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Unification Algorithm Soundness
Algorithm: Nondeterministic transition system based on the following rules


Delete {t=t} ⊎ S     ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S      ⟹ {x=t} ⋃ S,  if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x,  if x∈Vars(S) - Vars(t) 


If V ⟹ T then U(V)=U(T): Easy: delete, decompose, orient; 

Let σ∈U(V), Y = x=t, θ = t←x; note θ=(Y)↓ 
Recall Lemma: Y is in solved form and σ∈U(Y), then σ=σY↓

Apply lemma to x=t (solved form), σ=σθ (since xσ ={σ∈U(Y)} tσ = {t=xθ} xσθ)


σ∈U(V)  σ∈U({x=t}⊎S)  xσ=tσ ⋀ σ∈U(S)  xσ=tσ ⋀ σθ∈U(S)              
xσ=tσ ⋀ σ∈U(Sθ)  σ∈U({x=t} ⋃ Sθ)  σ∈U(T)


Soundness: If Unify returns σ, then σ is an idempotent mgu of S 
We showed that Unify does not change unifiers

By previous lemma: if S is in solved form, then S↓ is an idempotent mgu


≡ ≡ ≡ ≡
≡ ≡
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Unification Algorithm Completeness
Algorithm: Nondeterministic transition system based on the following rules


Delete {t=t} ⊎ S     ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S      ⟹ {x=t} ⋃ S,  if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x,  if x∈Vars(S) - Vars(t) 


Completeness: If S is solvable, then Unify(S) does not fail

Lemmas


f(…) = g(…) has no solution if f ≠ g

x=t, where x≠ t and x∈Vars(t) has no solution (|xσ| < |tσ| for all σ)


Proof: If S is solvable and in normal form wrt ⟹, then S is in solved form. S 
cannot contain pairs of form f(…) = f(…) (decompose) or f(…) = g(…) 
(lemma) or x=x (delete) or t=x where t is not a var (orient), so all equations 
are of form x=t where x ∉ Vars(t) (lemma). Also x cannot occur twice in S 
(eliminate), so S is in solved form.
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Unification Algorithm Improvements
Algorithm: Nondeterministic transition system based on the following rules


Delete {t=t} ⊎ S     ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S      ⟹ {x=t} ⋃ S,  if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x,  if x∈Vars(S) - Vars(t) 

Clash {f(t1, …, tn) = g(s1, …, sm)} ⊎ S ⟹ ⊥ if f ≠ g 
Occurs-Check {x=t} ⊎ S ⟹ ⊥ if x∈Vars(t) ⋀ x ≠ t


This is justified by the lemmas used for completeness

f(…) = g(…) has no solution if f ≠ g

x=t, where x≠ t and x∈Vars(t) has no solution (|xσ| < |tσ| for all σ)


Early termination when ∃ no solution, saving (how much?) time
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Complexity of Unification
Algorithm: Nondeterministic transition system based on the following rules


Delete {t=t} ⊎ S     ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,sn=tn} U S

Orient {t=x} ⊎ S      ⟹ {x=t} U S,  if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} U S|t←x,  if x∈Vars(S) - Vars(t)


Exponential blow up: {(x1=f(x0,x0)), x2=f(x1,x1), x3=f(x2,x2), …, xn=f(xn-1,xn-1)}

Notice that the output is exponential

Can we do better?


Yes, by using a dag to represent terms and returning a dag

General idea: operate on a concise representation of problem


BDDs are concise representations of truth tables, decision trees, etc

Model checking searches an implicitly given graph (transition system)
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History of Unification
What we have studied is syntactic, first-order unification


syntactic: substitutions should make terms syntactically equal

equational unification: unification modulo an equational theory 


eg for commutative f, f(x,f(x,x)) = f(f(x,x),x) is E-unifiable not syntactically unifiable

first-order: no higher-order variables (no variables ranging over functions)


Herbrand gave a nondeterministic algorithm in his 1930 thesis

Robinson (1965) introduced FO theorem proving using resolution, unification


Required exponential time & space

Robinson (1971) & Boyer-Moore (1972): structure sharing algorithms that were space 
efficient, but required exponential time

Venturini-Zilli (1975): reduction to quadratic time using marking scheme

Huet (1976) worked on higher-order unification led to nα(n) time: almost linear 
Robinson also discovered this algorithm

Paterson and Wegman (1976) linear time algorithm

Martelli and Montanari (1976) linear time algorithm based on Boyer-Moore
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Unification Applications
First-order theorem proving


Matching (ACL2) is a special case: given s,t find σ s.t. sσ=t

Prolog

Higher-order theorem proving


Undecidable for second-order logic

Natural language processing

Unification-based grammars

Equational theories 


Commutative, Associative, Distributive, etc

Term rewrite systems 


Type inference (eg ML)

Logic programming

Machine learning: generalization is a dual of unification


