

Pete Manolios Northeastern

Computer Aided Reasoning, Lecture 7

Professional Method

(definec rev (x :tl) :tl
(if (endp x)
 nil
 (app (rev (cdr x))
 (list (car x)))))

Prove: (rev (rev x)) = x No quite right, why? Prove: $(tlp x) \Rightarrow (rev (rev x)) = x$ Contract completion! Professional Method: use abbreviations, discover induction scheme We'll induct on $(\ldots x)$. Base case is trivial, so go to induction step (R (R x)) $= \{ \text{Def R} \} (R (A (R (cdr x)) (L (car x))) \}$ Hm, to use IH, need lemma $= \{L1\}$ (A (R (L (car x))) (R (R (cdr x)))) Now I can use IH $= \{IH\}$ (A (R (L (car x))) (cdr x)) Just equational reasoning = {Def R} (A (L (car x)) (cdr x)) $= \{ \text{Def A} \} \times$ L1.(R (A x y)) = (A (R y) (R x))What Induction scheme? (tlp x) or (rev x): minor differences

Professional Method

Prove: $(tlp x) \land (tlp y) \Rightarrow (R (A x y)) = (A (R y) (R x))$ Professional Method: induct on? x controls both LHS, RHS, so probably x Start with induction step Base case? (R (A x y)) (R (Cdr x) y)) = {Def A} (R (Cons (Car x) (A (Cdr x) y))) = {Def A} (R y) = {Def A} (R y) (R (Cdr x) y)) (L (Car x))) = {IH} (A (A (R y) (R (Cdr x))) (L (Car x))) (A (R y) (R x))

$$= \{Ass A\} (A (R y) (A (R (cdr x)) (L (car x)))) = \{Def R\} (A (R y) nil) \\ = \{Def R\} (A (R y) (R x)) = \{L2!\} (R y) \\Ass A: (A (A x y) z) = (A x (A y z)) \\What Induction scheme? L2: (A x nil) = x \\(tlp x) or (rev x): minor differences \\Needs proof by induction!$$

ACL2 is . . .

A programming language:

- Applicative, functional subset of Lisp
- Compilable and executable
- Untyped, first-order
- A mathematical logic:
 - First-order predicate calculus
 - With equality, induction, recursive definitions
 - Pordinals up to ϵ_0 (termination & induction)
- A mechanical theorem prover:
 - Integrated system of ad hoc proof techniques
 - Heavy use of term rewriting
 - Largely written in ACL2

ACL2 System Architecture

database

Organization of ACL2

Eliminate Destructors User The top-level goal is put in the pool. Pool Use Equivalences Generalize Induct Eliminate Irrelevance

Simplify

When a formula is drawn out, it is passed to proof techniques until one applies.

The draw is orchestrated that we do not try to prove a subgoal by induction until we have processed every subgoal produced by the last induction.

Induction

- When a formula arrives at the induction technique, ACL2 computes all the inductions suggested by the terms in the formula.
- It then compares them, possibly combining several into one, and selects one regarded as most appropriate.
- It applies the scheme to the formula at hand, uses simple propositional calculus to normalize the result, and puts each of the new formulas back into the pool.
- Propositional calculus normalization may make the instantiation of the induction scheme look different than the scheme itself. For example, instead of $(q \land (\alpha' \Rightarrow \beta')) \Rightarrow (a \Rightarrow \beta)$, propositional normalization produces two formulas: $(q \land \neg \alpha' \land \alpha) \Rightarrow \beta$ and $(q \land \beta' \land \alpha) \Rightarrow \beta$.
- It is possible to prove an induction rule (see induction) so that a term suggests other inductions.
- You can override its choice of induction by supplying an induction hint.

Simplification Overview

Simplification is the heart of the theorem prover. It:

- applies propositional calculus, equality, and linear arithmetic decision procedures,
- uses type information and forward chaining rules to construct a "context" describing the assumptions of each subterm,
- rewrites each subterm in the appropriate context, using definitions, conditional rewrite rules, and metafunctions,
- uses propositional calculus normalization to convert the resulting formula to an equivalent set of formulas, reduces the set under subsumption, and deposits the surviving formulas back in the pool.
- The simplifier is not guaranteed to produce formulas that are stable under simplification; repeated trips through the simplifier, via insertion and extraction from the pool, are used to reach the final stable form (if any).

Destructor Elimination

- Elim rule example: suppose a formula mentions (CAR A) and (CDR A). If A is a cons, we could replace A by (CONS A1 A2), for new variables A1 and A2, allowing us to replace (CAR A) and (CDR A) with A1 and A2.
- CAR-CDR-ELIM axiom: (=> (consp x) (== (cons (car x) (cdr x)) x))
- This axiom is an example of a more general form:
 - > (=> (hyp x) (== (constructor (dest1 x) . . . (destn x)) x))
 - Such theorems can be stored as "destructor elimination" or elim rules.
 - The (desti x) are the destructor terms.
- Applies when a formula contains an instance of (desti x) and x is bound to a variable, say a.
- It "splits" the formula into two, according to whether (hyp a) is true; when true, it replaces all of the a's in the formula (except those inside desti applications) by (constructor (dest1 a)... (destn a)).
- ▶ Replaces all the (desti a) terms with distinct new variable symbols, a1, ..., an.

Use of Equivalences

- If the formula contains the hypothesis (== lhs rhs) and elsewhere in the formula there is an occurrence of lhs, then rhs is substituted for lhs in every such occurrence based on heuristics.
- ACL2 supports a more general form of substitution involving equivalence relations. The use of equalities is generalized to the use of any equivalence relation.

\Rightarrow

(=> (tlp a2)
 (== (rev (app (rev a2) (list a1)))
 (cons a1 (rev (rev a2))))

Generalization

- Find a subterm that appears in both the hypothesis and the conclusion, in two different hypotheses, or on opposite sides of an equivalence
- Replace that subterm by a new variable symbol
- If type information (see type-prescription) or generalization rules (see generalize) can be used to restrict the type of the new variable, then it is so restricted. The generalized formula is then added to the pool.

Elimination of Irrelevance

- Eliminate irrelevant hypotheses, by partitioning them into cliques according to the variables they mention.
- If there are isolated cliques of hypotheses, then either the formula is a theorem because those hypotheses are collectively false, or else they are irrelevant.
- Use type information to show that a clique is not false.

```
(== (rev (app rv (list a1)))
    (cons a1 (rev rv)))
```

Organization of ACL2

When a formula is drawn out, it is passed to proof techniques until one applies.

The draw is orchestrated that we do not try to prove a subgoal by induction until we have processed every subgoal produced by the last induction.

