CS4820, Fall 2021, Lecture 27 $\,$

Pete Manolios

Nov 15, 2021

Contents

Rev	iew Schedule for paper presentations	1
Rev	vriting	1
2.1	Basic Definitions	1
2.2	Confluence	2
2.3	Newman's Lemma (1942) \ldots	3
2.4	Church-Rosser	3
	Rev 2.1 2.2 2.3 2.4	Review Schedule for paper presentations Rewriting 2.1 Basic Definitions 2.2 Confluence 2.3 Newman's Lemma (1942) 2.4 Church-Rosser

1 Review Schedule for paper presentations

Elided

2 Rewriting

Rewriting is a powerful theorem proving technique and we have already seen it in action in ACL2s, so we won't say much in terms of motivation initially. Term rewriting is essential in understanding lambda calculus.

2.1 Basic Definitions

- Abstract Reduction relation: Binary relation, R on a set X
 - we may write $x \to y$ instead of R(x, y)
 - typically derived from set of equalities $\left(l=r\right)$ via instantiation, but can be any relation
- Closures

- transitive closure of \rightarrow : \rightarrow^+ (Kleene notation)
- reflexive, transitive closure of \rightarrow : \rightarrow * (Kleene notation)
- Normal form: x is in normal form iff there is no y s.t. $x \to y$
- Terminating, Strongly normalizing, Noetherian (all mean same thing)
 - There is no infinite sequence $x_0 \to \cdots \to x_n \to \cdots$
- Reverse relation: Define x < y to be $y \to x$; now notice
 - -x is in normal form iff it is minimal wrt <
 - \rightarrow is terminating if < is well-founded (no infinite decreasing sequences)
- Relation to ACL2s, concepts such as termination, induction, etc.
 - In ACL2s, we reason about functions: termination, induction
 - In ACL2s, we don't (typically) reason about rewrite rules
 - But, we could and the same techniques for termination, induction can be used

2.2 Confluence

• \rightarrow has the diamond property:

- if $x \to y$ and $x \to y'$, $\exists z \text{ s.t. } y \to z \text{ and } y' \to z$

• \rightarrow is *confluent*: \rightarrow^* has the diamond property

- if $x \to^* y$ and $x \to^* y'$, $\exists z \text{ s.t. } y \to^* z$ and $y' \to^* z$

• \rightarrow is weakly confluent:

- if $x \to y$ and $x \to y'$, $\exists z \text{ s.t. } y \to^* z$ and $y' \to^* z$

- $x \downarrow y$ (x and y are *joinable*): $\exists z \text{ s.t. } x \rightarrow^* z \text{ and } y \rightarrow^* z$
 - \rightarrow is confluent: if $x \rightarrow^* y$ and $x \rightarrow^* y'$, then $y \downarrow y'$
 - \rightarrow is weakly confluent: if $x \rightarrow y$ and $x \rightarrow y'$, then $y \downarrow y'$
- Theorem if \rightarrow has the diamond property, it is weakly confluent
 - Proof: trivial, as $y \to z$ implies $y \to^* z$

- Theorem if \rightarrow has the diamond property, it is confluent
 - Proof: double induction on length of $x \to^* y$ and $x \to^* y'$, picture (see book) makes it clear
- Theorem: if \rightarrow is confluent, it is weakly confluent

– Proof: trivial, as $x \to y$ implies $x \to^* y$

- Weak confluence does not imply confluence; consider
 - Define \rightarrow as follows
 - $\begin{array}{l} * & b \to a \\ * & b \to c \\ * & c \to b \\ * & c \to d \end{array}$
 - Note that \rightarrow is weakly confluent
 - but not confluent: $c \to^* a$ and $c \to^* d$, but $a \not\downarrow d$

2.3 Newman's Lemma (1942)

- If \rightarrow is terminating and weakly confluent, then it is confluent
- Proof: By well-founded induction on $P(x)=\forall y,z:x\to^* y\wedge x\to^* z: y\downarrow z$
 - C1 (Context): \rightarrow is terminating (hyp)
 - C2: \rightarrow is weakly confluent (hyp)
 - C3: $\forall u : x \to^+ u : P(u)$ (IH)
 - C4: $x \to^* y \land x \to^* z$ (hyp of confluence)
 - D1: x = y or x = z, then $y \downarrow z$ (C1, so no steps taken)
 - D2: $x \neq y, x \neq z$, (D1, PL)
 - D3: $\exists y_1, z_1 : x \to y_1 \to^* y$ and $x \to z_1 \to^* z$ (C4, D2)
 - D4: $\exists u : y_1 \rightarrow^* u$ and $z_1 \rightarrow^* u$ (C2, D3)
 - D5: $\exists v : u \to^* v$ and $y \to^* v$ ($P(y_1)$): C3, $x \to y_1$: D3, $y_1 \to^* y$: D3, $y_1 \to^* u$: D4)
 - D6: $\exists w : v \to^* w$ and $z \to^* w$ $(P(z_1): C3, x \to z_1, D3 (z_1 \to^* z), D4, D5 (z_1 \to^* u \to^* v))$
 - D7: $y \downarrow z \ (y \to *v \to^* w: D5, D6, z \to^* w: D6)$

2.4 Church-Rosser

- \leftrightarrow^* is the reflexive, symmetric, transitive closure of \rightarrow
- \rightarrow is *Church-Rosser*: if $x \leftrightarrow^* y$ then $x \downarrow y$
- Theorem: Church-Rosser is equivalent to confluence
- Proof:
 - Pong: Confluence is special case of Church-Rosser, since if $x\to^* y$ and $x\to^* y'$ then $y\leftrightarrow^* y'$
 - Ping: See book