Lecture 16

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 16

Coincidence Lemma

- Let $\mathscr{I}_{1}=\left\langle A, a_{1}, \beta_{1}\right\rangle$ be an S_{1}-interpretation and let $\mathscr{F}_{2}=\left\langle A, a_{2}, \beta_{2}\right\rangle$ be an S_{2}-interpretation (both have the same domain). Let $S=S_{1} \cap S_{2}$.
-1. Let t be an S-term. If \mathscr{I}_{1} and \mathscr{F}_{2} agree on the S-symbols occurring in t and on the variables occurring in t , then $\mathscr{\mathscr { F }}_{1}(t)=\mathscr{F}_{2}(t)$.
- 2. Let ϕ be an S-formula. If \mathscr{I}_{1} and \mathscr{I}_{2} agree on the S-symbols and on the variables occurring free in ϕ, then $\mathscr{I}_{1} \vDash \phi$ iff $\mathscr{F}_{2} \vDash \phi$.
- Proof: By induction on S-terms and then on S-formulas
- This is a very useful lemma

Substitution

- Substituting t for x in ϕ yields ϕ^{\prime}, which says about t what ϕ says about x
- Consider $\phi=\exists z z+z \equiv x$. Note that $\langle N, \beta\rangle \vDash \phi$ iff $\beta . x$ is even
- Replacing x by y gives, $\phi^{\prime}=\exists z z+Z=y$, where $\langle N, \beta\rangle \vDash \phi^{\prime}$ iff $\beta . y$ is even; good!
- What about replacing x by z ? This gives $\phi^{\prime}=\exists z z+z=z$, but $N \vDash \phi^{\prime}$; bad!
- Have to deal with variable capture
- The book provides a definition which replaces bound occurrences of z with a new variable in ϕ
- Theorem: For every term, $t, \mathcal{F}\left(t \frac{t_{0} \ldots t_{r}}{x_{0} \ldots x_{r}}\right)=\mathscr{J} \frac{\mathcal{F}\left(t_{0}\right) \ldots \mathcal{F}\left(t_{r}\right)}{x_{0} \ldots x_{r}}(t)$
- Theorem: For every formula, $\phi, \mathscr{G} \vDash \phi \frac{t_{0} \ldots t_{r}}{x_{0} \ldots x_{r}}$ iff $\mathscr{\mathscr { G } (t _ { 0 }) \ldots \mathcal { F } (t _ { r })} x_{0} \ldots x_{r} \quad \vDash \phi$
- Theorem: If ϕ is Valid then so is $\phi \frac{t_{0} \ldots t_{r}}{x_{0} \ldots x_{r}}$

Formalization Examples

$\forall x R x x$
$\forall x \forall y(R x y) \Rightarrow(R y x)$
$\forall x \forall y \forall z((R x y \wedge R y z) \Rightarrow R x z)$
$\langle\forall x:: x R x\rangle$
$\langle\forall x, y:: x R y \Rightarrow y R x\rangle$
$\langle\forall x, y, z:: x R y \wedge y R z \Rightarrow x R z\rangle$

Define a new quantifier "there exists exactly one," written $\exists^{=1} x \phi$
Try it!
$\exists x\left(\phi \wedge \forall y\left(\phi \frac{y}{x} \Rightarrow x=y\right)\right)$

Prenex Normal Form Example

For any FO ϕ, we can find an equivalent $\mathrm{FO} \psi$ where all quantifiers are to the left. Try it!
$\langle\forall x:: P(x) \vee R(y)\rangle \Rightarrow\langle\exists y,(x): Q(y) \vee \neg\langle\exists x:: P(x) \wedge Q(x)\rangle\rangle$
Constant propagation, remove vacuous quantifiers (x not free in body)
$\langle\forall x:: P(x) \vee R(y)\rangle \Theta\langle\exists y:: Q(y) \vee \exists \exists \exists x:: P(x) \wedge Q(x)\rangle\rangle$
Convert to NNF (Negation Normal Form) by eliminating \Rightarrow, \equiv, if
$\neg\langle\forall x:: P(x) \vee R(y)\rangle \vee\langle\exists y:: Q(y) \vee\langle\forall x:: \neg P(x) \vee \neg Q(x)\rangle\rangle$
$\langle\exists x:: \neg P(x) \wedge \neg R(y)\rangle \vee$ ($y:: Q(y) \vee\langle\forall x:: \neg P(x) \vee \neg Q(x)\rangle\rangle$
Pull quantifiers to the left

$$
\begin{aligned}
& \langle\exists x:: \neg P(x) \wedge \neg R(y)\rangle \vee\langle\exists y::\langle\forall x:: Q(y) \vee \neg P(x) \vee \neg Q(x)\rangle\rangle \\
& \langle\exists z::(\neg P(z) \wedge \neg R(y)) \vee\langle\forall x:: Q(z) \vee \neg P(x) \vee \neg Q(x)\rangle\rangle\rangle \text { Merge exists, avoid } \\
& \langle\exists z::\langle\forall x:: \underbrace{(\neg P(z) \wedge \neg R(y)) \vee Q(z) \vee \neg P(x) \vee \neg Q(x)\rangle\rangle}_{\text {variable capture }}
\end{aligned}
$$

