Lecture 21

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 21

Unification Basics

- ▶ Unification Problem: Given a set of pairs of terms $S = \{(s_1, t_1), ..., (s_n, t_n)\}$ a *unifier* of S is a substitution σ such that $s_i | \sigma = t_i | \sigma$ (we'll write $s_i \sigma = t_i \sigma$)
- ▶ U(S) is the set of all unifiers of *S*; notice that if σ is a unifier, so is $\tau \circ \sigma$
- ▷ σ is more general than τ , $\sigma \leq \tau$, iff $\tau = \delta \sigma$ (δ ∘ σ) for some substitution δ
- ▶ ≤ is a preorder; let δ be the identify for reflexivity
 - ▶ transitivity: if $\sigma \leq \tau$, $\tau \leq \theta$ then $\tau = \delta \sigma$, $\theta = \gamma \tau = \gamma(\delta \sigma) = (\gamma \delta) \sigma$
 - ▷ $\sigma \sim \tau$ iff $\sigma \leq \tau$, $\tau \leq \sigma$. Notice that if $\sigma = x \leftarrow y$, $\tau = y \leftarrow x$, then $\sigma \sim \tau$
 - ▷ $\sigma \sim \tau$ iff there is a *renaming* (bijection on Vars) θ s.t. $\sigma = \theta \tau$
- ▶ A most general unifier (mgu) is $\sigma \in U(S)$ s.t. for all $\tau \in U(S)$, $\sigma \leq \tau$
 - ▶ What is an mgu for $x=y? x \leftarrow y? y \leftarrow x? z \leftarrow x, z \leftarrow y? y \leftarrow x, w \leftarrow z, z \leftarrow w?$
- A substitution is *idempotent* if $\sigma\sigma = \sigma$ (rules out last case above)
 - $\triangleright \sigma$ is idempotent iff Domain(σ) is disjoint from Vars(Range(σ))
- If a unification problem has a solution, then it has an idempotent mgu
- We want an algorithm that finds an mgu, if a unifier exists

Unification Algorithm

- ▷ $S = \{(x_1, t_1), ..., (x_n, t_n)\}$ is in solved form if the x_i are distinct variables and don't occur in any of the t_i . Then $S \downarrow = \{t_1 \leftarrow x_1, ..., t_n \leftarrow x_n\}$
- ▶ If S is in solved form and $\sigma \in U(S)$, then $\sigma = \sigma S \downarrow (\sigma, \sigma S \downarrow agree on all vars)$
- If S is in solved form, then $S\downarrow$ is an idempotent mgu
- Algorithm: Nondeterministic transition system based on the following rules
 - ▶ Delete $\{t=t\} \cup S \implies S$ useful way of thinking about algorithms: SMT/IMT
 - ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
 - ▶ Orient $\{t=x\} \ ⊎ \ S \implies \{x=t\} \cup S$, if *t* is not a variable
 - ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x, \text{ if } x \in \text{Vars}(S) \text{Vars}(t)$
- Unify(S) = apply rules nondeterministically; if solved return S↓, else fail
 T is the full of the full o
- Try it with: {(x, f(a)), (g(x,x), g(x,y))}

Unification Algorithm

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▷ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ ∪ S, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \cup S \implies \{x=t\} \cup S | t \leftarrow x, \text{ if } x \in \text{Vars}(S) \text{Vars}(t)$

 $x=f(a), g(x,x)=g(x,y) \implies$ decompose what other rules can I use?

x=f(a), x=x, x=y \Rightarrow deletecan't use eliminate on x=x; why?x=f(a), x=y \Rightarrow eliminate xcan't use orient on x=y; why?y=f(a), x=y \Rightarrow eliminate ycan't use orient on x=y; why?y=f(a), x=f(a) \Rightarrow return S↓

▶ Try it with: {(*x*, *f*(*y*)), (*y*, *g*(*x*))}

- ▶ Try it with: {(*P*(*f*(*w*), *f*(*y*)), *P*(*x*, *f*(*g*(*u*))), (*P*(*x*,*u*), *P*(*v*,*g*(*v*))}
- ▶ Try it with: {(*f*(*a*,*b*,*g*(*x*,*x*),*g*(*y*,*y*),*z*), *f*(*g*(*v*,*v*),*g*(*a*,*a*),*y*,*z*,*b*))}

Slides by Pete Manolios for CS4820

Unification Algorithm Termination

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ \cup S, if *t* is not a variable
- ▶ Eliminate $\{x=t\} \ \forall \ S \implies \{x=t\} \cup S | t \leftarrow x, \text{ if } x \in \text{Vars}(S) \text{Vars}(t)$
- Termination: our measure function will be on ordinals (infinite numbers)
 - ▶ 0,1, 2, ..., ω the first infinite ordinal (why stop with the naturals?) ▶ Keep going: $\omega + 1$, $\omega + 2$, ..., $\omega + \omega = \omega 2$, $\omega 2 + 1$, ..., $\omega 3$, ..., $\omega \omega = \omega^2$,

..., ω^3 , ..., ω^{ω} , ..., $\omega^{\omega^{\omega^{\cdots}}} = \epsilon_0$ ACL2s measures can use ordinals

- Lexicographic ordering on tuples of natural numbers is $\approx \omega^{\omega}$
 - $\triangleright \langle X_0, \ldots, X_{n-1}, X_n \rangle \longmapsto \omega^n X_0 + \cdots + \omega X_{n-1} + X_n$
 - ▶ There is an order-preserving bijection from n+1-tuples of Nats to ω^n
 - There is a theorem of this in the ACL2 ordinals books; you can define a relation, prove it is well-founded and use it in termination proofs

Unification Algorithm Termination

Algorithm: Nondeterministic transition system based on the following rules

- ▶ Delete $\{t=t\} \ ⊎ \ S \implies S$
- ▶ Decompose { $f(t_1, ..., t_n) = f(s_1, ..., s_n)$ } ⊎ $S \implies {t_1=s_1, ..., t_n=s_n} \cup S$
- ▶ Orient $\{t=x\}$ ⊎ S $\implies \{x=t\}$ ∪ S, if *t* is not a variable
- ▶ Eliminate $\{x=t\}$ $\exists S \implies \{x=t\} \cup S | t \leftarrow x, if x \in Vars(S) Vars(t)$
- Termination: our measure function will be on ordinals (infinite numbers)
 - ▶ x is solved in S iff $x=t \in S$ and x only appears once in S
 - Measure: ⟨vars in S not solved, size of S, # of equations t=x in S⟩
 Delete ≤ why not =? < Maybe x∈t, x∉S
 Decompose ≤ <
 Orient ≤ = <
 Eliminate <

for every rule we have $(\leq | =)^* <$, so the lexicographic order is decreasing (and well-founded), i.e., any algorithm based on these rules terminates