does confluence
 - * But how do we prove that?
 - * Do we have to prove confluence directly? (Painful)
 - * We can prove local confluence (Newman's Lemma)
 - $\ast\,$ We can do better
- Theorem: A TRS is locally confluent iff all of its critical pairs are joinable.
 - So, enough to consider a subset of all terms, using the idea of critical pairs.
 - For a finite TRS, there are finitely many critical pairs and checking joinability is decidable due to termination: keep applying rewrite rules until you reach a normal form.
- Completion Algorithm (due to Knuth-Bendix):
 - Start with a finite, terminating TRS and check local confluence using critical pairs.
 - If all critical pairs are joinable, done (confluent).
 - Reduce, orient non-joinable critical pairs.
 - * If resulting TRS is still terminating, add new rules and recur
- What can go wrong?
 - Rules generated lead to non-termination
 - Algorithm never terminates (keeps generating critical pairs)

3.4 Critical Pairs

3.4.1 Definition

- Let $l_i \to r_i, i \in \{1, 2\}$ be two rules, with disjoint variables
 - For disjointness, we have to rename variables
 - $-l_1, l_2$ can be the same rule, with variables renamed
- Let u be a non-variable subterm of l_1 at position p
 - -p is like how we dive into a term using the proof builder
 - * $f(f(x,y),y)|_{12} = y$ * $f(f(x,y),y)[w]_{12} = f(f(x,w),y)$: replacement using positions

$$- \text{ so } l_1|_p = u$$

- p is a sequence of positive integers, possibly ϵ
- Let θ be a mgu of u, l_2
- Starting with $l_1\theta$, we can:
 - Apply rule 1 to get $r_1\theta$
 - Apply rule 2 to get $l_1\theta[r_2\theta]_p$ (replace position p in $l_1\theta$ with $r_2\theta$)

3.4.2 Critical Pairs Example

• Consider the previous rules R

$$- f(f(x,y),z) \to f(x,f(y,z))$$
$$- f(i(x),x) \to e$$

• What are the critical pairs?

- CP1

*

Building blocks

$$l_1 = f(f(x, y), z)$$

$$p = 1$$

$$u = f(x, y)$$

$$l_2 = f(i(u), u)$$

$$\theta = \{(x, i(u)), (y, u)\}$$

 $\cdot l_1 \theta = f(f(i(u), u), z)$ $\cdot r_1\theta = f(i(u), f(u, z))$ $\cdot r_2\theta = e$ $\cdot \ l_1\theta[r_2\theta]_p = f(e,z)$ * Critical pair $\cdot f(i(u), f(u, z))$ $\cdot f(e,z)$ * Irreducible! - CP2 * Building blocks $\cdot l_1 = f(f(x, y), z)$ $\cdot p = 1$ $\cdot u = f(x, y)$ $\cdot l_2 = f(f(a,b),c)$ $\cdot \ \theta = \{(x, f(a, b)), (y, c)\}$ $\cdot l_1 \theta = f(f(f(a, b), c), z)$ $\cdot r_1\theta = f(f(a,b), f(c,z))$ $\cdot r_2\theta = f(a, f(b, c))$ $\cdot \ l_1\theta[r_2\theta]_p = f(f(a, f(b, c)), z)$ * Critical pair $\cdot f(f(a,b), f(c,z))$ $\cdot f(f(a, f(b, c)), z)$ * Joinable! $f(f(a,b), f(c,z)) \rightarrow f(a, f(b, f(c,z)))$

3.4.3 Completion Example

• Orient, add critical pairs to get R_1 :

$$\begin{aligned} &- f(f(x,y),z) \to f(x,f(y,z)) \\ &- f(i(x),x) \to e \\ &- f(i(u),f(u,z)) \to f(e,z) \text{ (New rule)} \end{aligned}$$

• Recur!

– But this gives a fixpoint (exercise)

 $\cdot f(f(a, f(b, c)), z) \to f(a, f(f(b, c), z)) \to f(a, f(b, f(c, z)))$

3.5 More Examples

3.5.1 Group Theory Example

- 1. Axioms of group theory
 - $(G_1) \forall x, y, z : (x \circ y) \circ z = x \circ (y \circ z)$
 - $(G_2) \forall x : e \circ x = x$
 - $(G_3) \forall x : I(x) \circ x = e$

Notice that this is an equational theory. If we had existential for inverses, we can use Skolemization to get this version!

- 2. TRS for group theory
 - $G_1 = (x \circ y) \circ z \to x \circ (y \circ z)$
 - $G_2 = e \circ x \to x$
 - $G_3 = I(x) \circ x \to e$
 - $G = \{G_1, G_2, G_3\}$
- 3. Group Theory Proofs Theorem: $x \circ I(x) = e$

Proof:

$$\begin{aligned} x \circ I(x) \\ \leftarrow \{G_2\} & (e \circ x) \circ I(x) \\ \leftarrow \{G_3\} & ((I(I(x)) \circ I(x)) \circ x) \circ I(x)) \\ \rightarrow \{G_1\} & (I(I(x)) \circ (I(x) \circ x)) \circ I(x) \\ \rightarrow \{G_3\} & (I(I(x)) \circ e) \circ I(x) \\ \rightarrow \{G_1\} & I(I(x)) \circ (e \circ I(x)) \\ \rightarrow \{G_2\} & I(I(x)) \circ I(x) \\ \rightarrow \{G_3\} & e \end{aligned}$$

- 4. Exercise
 - Run the completion algorithm.

3.6 Commutativity

- Note: $x \circ y = y \circ x$ is non-terminating, no matter what we do
- Boyer-Moore idea: orient the terms this is being applied to; this is what is done in ACL2s

3.7 Conditional Rewriting

• Advanced topic; hard to prove any theorems