Prenex Normal Form Algorithm

Constant propagation, remove vacuous quantifiers.
Start with the propositional logic algorithms and extend with:
$\langle\forall x:: \phi\rangle \equiv \phi$ when x is not free in ϕ
$\langle\exists x:: \phi\rangle \equiv \phi$ when x is not free in ϕ
Convert to NNF (Negation Normal Form) by eliminating \Rightarrow, \equiv, if
Start with the propositional logic algorithms and extend with:
$\neg\langle\forall x:: \phi\rangle \equiv\langle\exists x:: \neg \phi\rangle$
$\neg\langle\exists x:: \phi\rangle \equiv\langle\forall x:: \neg \phi\rangle$

Prenex Normal Form Algorithm

Constant propagation, remove vacuous quantifiers
Convert to NNF (Negation Normal Form) by eliminating \Rightarrow, \equiv, if
Pull quantifiers to the left (interesting part)
$\langle\forall x:: \phi\rangle \vee \psi \equiv\langle\forall x:: \phi \vee \psi\rangle$ where x is not free in ψ
$\psi \vee\langle\forall x:: \phi\rangle \equiv\langle\forall x:: \psi \vee \phi\rangle$ where x is not free in ψ
$\langle\exists x:: \phi\rangle \vee \psi \equiv\langle\exists x:: \phi \vee \psi\rangle$ where x is not free in ψ
$\psi \vee\langle\exists x:: \phi\rangle \equiv\langle\exists x:: \psi \vee \phi\rangle$ where x is not free in ψ
Similarly for conjunction, etc. Use substitution when x is free.
Minimizing the number of quantifiers is a good idea.
$\langle\forall x:: \phi\rangle \wedge\langle\forall y:: \psi\rangle \equiv\left\langle\forall z:: \phi \frac{z}{x} \wedge \psi \frac{z}{y}\right\rangle$ where z is not free in LHS
$\langle\exists x:: \phi\rangle \vee\langle\exists y:: \psi\rangle \equiv\left\langle\exists z:: \phi \frac{z}{x} \vee \psi \frac{z}{y}\right\rangle$ where z is not free in LHS

Skolem Normal Form Example

For any FO ϕ, we can find a universal ψ in an expanded language such that ϕ is satisfiable iff ψ is satisfiable. Try it!
$\langle\exists x\langle\forall w\langle\exists y\langle\forall u, v\langle\exists z \phi(x, w, y, u, v, z)\rangle\rangle\rangle\rangle\rangle$
First, PNF, and push existentials left (2 ${ }^{\text {nd }}$ order logic)
$\left\langle\exists x, F_{y}\left\langle\forall w, u, v\left\langle\exists z \phi\left(x, w, F_{y}(w), u, v, z\right)\right\rangle\right\rangle\right\rangle$
$\left\langle\exists x, F_{y}, F_{z}\left\langle\forall w, u, v \phi\left(x, w, F_{y}(w), u, v, F_{z}(w, u, v)\right)\right\rangle\right\rangle$

The key idea is the following equivalence
We need the axiom of choice for ping
$\langle\exists \ldots\langle\forall x\langle\exists y \phi(\ldots, x, y)\rangle\rangle\rangle \equiv\left\langle\exists \ldots\left\langle\exists F_{y}\left\langle\forall x \phi\left(\ldots, x, F_{y}(x)\right)\right\rangle\right\rangle\right\rangle$

This allows us to push existential quantifiers to the left To get back to FO, note that
Sat $\langle\exists \ldots\langle\forall x\langle\exists y \phi(\ldots, x, y)\rangle\rangle\rangle$ iff $\operatorname{Sat}\left\langle\forall x \phi\left(\ldots, x, F_{y}(x)\right)\right\rangle$
So, to finish our example, we get, where c, F_{y}, F_{z} are new symbols
$\left\langle\forall w, u, v \phi\left(c, w, F_{y}(w), u, v, F_{z}(w, u, v)\right)\right\rangle$

Skolem Normal Form Algorithm

Convert formula to NNF
Notice that Skolemizing in arbitrary formulas doesn't work $\langle\exists x P(x)\rangle \wedge \neg\langle\exists y P(y)\rangle\langle\exists x P(x) \wedge \neg P(c)\rangle$ is not equisatisfiable
With NNF, we can apply Skolemization to any sub formula

$$
\begin{array}{ll}
\langle\forall x, z x=z \vee\langle\exists y x \cdot y=1\rangle\rangle & \text { can be Skolemized as } \\
\langle\forall x, z x=z \vee x \cdot f(x)=1\rangle & \text { or we can convert to PNF } \\
\langle\forall x, z\langle\exists y x=z \vee x \cdot y=1\rangle\rangle & \text { and then Skolemize } \\
\langle\forall x, z x=z \vee x \cdot f(x, z)=1\rangle & \text { order matters! }
\end{array}
$$

So, it is better to Skolemize inside-out and then convert to PNF Theorem: For any FO ϕ, we can find a universal ψ in an expanded language such that ϕ is satisfiable iff ψ is satisfiable. (From last slide)
Corollary: For any FO ϕ, we can find an existential ψ in an expanded language such that ϕ is valid iff ψ is valid (use $\neg \phi$ in above Theorem).

