Lecture 16

Pete Manolios Northeastern

Computer-Aided Reasoning, Lecture 16

Coincidence Lemma

- ▶ Let $\mathscr{F}_1 = \langle A, a_1, \beta_1 \rangle$ be an S_1 -interpretation and let $\mathscr{F}_2 = \langle A, a_2, \beta_2 \rangle$ be an S_2 -interpretation (both have the same domain). Let $S = S_1 \cap S_2$.
 - ▶ 1. Let *t* be an S-term. If \mathscr{I}_1 and \mathscr{I}_2 agree on the S-symbols occurring in *t* and on the variables occurring in t, then $\mathscr{I}_1(t) = \mathscr{I}_2(t)$.
 - ▶ 2. Let ϕ be an S-formula. If \mathscr{F}_1 and \mathscr{F}_2 agree on the S-symbols and on the variables occurring free in ϕ , then $\mathscr{F}_1 \vDash \phi$ iff $\mathscr{F}_2 \vDash \phi$.
- Proof: By induction on S-terms and then on S-formulas
- This is a very useful lemma

Substitution

- Substituting t for x in ϕ yields ϕ ', which says about t what ϕ says about x
- ▶ Consider $\phi = \exists z \ z + z \equiv x$. Note that $\langle N, \beta \rangle \models \phi$ iff $\beta . x$ is even
 - ▶ Replacing *x* by *y* gives, $\phi' = \exists zz + z \equiv y$, where $\langle N, \beta \rangle \models \phi'$ iff $\beta.y$ is even; good!
 - ▶ What about replacing *x* by *z*? This gives $\phi' = \exists zz + z \equiv z$, but N $\models \phi$ '; bad!
 - Have to deal with variable capture
 - The book provides a definition which replaces bound occurrences of z with a new variable in φ
- Theorem: For every term, t, $\mathcal{J}(t\frac{t_0...t_r}{x_0...x_r}) = \mathcal{J}\frac{\mathcal{J}(t_0)...\mathcal{J}(t_r)}{x_0...x_r}(t)$

• Theorem: For every formula, ϕ , $\mathcal{J} \models \phi \frac{t_0 \dots t_r}{x_0 \dots x_r}$ iff $\mathcal{J} \frac{\mathcal{J}(t_0) \dots \mathcal{J}(t_r)}{x_0 \dots x_r} \models \phi$

• Theorem: If ϕ is Valid then so is $\phi \frac{t_0 \dots t_r}{x_0 \dots x_r}$

Formalization Examples

 $\forall x Rxx$ Equivalence relations $\forall x \forall y (Rxy) \Rightarrow (Ryx)$ $\forall x \forall y \forall z ((Rxy \land Ryz) \Rightarrow Rxz)$ $\langle \forall x :: xRx \rangle$ The way I would write it $\langle \forall x, y :: xRy \Rightarrow yRx \rangle$ $\langle \forall x, y, z :: xRy \land yRz \Rightarrow xRz \rangle$

Define a new quantifier "there exists exactly one," written $\exists^{=1}x\phi$ Try it!

$$\exists x(\phi \land \forall y(\phi \frac{y}{x} \Rightarrow x = y))$$

Slides by Pete Manolios for CS4820

Prenex Normal Form Example

For any FO $\varphi,$ we can find an equivalent FO ψ where all quantifiers are to the left. Try it!

 $\langle \forall x :: P(x) \lor R(y) \rangle \Rightarrow \langle \exists y, x :: Q(y) \lor \neg \langle \exists x :: P(x) \land Q(x) \rangle \rangle$

Constant propagation, remove vacuous quantifiers (x not free in body) $\langle \forall x :: P(x) \lor R(y) \rangle \Longrightarrow \langle \exists y :: Q(y) \lor \ominus \langle \exists x :: P(x) \land Q(x) \rangle \rangle$

Convert to NNF (Negation Normal Form) by eliminating \Rightarrow , \equiv , if $\neg \langle \forall x :: P(x) \lor R(y) \rangle \lor \langle \exists y :: Q(y) \lor \langle \forall x :: \neg P(x) \lor \neg Q(x) \rangle \rangle$ $\langle \exists x :: \neg P(x) \land \neg R(y) \rangle \lor \langle \exists y :: Q(y) \lor \langle \forall x :: \neg P(x) \lor \neg Q(x) \rangle \rangle$

Pull quantifiers to the left

 $\langle \exists x :: \neg P(x) \land \neg R(y) \rangle \lor \langle \exists y :: \langle \forall x :: Q(y) \lor \neg P(x) \lor \neg Q(x) \rangle \rangle$

 $(\exists z :: (\neg P(z) \land \neg R(y)) \lor \langle \forall x :: Q(z) \lor \neg P(x) \lor \neg Q(x) \rangle \rangle$ Merge exists, avoid variable capture

 $\langle \exists z :: \langle \forall x :: (\neg P(z) \land \neg R(y)) \lor Q(z) \lor \neg P(x) \lor \neg Q(x) \rangle \rangle$

matrix

Prenex Normal Form Algorithm

Constant propagation, remove vacuous quantifiers.

