Lecture 22

Pete Manolios Northeastern

Unification Algorithm Soundness

- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \leftrightarrow S \quad \Rightarrow S$
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \cup S \Rightarrow\left\{t_{1}=s_{1}, \ldots, t_{n}=s_{n}\right\} \cup S$
- Orient $\{t=x\} \cup S \quad \Rightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \cup S \Rightarrow\{x=t\} \cup S \mid t \leftarrow x$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$
- If $V \Rightarrow T$ then $\mathrm{U}(V)=\mathrm{U}(T)$: Easy: delete, decompose, orient;
- Let $\sigma \in \mathrm{U}(V), Y=x=t, \theta=t \leftarrow x$; note $\theta=(Y) \downarrow$
- Recall Lemma: Y is in solved form and $\sigma \in U(Y)$, then $\sigma=\sigma Y \downarrow$
- Apply lemma to $x=t$ (solved form), $\sigma=\sigma \theta$ (since $x \sigma=\{\sigma \in U(Y)\}$ to $=\{t=x \theta\} \times \sigma \theta$)
${ }^{\bullet} \sigma \in \mathrm{U}(\mathrm{V}) \equiv \sigma \in \mathrm{U}(\{x=t\} \cup S) \equiv x \sigma=t \sigma \wedge \sigma \in \mathrm{U}(S) \equiv x \sigma=t \sigma \wedge \sigma \theta \in \mathrm{U}(\mathrm{S}) \equiv$ $x \sigma=t \sigma \wedge \sigma \in \mathrm{U}(\mathrm{S} \theta) \equiv \sigma \in \mathrm{U}(\{x=t\} \cup \mathrm{S} \theta) \equiv \sigma \in \mathrm{U}(T)$
- Soundness: If Unify returns σ, then σ is an idempotent mgu of S
- We showed that Unify does not change unifiers
- By previous lemma: if S is in solved form, then $S \downarrow$ is an idempotent mgu

Unification Algorithm Completeness

- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \leftrightarrow S \quad \Rightarrow S$
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \cup S \Rightarrow\left\{t_{1}=s_{1}, \ldots, t_{n}=S_{n}\right\} \cup S$
- Orient $\{t=x\} \cup S \quad \Rightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \cup S \Rightarrow\{x=t\} \cup S \mid t \leftarrow x$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$
- Completeness: If S is solvable, then Unify (S) does not fail
- Lemmas
- $f(\ldots)=g(\ldots)$ has no solution if $f \neq g$
- $x=t$, where $x \neq t$ and $x \in \operatorname{Vars}(t)$ has no solution ($|x \sigma|<|t \sigma|$ for all σ)
- Proof: If S is solvable and in normal form wrt \Rightarrow, then S is in solved form. S cannot contain pairs of form $f($ (..) $=f(\ldots)$ (decompose) or $f(\ldots)=g(\ldots)$ (lemma) or $x=x$ (delete) or $t=x$ where t is not a var (orient), so all equations are of form $x=t$ where $x \notin \operatorname{Vars}(t)$ (lemma). Also x cannot occur twice in S (eliminate), so S is in solved form.

Unification Algorithm Improvements

- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \leftrightarrow S \quad \Rightarrow S$
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \leftrightarrow S \Rightarrow\left\{t_{1}=s_{1}, \ldots, t_{n}=S_{n}\right\} \cup S$
- Orient $\{t=x\} \cup S \quad \Rightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \uplus S \Rightarrow\{x=t\} \cup S \mid t \leftarrow x$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$
- Clash $\left\{f\left(t_{1}, \ldots, t_{n}\right)=g\left(s_{1}, \ldots, s_{m}\right)\right\} \uplus S \Rightarrow \perp$ if $f \neq g$
- Occurs-Check $\{x=t\} \cup S \Rightarrow \perp$ if $x \in \operatorname{Vars}(t) \wedge x \neq t$
- This is justified by the lemmas used for completeness
- $f(\ldots)=g(\ldots)$ has no solution if $f \neq g$
- $x=t$, where $x \neq t$ and $x \in \operatorname{Vars}(t)$ has no solution $(|x \sigma|<|t \sigma|$ for all σ)
- Early termination when \exists no solution, saving (how much?) time

Complexity of Unification

- Algorithm: Nondeterministic transition system based on the following rules
- Delete $\{t=t\} \leftrightarrow S \quad \Rightarrow S$
- Decompose $\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(s_{1}, \ldots, s_{n}\right)\right\} \cup S \Rightarrow\left\{t_{1}=s_{1}, \ldots, s_{n}=t_{n}\right\} \cup S$
- Orient $\{t=x\} \cup S \Rightarrow\{x=t\} \cup S$, if t is not a variable
- Eliminate $\{x=t\} \cup S \Rightarrow\{x=t\} \cup S \mid t \leftarrow x$, if $x \in \operatorname{Vars}(S)-\operatorname{Vars}(t)$
- Exponential blow up: $\left\{\left(x_{1}=f\left(x_{0}, x_{0}\right)\right), x_{2}=f\left(x_{1}, x_{1}\right), x_{3}=f\left(x_{2}, x_{2}\right), \ldots, x_{n}=f\left(x_{n-1}, x_{n-1}\right)\right\}$
- Notice that the output is exponential
- Can we do better?
- Yes, by using a dag to represent terms and returning a dag
- General idea: operate on a concise representation of problem
- BDDs are concise representations of truth tables, decision trees, etc
- Model checking searches an implicitly given graph (transition system)

History of Unification

- What we have studied is syntactic, first-order unification
- syntactic: substitutions should make terms syntactically equal
- equational unification: unification modulo an equational theory
- eg for commutative $f, f(x, f(x, x))=f(f(x, x), x)$ is E-unifiable not syntactically unifiable
- first-order: no higher-order variables (no variables ranging over functions)
- Herbrand gave a nondeterministic algorithm in his 1930 thesis
- Robinson (1965) introduced FO theorem proving using resolution, unification
- Required exponential time \& space
- Robinson (1971) \& Boyer-Moore (1972): structure sharing algorithms that were space efficient, but required exponential time
- Venturini-Zilli (1975): reduction to quadratic time using marking scheme
- Huet (1976) worked on higher-order unification led to na(n) time: almost linear Robinson also discovered this algorithm
- Paterson and Wegman (1976) linear time algorithm
- Martelli and Montanari (1976) linear time algorithm based on Boyer-Moore

Unification Applications

- First-order theorem proving
- Matching (ACL2) is a special case: given s, t find σ s.t. $s \sigma=t$
- Prolog
- Higher-order theorem proving
- Undecidable for second-order logic
- Natural language processing
- Unification-based grammars
- Equational theories
- Commutative, Associative, Distributive, etc
- Term rewrite systems
- Type inference (eg ML)
- Logic programming
- Machine learning: generalization is a dual of unification

