
Lecture 22

Pete Manolios

Northeastern

Computer-Aided Reasoning, Lecture 22

Slides by Pete Manolios for CS4820

Unification Algorithm Soundness
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

If V ⟹ T then U(V)=U(T): Easy: delete, decompose, orient;

Let σ∈U(V), Y = x=t, θ = t←x; note θ=(Y)↓
Recall Lemma: Y is in solved form and σ∈U(Y), then σ=σY↓

Apply lemma to x=t (solved form), σ=σθ (since xσ ={σ∈U(Y)} tσ = {t=xθ} xσθ)

σ∈U(V) σ∈U({x=t}⊎S) xσ=tσ ⋀ σ∈U(S) xσ=tσ ⋀ σθ∈U(S)
xσ=tσ ⋀ σ∈U(Sθ) σ∈U({x=t} ⋃ Sθ) σ∈U(T)

Soundness: If Unify returns σ, then σ is an idempotent mgu of S
We showed that Unify does not change unifiers

By previous lemma: if S is in solved form, then S↓ is an idempotent mgu

≡ ≡ ≡ ≡
≡ ≡

Slides by Pete Manolios for CS4820

Unification Algorithm Completeness
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

Completeness: If S is solvable, then Unify(S) does not fail

Lemmas

f(…) = g(…) has no solution if f ≠ g

x=t, where x≠ t and x∈Vars(t) has no solution (|xσ| < |tσ| for all σ)

Proof: If S is solvable and in normal form wrt ⟹, then S is in solved form. S
cannot contain pairs of form f(…) = f(…) (decompose) or f(…) = g(…)
(lemma) or x=x (delete) or t=x where t is not a var (orient), so all equations
are of form x=t where x ∉ Vars(t) (lemma). Also x cannot occur twice in S
(eliminate), so S is in solved form.

Slides by Pete Manolios for CS4820

Unification Algorithm Improvements
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,tn=sn} ⋃ S

Orient {t=x} ⊎ S ⟹ {x=t} ⋃ S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} ⋃ S|t←x, if x∈Vars(S) - Vars(t)

Clash {f(t1, …, tn) = g(s1, …, sm)} ⊎ S ⟹ ⊥ if f ≠ g
Occurs-Check {x=t} ⊎ S ⟹ ⊥ if x∈Vars(t) ⋀ x ≠ t

This is justified by the lemmas used for completeness

f(…) = g(…) has no solution if f ≠ g

x=t, where x≠ t and x∈Vars(t) has no solution (|xσ| < |tσ| for all σ)

Early termination when ∃ no solution, saving (how much?) time

Slides by Pete Manolios for CS4820

Complexity of Unification
Algorithm: Nondeterministic transition system based on the following rules

Delete {t=t} ⊎ S ⟹ S

Decompose {f(t1, …, tn) = f(s1, …, sn)} ⊎ S ⟹ {t1=s1, …,sn=tn} U S

Orient {t=x} ⊎ S ⟹ {x=t} U S, if t is not a variable

Eliminate {x=t} ⊎ S ⟹ {x=t} U S|t←x, if x∈Vars(S) - Vars(t)

Exponential blow up: {(x1=f(x0,x0)), x2=f(x1,x1), x3=f(x2,x2), …, xn=f(xn-1,xn-1)}

Notice that the output is exponential

Can we do better?

Yes, by using a dag to represent terms and returning a dag

General idea: operate on a concise representation of problem

BDDs are concise representations of truth tables, decision trees, etc

Model checking searches an implicitly given graph (transition system)

Slides by Pete Manolios for CS4820

History of Unification
What we have studied is syntactic, first-order unification

syntactic: substitutions should make terms syntactically equal

equational unification: unification modulo an equational theory

eg for commutative f, f(x,f(x,x)) = f(f(x,x),x) is E-unifiable not syntactically unifiable

first-order: no higher-order variables (no variables ranging over functions)

Herbrand gave a nondeterministic algorithm in his 1930 thesis

Robinson (1965) introduced FO theorem proving using resolution, unification

Required exponential time & space

Robinson (1971) & Boyer-Moore (1972): structure sharing algorithms that were space
efficient, but required exponential time

Venturini-Zilli (1975): reduction to quadratic time using marking scheme

Huet (1976) worked on higher-order unification led to nα(n) time: almost linear
Robinson also discovered this algorithm

Paterson and Wegman (1976) linear time algorithm

Martelli and Montanari (1976) linear time algorithm based on Boyer-Moore

Slides by Pete Manolios for CS4820

Unification Applications
First-order theorem proving

Matching (ACL2) is a special case: given s,t find σ s.t. sσ=t

Prolog

Higher-order theorem proving

Undecidable for second-order logic

Natural language processing

Unification-based grammars

Equational theories

Commutative, Associative, Distributive, etc

Term rewrite systems

Type inference (eg ML)

Logic programming

Machine learning: generalization is a dual of unification

