CS4820, Fall 2021, Lecture 31

Pete Manolios

Nov 29, 2021

Contents

1 Exam 2: Dec 2nd 1
2 Presentations 1
3 Term Rewrite Systems 1
3.1 Basic Definitions 1
3.2 Equational Reasoning 2
3.2.1 Main Question: Validity 2
3.3 Motivating Example for Completion 3
3.4 Critical Pairs 4
3.4.1 Definition 4
3.4.2 Critical Pairs Example 5
3.4.3 Completion Example 6
3.5 More Examples 6
3.5.1 Group Theory Example 6
3.6 Commutativity 7
3.7 Conditional Rewriting 7

1 Exam 2: Dec 2nd

- Up to material covered to end of November
- Focus on material after exam 1
- Take home option: due midnight on Thursday. Released after class.

2 Presentations

- See the schedule: next week

3 Term Rewrite Systems

3.1 Basic Definitions

- Rewrite rule: an equation $l=r$, ofter written $l \rightarrow r$ such that
$-l$ is not a var
$-\operatorname{Vars}(l) \subseteq \operatorname{Vars}(r)$
* book doesn't require this, neither does ACL2s, but standard
- Term Rewrite System (TRS)
- a set of rewrite rules
- Reduction relation for Term Rewrite System R, \rightarrow_{R} :
- Pairs (s, t) st. t is s after applying a rewrite rule
- $\{(s, t) \mid \exists(l, r) \in R$ st. s has subterm $l \sigma$, for some substitution σ and t is s with the subterm replaced by $r \sigma\}$
- We may drop the subscript and write \rightarrow instead of \rightarrow_{R}
- Above fleshes out how to relate Term Rewriting Systems with Reduction Relations, something we considered last time
- A reduction relation is canonical (or convergent) iff it is terminating and confluent
- \rightarrow_{R} is canonical iff it is terminating \& locally confluent (Newman's lemma)
- If \rightarrow_{R} is canonical, every term has a unique normal form (last time)
- If s has a unique normal form, we write it as $s \downarrow_{R}$

3.2 Equational Reasoning

3.2.1 Main Question: Validity

- Given E, a set of equalities (eg, TRS), prove $E \models s=t$
- Alternatively, prove $s \leftrightarrow_{E}^{*} t$
- where \leftrightarrow_{E}^{*} is the reflexive, symmetric, transitive closure of the reduction relation of E.
- follows from Birkoff's theorem
- Theorem: if \rightarrow_{E} is canonical, then $s \leftrightarrow_{E}^{*} t$ is decidable
- Proof Sketch:
* C1: \rightarrow_{E} is canonical
* D1: $s \leftrightarrow_{E}^{*} t$ iff $s \downarrow_{E}=t \downarrow_{E}\{\mathrm{C} 1$, Previous Results $\}$
* D2: \downarrow_{E} is decidable: given s check if there is a subterm that can we rewrited with \rightarrow_{E}, which requires matching (special case of unification) \& substitution, hence decidable; by $\{\mathrm{C} 1\}$ we can only do this finitely many times, hence decidable.
* D3: $s \leftrightarrow_{E}^{*} t$ is decidable $\{\mathrm{D} 1, \mathrm{D} 2\}$

3.3 Motivating Example for Completion

- Consider the rules R
$-f(f(x, y), z) \rightarrow f(x, f(y, z))$
$-f(i(x), x) \rightarrow e$
- Can we decide $R \models s=t$ using above theorem (canonicity)?
- Termination: yes (we won't focus on that here)
- Confluent?
* Consider $s=f(f(i(x), x), z)$
* Apply rule 1 to $s: f(i(x), f(x, z))$
* Apply rule 2 to $s: f(e, z)$
* Notice that the new terms are irreducible (in normal form)
* So, not confluent
* We found an s which can be rewritten to non-joinable terms
- But, we now have a proof that $f(i(x), f(x, z))=f(e, z)$
- So, add rule 3 , to define R_{1}
$-f(f(x, y) z) \rightarrow f(x, f(y, z))$
- $f(i(x), x) \rightarrow e$
- $f(i(x), f(x, z)) \rightarrow f(e, z)$
- Note that \leftrightarrow^{*} has not changed
- But, we can now use the above theorem
- Termination holds
- So does confluence
* But how do we prove that?
* Do we have to prove confluence directly? (Painful)
* We can prove local confluence (Newman's Lemma)
* We can do better
- Theorem: A TRS is locally confluent iff all of its critical pairs are joinable.
- So, enough to consider a subset of all terms, using the idea of critical pairs.
- For a finite TRS, there are finitely many critical pairs and checking joinability is decidable due to termination: keep applying rewrite rules until you reach a normal form.
- Completion Algorithm (due to Knuth-Bendix):
- Start with a finite, terminating TRS and check local confluence using critical pairs.
- If all critical pairs are joinable, done (confluent).
- Reduce, orient non-joinable critical pairs.
* If resulting TRS is still terminating, add new rules and recur
- What can go wrong?
- Rules generated lead to non-termination
- Algorithm never terminates (keeps generating critical pairs)

