

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 22

Unification Algorithm Soundness

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▶ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ ∪ S, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x, \text{ if } x \in Vars(S) Vars(t)$
- ▶ If $V \implies T$ then U(V)=U(T): Easy: delete, decompose, orient;
 - ▶ Let $\sigma \in U(V)$, Y = x = t, $\theta = t \leftarrow x$; note $\theta = (Y) \downarrow$
 - ▶ Recall Lemma: *Y* is in solved form and $\sigma \in U(Y)$, then $\sigma = \sigma Y \downarrow$
 - ▶ Apply lemma to x=t (solved form), $\sigma=\sigma\theta$ (since $x\sigma = \{\sigma \in U(Y)\}$ $t\sigma = \{t=x\theta\} x\sigma\theta$)

 $\sigma \in U(V) \equiv \sigma \in U(\{x=t\} \uplus S) \equiv x\sigma = t\sigma \land \sigma \in U(S) \equiv x\sigma = t\sigma \land \sigma \theta \in U(S) \equiv x\sigma = t\sigma \land \sigma \in U(S\theta) \equiv \sigma \in U(\{x=t\} \cup S\theta) \equiv \sigma \in U(T)$

- Soundness: If Unify returns σ , then σ is an idempotent mgu of S
 - We showed that Unify does not change unifiers
 - ▶ By previous lemma: if S is in solved form, then $S\downarrow$ is an idempotent mgu

Unification Algorithm Completeness

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ \cup S, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x, \text{ if } x \in Vars(S) Vars(t)$
- Completeness: If S is solvable, then Unify(S) does not fail

Lemmas

- ▶ f(...) = g(...) has no solution if $f \neq g$
- ▶ x=t, where $x \neq t$ and $x \in Vars(t)$ has no solution ($|x\sigma| < |t\sigma|$ for all σ)
- ▶ Proof: If *S* is solvable and in normal form wrt \Rightarrow , then *S* is in solved form. S cannot contain pairs of form f(...) = f(...) (decompose) or f(...) = g(...) (lemma) or x=x (delete) or t=x where t is not a var (orient), so all equations are of form x=t where $x \notin Vars(t)$ (lemma). Also x cannot occur twice in *S* (eliminate), so *S* is in solved form.

Unification Algorithm Improvements

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▶ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ \cup S, if *t* is not a variable
- ▶ Eliminate $\{x=t\}$ $\exists S \implies \{x=t\} \cup S | t \leftarrow x, \text{ if } x \in \text{Vars}(S) \text{Vars}(t)$
- ▶ Clash { $f(t_1, ..., t_n) = g(s_1, ..., s_m)$ } ⊌ S ⇒ ⊥ if $f \neq g$
- ▶ Occurs-Check {x=t} $\forall S \implies \bot \text{ if } x \in Vars(t) \land x \neq t$
- This is justified by the lemmas used for completeness

▶ f(...) = g(...) has no solution if $f \neq g$

▶ x=t, where $x \neq t$ and $x \in Vars(t)$ has no solution ($|x\sigma| < |t\sigma|$ for all σ)

Early termination when I no solution, saving (how much?) time

Complexity of Unification

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., s_n=t_n}$ U S
- ▶ Orient $\{t=x\} \cup S \implies \{x=t\} \cup S$, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x, \text{ if } x \in \text{Vars}(S) \text{Vars}(t)$
- ▶ Exponential blow up: {($x_1 = f(x_0, x_0)$), $x_2 = f(x_1, x_1)$, $x_3 = f(x_2, x_2)$, ..., $x_n = f(x_{n-1}, x_{n-1})$ }
- Notice that the output is exponential
- Can we do better?
 - Yes, by using a dag to represent terms and returning a dag
 - General idea: operate on a concise representation of problem
 - BDDs are concise representations of truth tables, decision trees, etc
 - Model checking searches an implicitly given graph (transition system)

History of Unification

What we have studied is syntactic, first-order unification

- syntactic: substitutions should make terms syntactically equal
- equational unification: unification modulo an equational theory

▶ eg for commutative f, f(x,f(x,x)) = f(f(x,x),x) is E-unifiable not syntactically unifiable

- first-order: no higher-order variables (no variables ranging over functions)
- Herbrand gave a nondeterministic algorithm in his 1930 thesis
- Robinson (1965) introduced FO theorem proving using resolution, unification
 - Required exponential time & space
- Robinson (1971) & Boyer-Moore (1972): structure sharing algorithms that were space efficient, but required exponential time
- Venturini-Zilli (1975): reduction to quadratic time using marking scheme
- Huet (1976) worked on higher-order unification led to nα(n) time: almost linear Robinson also discovered this algorithm
- Paterson and Wegman (1976) linear time algorithm
- Martelli and Montanari (1976) linear time algorithm based on Boyer-Moore

Unification Applications

- First-order theorem proving
 - Matching (ACL2) is a special case: given s,t find σ s.t. $s\sigma = t$
- Prolog
- Higher-order theorem proving
 - Undecidable for second-order logic
- Natural language processing
- Unification-based grammars
- Equational theories
 - Commutative, Associative, Distributive, etc
 - Term rewrite systems
- Type inference (eg ML)
- Logic programming
- Machine learning: generalization is a dual of unification