Lecture 24

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 24

Subsumption & Replacement

- ▶ Let *C*, *D* be propositional clauses; $C \le D$, *C* subsumes *D* if $C \subseteq D$, therefore $C \Rightarrow D$ and we can remove *D* and subsumed clauses
- ▶ Let *C*, *D* be FO clauses; $C \le D$, *C* subsumes *D* if $\exists \sigma$ s.t. $C \sigma \subseteq D$ (matching!), hence $C \Rightarrow D$ and we so can remove D and subsumed clauses
- ▶ Theorem: For FO clauses, if C≤C' and D≤D' then any U-resolvent of C' and D' is subsumed by C, D or a U-resolvent of C and D.
- ▶ Corollary: If C is derivable by U-resolution, then $\exists C'$ derivable by U-resolution s.t. $C' \leq C$ and no clause is subsumed by any of its ancestors
- Corollary: If a U-resolution of a non-tautologous conclusion involves a tautology, ∃ a U-resolution proof that does not use any tautologies
- So, we can discard tautologies and subsumed clauses
 - Forward deletion: discard generated clauses that are subsumed by an existing clause
 - Backward replacement: if a generated clause subsumes an existing clause replace the existing clause with the newly generated one

Slides by Pete Manolios for CS4820

Positive, Negative, Semantic Resolution

- Positive resolution (Robinson): Refutation completeness is preserved if we restrict resolution so that one of the clauses contains only positive literals
 - Hint: suppose that there are no positive clauses (all literals are positive), then the problem is SAT if you assign all atoms *false*; if there only positive clauses assign all atoms *true*; see proof in book
- Similarly for U-resolution
 - This cuts down the search space dramatically
 - This plays well with subsumption and replacement
- Negative resolution: Require negative clauses (instead of positive clauses)
- More generally we have semantic resolution: if S is an Unsat set of FO clauses and I is an interpretation of the symbols used in S, there is a U-resolution proof of Unsat(S) where each U-resolution step involves a clause that is not true in I
 - Positive resolution is a special case where I assigns false to all atoms

- Partition T the input clauses into two disjoint sets, S, the set of support of T and the unsupported clauses V. Restrict U-resolution so that no two clauses in V are resolved together.
- Theorem: Let T be an Unsat set of clauses and let S be a subset of T where T\S is Sat; then there is a U-resolution proof of Usat(T) with set of support S
- Idea: focus U-resolution on finding resolvents that contribute to the solution
- For example say A is a set of standard mathematical axioms
 - ▶ You want to prove $B \Rightarrow C$
 - ▶ Using U-resolution you will want to derive the empty clause from A, B, $\neg C$
 - Since Sat(A) you can choose B, $\neg C$ as the set of support
 - Since A, B are Sat (presumably), you can choose $\neg C$ as the set of support
 - Suppose ¬C is the only negative clause, then similar to negative resolution, but negative resolution is more restrictive; however, set of support often makes up for this by finding shorter proofs

Dealing with Equality

Plan for a FO validity checker w/=: Given FO φ, negate & Skolemize to get universal ψ s.t. Valid(φ) iff Unsat(ψ). Convert ψ into equivalent CNF *K*.
Generate ψ* in expanded language without = s.t. Sat(ψ) iff Sat(ψ*). Use U-Resolution on ψ*.

To go from ψ to ψ*

- Introduce a new binary relation symbol, E
- ▶ Replace $t_1 = t_2$ with $E(t_1, t_2)$ everywhere in ψ
- Force E to be an equivalence relation by adding clauses

▷ {E(x,x)}, { $\neg E(x,y)$, E(y,x)}, { $\neg E(x,y)$, $\neg E(y,z)$, E(x,z)}

- Force E to be a congruence (RAP: Equality Axiom Schema for Functions)
 - ▷ {¬ $E(x_1,y_1),...,\neg E(x_n,y_n), E(f(x_1,...,x_n), f(y_1,...,y_n))$ } for every *n*-ary *f* in ψ

▷ {¬ $E(x_1,y_1),...,\neg E(x_n,y_n), \neg R(x_1,...,x_n), R(y_1,...,y_n)$ } for every *n*-ary *R* in ψ

Clauses for E are positive Horn (see later slides)!

Universal Horn Formulas

- ▶ A formula is a *universal Horn formula* if it is logically equivalent to a conjunction of formulas of the following form, where φ , φ_i , are atomic $\langle \forall x_1, \ldots, x_n | \varphi \rangle$ $\langle \forall x_1, \ldots, x_n | \varphi \rangle$ $\langle \forall x_1, \ldots, x_n | \varphi_1 \land \cdots \land \varphi_m \Rightarrow \varphi \rangle$ $\langle \forall x_1, \ldots, x_n | \varphi_1 \land \cdots \land \varphi_m \Rightarrow \varphi \rangle$ $\langle \forall x_1, \ldots, x_n | \varphi_1 \lor \cdots \lor \neg \varphi_m \rangle$ negative
- Let Φ be a set of universal Horn sentences s.t. Sat(Φ); let Φ⁺ be the subset of positive sentences in Φ; let ψ_i be atomic over vars x₁,...,x_n; then

- The above is a key insight that often allows us to restrict attention to positive universal Horn formulas
- For propositional logic, Sat for Horn formulas is in P!