Start with the propositional logic algorithms and extend with:

$$\langle \forall x :: \phi \rangle \equiv \phi$$
 when *x* is not free in ϕ
 $\langle \exists x :: \phi \rangle \equiv \phi$ when *x* is not free in ϕ

Convert to NNF (Negation Normal Form) by eliminating \Rightarrow , \equiv , **if** Start with the propositional logic algorithms and extend with: $\neg \langle \forall x :: \phi \rangle \equiv \langle \exists x :: \neg \phi \rangle$ $\neg \langle \exists x :: \phi \rangle \equiv \langle \forall x :: \neg \phi \rangle$

Prenex Normal Form Algorithm

Constant propagation, remove vacuous quantifiers Convert to NNF (Negation Normal Form) by eliminating \Rightarrow , \equiv , **if**

Pull quantifiers to the left (interesting part)

 $\langle \forall x :: \phi \rangle \lor \psi \equiv \langle \forall x :: \phi \lor \psi \rangle$ where *x* is not free in ψ $\psi \lor \langle \forall x :: \phi \rangle \equiv \langle \forall x :: \psi \lor \phi \rangle$ where *x* is not free in ψ $\langle \exists x :: \phi \rangle \lor \psi \equiv \langle \exists x :: \phi \lor \psi \rangle$ where *x* is not free in ψ $\psi \lor \langle \exists x :: \phi \rangle \equiv \langle \exists x :: \psi \lor \phi \rangle$ where *x* is not free in ψ

Similarly for conjunction, etc. Use substitution when x is free.

Minimizing the number of quantifiers is a good idea.

 $\langle \forall x :: \phi \rangle \land \langle \forall y :: \psi \rangle \equiv \langle \forall z :: \phi \frac{z}{x} \land \psi \frac{z}{y} \rangle$ where *z* is not free in LHS $\langle \exists x :: \phi \rangle \lor \langle \exists y :: \psi \rangle \equiv \langle \exists z :: \phi \frac{z}{x} \lor \psi \frac{z}{y} \rangle$ where *z* is not free in LHS

Slides by Pete Manolios for CS4820

Skolem Normal Form Example

For any FO ϕ , we can find a universal ψ in an *expanded* language such that ϕ is satisfiable iff ψ is satisfiable. Try it!

 $\langle \exists x \langle \forall w \langle \exists y \langle \forall u, v \langle \exists z \phi(x, w, y, u, v, z) \rangle \rangle \rangle \rangle$

First, PNF, and push existentials left (2nd order logic) $\langle \exists x, F_y \langle \forall w, u, v \langle \exists z \phi(x, w, F_y(w), u, v, z) \rangle \rangle$ $\langle \exists x, F_y, F_z \langle \forall w, u, v \phi(x, w, F_y(w), u, v, F_z(w, u, v)) \rangle \rangle$ The key idea is the following equivalence $\langle \exists x, f_y \langle \forall x \phi(..., x, F_y(x)) \rangle \rangle$ $\langle \exists ... \langle \forall x \langle \exists y \phi(..., x, y) \rangle \rangle \equiv \langle \exists ... \langle \exists F_y \langle \forall x \phi(..., x, F_y(x)) \rangle \rangle$

This allows us to push existential quantifiers to the left To get back to FO, note that

Sat $\langle \exists ... \langle \forall x \langle \exists y \phi(..., x, y) \rangle \rangle$ **iff Sat** $\langle \forall x \phi(..., x, F_y(x)) \rangle$ So, to finish our example, we get, where *c*, *F_y*, *F_z* are new symbols $\langle \forall w, u, v \phi(c, w, F_y(w), u, v, F_z(w, u, v)) \rangle$

Skolem Normal Form Algorithm

Convert formula to NNF

Notice that Skolemizing in arbitrary formulas doesn't work

 $\langle \exists x P(x) \rangle \land \neg \langle \exists y P(y) \rangle \quad \langle \exists x P(x) \land \neg P(c) \rangle$ is not equisatisfiable

With NNF, we can apply Skolemization to any sub formula

 $\begin{array}{l} \langle \forall x, z \ x = z \lor \langle \exists y \ x \cdot y = 1 \rangle \rangle & \text{can be Skolemized as} \\ \langle \forall x, z \ x = z \lor x \cdot f(x) = 1 \rangle & \text{or we can convert to PNF} \\ \langle \forall x, z \ \langle \exists y \ x = z \lor x \cdot y = 1 \rangle \rangle & \text{and then Skolemize} \\ \langle \forall x, z \ x = z \lor x \cdot f(x, z) = 1 \rangle & \text{order matters!} \end{array}$

So, it is better to Skolemize inside-out and then convert to PNF Theorem: For any FO ϕ , we can find a universal ψ in an *expanded* language such that ϕ is satisfiable iff ψ is satisfiable. (From last slide) Corollary: For any FO ϕ , we can find an existential ψ in an *expanded* language such that ϕ is valid iff ψ is valid (use $\neg \phi$ in above Theorem).