3.4 Critical Pairs

3.4.1 Definition

- Let $l_{i} \rightarrow r_{i}, i \in\{1,2\}$ be two rules, with disjoint variables
- For disjointness, we have to rename variables
- l_{1}, l_{2} can be the same rule, with variables renamed
- Let u be a non-variable subterm of l_{1} at position p
- p is like how we dive into a term using the proof builder
* $\left.f(f(x, y), y)\right|_{12}=y$
* $f(f(x, y), y)[w]_{12}=f(f(x, w), y)$: replacement using positions
- so $\left.l_{1}\right|_{p}=u$
- p is a sequence of positive integers, possibly ϵ
- Let θ be a mgu of u, l_{2}
- Starting with $l_{1} \theta$, we can:
- Apply rule 1 to get $r_{1} \theta$
- Apply rule 2 to get $l_{1} \theta\left[r_{2} \theta\right]_{p}$ (replace position p in $l_{1} \theta$ with $r_{2} \theta$)

3.4.2 Critical Pairs Example

- Consider the previous rules R
$-f(f(x, y), z) \rightarrow f(x, f(y, z))$
$-f(i(x), x) \rightarrow e$
- What are the critical pairs?
- CP1
* Building blocks
- $l_{1}=f(f(x, y), z)$
- $p=1$
- $u=f(x, y)$
- $l_{2}=f(i(u), u)$
- $\theta=\{(x, i(u)),(y, u)\}$

$$
\text { - } r_{1} \theta=f(i(u), f(u, z))
$$

$$
\cdot r_{2} \theta=e
$$

$$
\cdot l_{1} \theta\left[r_{2} \theta\right]_{p}=f(e, z)
$$

* Critical pair
- $f(i(u), f(u, z))$

$$
\cdot f(e, z)
$$

* Irreducible!
- CP2
* Building blocks
* Critical pair
- $f(f(a, b), f(c, z))$
- $f(f(a, f(b, c)), z)$
* Joinable!

$$
\begin{aligned}
& \text { • } f(f(a, b), f(c, z)) \rightarrow f(a, f(b, f(c, z))) \\
& \text { • } f(f(a, f(b, c)), z) \rightarrow f(a, f(f(b, c), z)) \rightarrow f(a, f(b, f(c, z)))
\end{aligned}
$$

3.4.3 Completion Example

- Orient, add critical pairs to get R_{1} :
$-f(f(x, y), z) \rightarrow f(x, f(y, z))$
- $f(i(x), x) \rightarrow e$
- $f(i(u), f(u, z)) \rightarrow f(e, z)$ (New rule)
- Recur!
- But this gives a fixpoint (exercise)

$$
\begin{aligned}
& \text { - } l_{1}=f(f(x, y), z) \\
& \text { - } p=1 \\
& \text { - } u=f(x, y) \\
& \text { - } l_{2}=f(f(a, b), c) \\
& \text { - } \theta=\{(x, f(a, b)),(y, c)\} \\
& \text { - } l_{1} \theta=f(f(f(a, b), c), z) \\
& \text { - } r_{1} \theta=f(f(a, b), f(c, z)) \\
& \text { - } r_{2} \theta=f(a, f(b, c)) \\
& \text { - } l_{1} \theta\left[r_{2} \theta\right]_{p}=f(f(a, f(b, c)), z)
\end{aligned}
$$

3.5 More Examples

3.5.1 Group Theory Example

1. Axioms of group theory

- $\left(G_{1}\right) \forall x, y, z:(x \circ y) \circ z=x \circ(y \circ z)$
- $\left(G_{2}\right) \forall x: e \circ x=x$
- $\left(G_{3}\right) \forall x: I(x) \circ x=e$

Notice that this is an equational theory. If we had existential for inverses, we can use Skolemization to get this version!
2. TRS for group theory

- $G_{1}=(x \circ y) \circ z \rightarrow x \circ(y \circ z)$
- $G_{2}=e \circ x \rightarrow x$
- $G_{3}=I(x) \circ x \rightarrow e$
- $G=\left\{G_{1}, G_{2}, G_{3}\right\}$

3. Group Theory Proofs Theorem: $x \circ I(x)=e$

Proof:

$$
\begin{aligned}
& x \circ I(x) \\
\leftarrow & \left.\leftarrow G_{2}\right\}(e \circ x) \circ I(x) \\
\leftarrow & \left\{G_{3}\right\}((I(I(x)) \circ I(x)) \circ x) \circ I(x) \\
\rightarrow & \left\{G_{1}\right\}(I(I(x)) \circ(I(x) \circ x)) \circ I(x) \\
\rightarrow & \left\{G_{3}\right\}(I(I(x)) \circ e) \circ I(x) \\
\rightarrow & \left\{G_{1}\right\} I(I(x)) \circ(e \circ I(x)) \\
\rightarrow & \left\{G_{2}\right\} I(I(x)) \circ I(x) \\
\rightarrow & \left\{G_{3}\right\} e
\end{aligned}
$$

4. Exercise

- Run the completion algorithm.

3.6 Commutativity

- Note: $x \circ y=y \circ x$ is non-terminating, no matter what we do
- Boyer-Moore idea: orient the terms this is being applied to; this is what is done in ACL2s

3.7 Conditional Rewriting

- Advanced topic; hard to prove any theorems