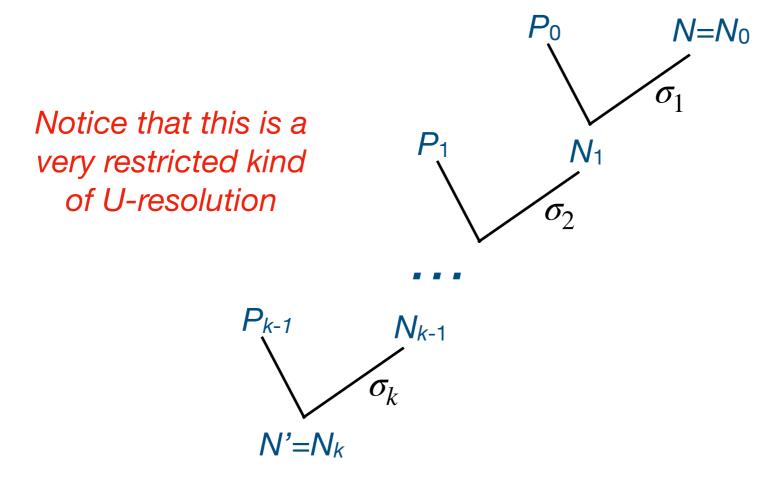
Free Models

- Herbrand universe, H, of FO language L is the set of all ground terms of L, except that if L has no constants, we add c to make the universe non-empty
- Let Φ be a set of universal Horn sentences over L s.t. Sat(Φ)
- ▶ There is \mathcal{I}^{Φ} , an interpretation for Φ over H s.t. $\mathcal{I}^{\Phi} \models \varphi$ iff $\Phi \models \varphi$ for all atomic φ
 - Note: if $\Phi \models t_1 = t_2$ then $\mathcal{J}^{\Phi} \models t_1 = t_2$
 - Note: If $\Phi \models R(t_1, ..., t_n)$ then $\mathcal{I}^{\Phi} \models R(t_1, ..., t_n)$
 - Note: If neither $\Phi \models R(t_1, ..., t_n)$ nor $\Phi \models \neg R(t_1, ..., t_n)$ then $\mathcal{I}^{\Phi} \models \neg R(t_1, ..., t_2)$
 - ▶ So J^Φ, is *minimal (free)*: it only contains positive atomic information
 - ▶ There is a homomorphism between \mathcal{I}^{Φ} and any other model of Φ
- ▶ We have reduced $\Phi \vDash \varphi$ to $J^{\Phi} \vDash \varphi$
 - Instead of checking if every interpretation of Φ satisfies φ
 - We only need to check a single, minimal interpretation
- Enables us to find solutions to queries in a systematic way
- Basis for logic programming

Logic Programming

 \blacktriangleright Let ${\bf \mathfrak{P}}$ be a set of positive clauses and let N be a negative clause

- ▶ A sequence N_0 , ..., N_k of negative clauses is a UH-resolution from \mathfrak{P} and Niff $\exists P_0$, ..., $P_{k-1} \in \mathfrak{P}$ s.t. $N_0 = N$ and N_{i+1} is a U-resolvent of P_i and N_i for i < k
- ▶ A negative clause *N*' is *UH-derivable from* \mathfrak{P} and *N* iff \exists a UH-resolution $N_0, ..., N_k$ from \mathfrak{P} and *N* with $N'=N_k$



Slides by Pete Manolios for CS4820

Logic Programming

Let \mathfrak{P} be a set of positive clauses and let N be a negative clause

- A sequence $N_0, ..., N_k$ of negative clauses is a UH-resolution from \mathfrak{P} and Niff $\exists P_0, ..., P_{k-1} \in \mathfrak{P}$ s.t. $N_0 = N$ and N_{i+1} is a U-resolvent of P_i and N_i for i < k
- ▶ A negative clause *N*' is *UH-derivable from* \mathfrak{P} and *N* iff \exists a UH-resolution $N_0, ..., N_k$ from \mathfrak{P} and *N* with $N'=N_k$
- ▶ Let \mathscr{K} be a set of clauses, UHRes(\mathscr{K})= $\mathscr{K} \cup \{N \mid N \text{ is a negative clause and } \exists a positive/negative$ *P*,*N* $' ∈ <math>\mathscr{K}$ s.t. *N* is a U-resolvent of *P* and *N*'}

 \mathbb{V} UHRes₀(\mathcal{K})= \mathcal{K}

- ▶ UHRes_{n+1}(\mathscr{K})=UHRes(UHRes_n(\mathscr{K}))
- ▶ UHRes_{ω}(\mathscr{K})= $\cup_{n\in\omega}$ UHRes_n(\mathscr{K})

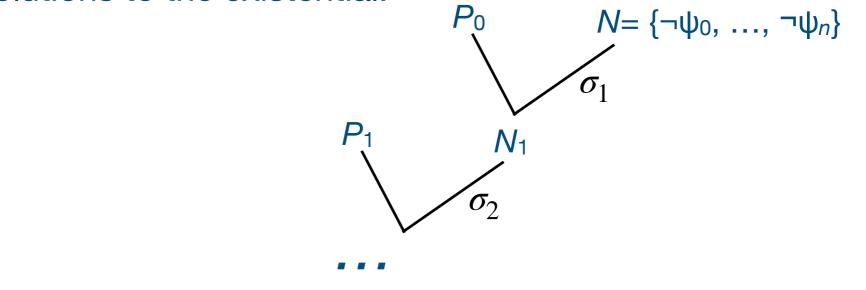
Standard recursive definition on the naturals Standard recursive definition with limit ordinals

Logic Programming

Theorem: Let Φ be a set of positive universal Horn sentences, $\Psi = \mathscr{K}(\Phi)$, ψ_i atomic, $\langle \exists x_1, ..., x_n \ \psi_0 \land \cdots \land \psi_m \rangle$ a sentence and $N = \{\neg \psi_0, ..., \neg \psi_m\}$. Then:

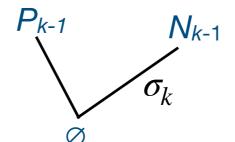
- $\Phi \models \langle \exists x_1, \dots, x_n \psi_0 \wedge \dots \wedge \psi_m \rangle \text{ iff } \emptyset \text{ is UH-derivable from } \mathfrak{P} \text{ and } N$
- ▶ Given such a UH-derivation, with $\sigma_1, ..., \sigma_k, \Phi \vDash (\psi_0 \land \cdots \land \psi_m) \sigma_k ... \sigma_1$
- ▶ If $\Phi \models (\psi_0 \land \cdots \land \psi_m)\tau$, then there is a UH-derivation with $(\sigma_k...\sigma_1) \le \tau$

So, we can find all solutions to the existential!



Recall

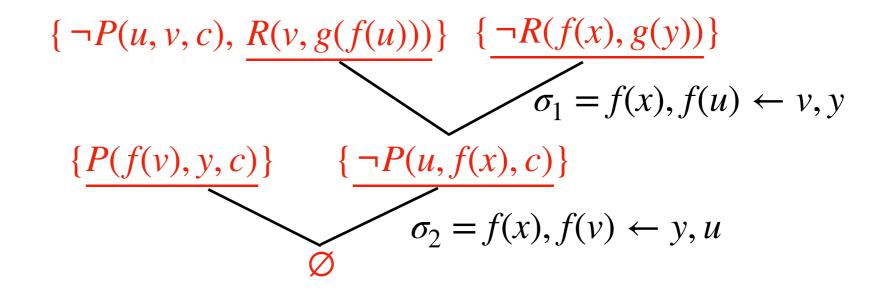
 $\mathscr{K}(\Phi)$ =clauses of Φ



Slides by Pete Manolios for CS4820

Logic Programming Example

 $\Phi = \{ \langle \forall x, y \ P(x, y, c) \Rightarrow R(y, g(f(x))) \rangle, \langle \forall x, y \ P(f(x), y, c) \rangle \} \models \langle \exists x, y \ R(f(x), g(y)) \rangle$



▶ Recall: given a UH-derivation, with $\sigma_1, \ldots, \sigma_k, \Phi \models (\psi_0 \land \cdots \land \psi_m) \sigma_k \ldots \sigma_1$ ▶ So, the following hold

 $\Phi \models R(f(x), g(f(f(v)))) \qquad \Phi \models \langle \forall x, v \ R(f(x), g(f(f(v)))) \rangle$

And we have a family of solutions

Prolog

- One of the most popular logic programming languages is Prolog
- Given a set of Horn clauses and a query, find solutions
- AppRules = (App nil L L), (App (cons h T), L, (cons h A)) :- App(T,L,A)

This is implication, ie, X :- Y is $Y \Rightarrow X$

- ▶ AppRules, (App '(1 2), '(3 4), Z) \rightarrow Z='(1 2 3 4)
- ▶ AppRules, (App '(1 2), Y, '(1 2 3 4)) → Y='(3 4)
- ▶ AppRules, (App X, Y, '(1 2 3 4)) → X=nil, Y='(1 2 3 4), ... (more solutions)
- An example of *declarative* programming
- Prolog searches in a way that may lead to looping, provides support to control search, etc.