Lecture 11

Pete Manolios
Northeastern

Computer-Aided Reasoning, Lecture 11



BDDs and Decision Irees

» A BDD on x4, ..., Xn is a DAG G=(V, E) where

> exactly 1 vertex has indegree 0 (the root)

e all vertices have outdegree 0 (leaves) or 2 (inner nodes)

» the inner nodes are labeled from {x1, ..., Xn}

» the leaves are labeled from {0, 1} %2

> one of the edges from an inner node is labeled by 0; the other by 1
» The BDD G=(V, E) represents a Boolean function, say f

e for any assignment A in Bn, f(A) is computed recursively from root

2 if we reach a leaf, return the label

> for inner nodes, say labeled with x;, take the edge labeled by A(xi)
> A decision tree is a BDD whose graph is a tree

» A BDD is an OBDD if there is a permutation on p={1,2, ..., n} s.t. for all edges (u,
V) in E, where u, v are labeled by x;, x;, we have that pi < pj

» An OBDD is an ROBDD if it has no isomorphic subgraphs and all children are
distinct

Images from Wikipedia
Slides by Pete Manolios for CS4820



BDDs and Decision Trees

% ¢

UUUUUUUU

>
-
x
N
>
W

“Aaaa0000
4002200
—~— 02020 —=0
44004004*

Decision Tree for f ROBDD for f

How do we generate DNF from a decision tree? ROBDD?

Images from Wikipedia
Slides by Pete Manolios for CS4820



BDDs

» Decision trees are widely used, e.g., in machine learning (ID3, C4.5, ...)

> BDDs are widely used (BDD usually means ROBDD)
> Popularized by Bryant
> Very efficient algorithms for constructing, manipulating BDDs
» Used in verification, synthesis, fault trees, security, Al, model checking, static analysis, ...
> Bryant’s paper was the most cited research paper (at some point)

» Many BDD packages available

> Once a variable ordering is selected, BDDs are canonical!

> Construct decision tree using Shannon expansion and merge isomorphic nodes, remove
nodes who children are equal until you reach a fixpoint

> To see, this note that BDDs are essentially DFA that recognize strings in {0,1}" and such
automata can be minimized (note nodes with equal children remain)

> So, checking equality is just pointer equality (with appropriate data structures)

» Can be used for model checking: represent set of reachable states & transition system with
BDDs

» Bryant, Clarke, Emerson & McMillan got 1998 Paris Kanellakis Award for symbolic model
checking

Slides by Pete Manolios for CS4820



Variable Ordering for BDDs

Variable ordering matters: find the best ordering is hard.

Bad Ordering Good Ordering

Images from Wikipedia
Slides by Pete Manolios for CS4820



DP SAT Algorithm

> Davis Putnam (1960)
> Input: CNF formula
> Output: SAT/UNSAT
> Idea: apply three rules until
> Derive the empty clause: UNSAT (identity of v is false)
» No clauses remain: SAT (identity of A is true)
? Three “rules”
> Pure literal rule (affirmative-negative rule)
> Unit resolution rule (unit propagation, BCP, 1-literal rule)

> Resolution (Called consensus, also used for logic minimization)

Slides by Pete Manolios for CS4820



Pure Literal Rule

> Given a F, a set of clauses and literal £ such
> £ appearsin F
» —~f does not appear in F
> remove all clauses containing £
> Equisatisfiable because we can make £ true
> Notice that this always simplifies F

> Modern SAT solvers tend to not use the rule (efficiency)

Slides by Pete Manolios for CS4820



Boolean Constraint Propagation

Unit resolution rule:
C, -t P
C

» BCP: given a set of clauses including {{}
> remove all other clauses containing £ (subsumption)
2 remove all occurrences of —£ in clauses (unit resolution)

> repeat until a fixpoint is reached

Slides by Pete Manolios for CS4820



Resolution

Resolution rule:
C,v D, v
C,D

-v,v ¢ C,D

» Soundness of rule: above line implies below line

> If below line is SAT, so is above line (w/ side conditions)

Slides by Pete Manolios for CS4820



Resolution

Resolution rule: Resolution rule:

C,v D, v -v,v ¢ C,D Ciop Di-p
C,D Ci, Di

pegCieP,pgDieN

> Soundness of rule: above line implies below line
> If below line is SAT, so is above line (w/ side conditions)

> Given literal p, set of clauses S, let P be the clauses in S that contain p
only positively and let N be the clauses that contain p only negatively.
Let E be the rest of the clauses. Then S is sat iff S’ = E U the set of all
p-resolvents of P and N.

> Proof: If A is an assignment for S, then if A(p)=true, all clauses in N,
with =p removed are satisfied, so each p-resolvent is satisfied. Similarly
if A(p)=false. If A is an assignment for S’, then it satisfies all Ci or all Di:
suppose it doesn’t satisfy Ck, then it must satisfy all Di. If it satisfies all
Ci, let A’(p)=false, else A’'(p)=true and A’(x)=A(x) otherwise.

Slides by Pete Manolios for CS4820



DP SAT Algorithm

> Input: CNF formula, Output: SAT/UNSAT
> Base case: empty clause: UNSAT
> Base case: no clauses: SAT

> Apply these two rules until fixpoint

2 Pure literal rule
> BCP

> Choose var, say x, perform all possible resolutions, remove trivial
clauses and clauses containing x

> Repeat
> Existentially quantify variables, one at a time

» Problem: space blow-up

Slides by Pete Manolios for CS4820



DPLL SAT Algorithm

> BCP

> Base case: empty clause: UNSAT

» Remove clauses containing pure literals
> Base case: no clauses: SAT

» Choose some var, say x (has to appear in both phases)

> Add {x} and recursively call DPLL

» Add {-x} and recursively call DPLL

> If one of the calls returns SAT, return SAT
> Else return UNSAT

> Correctness follows from Shannon expansion

> In contrast to DP, space is not a problem

Slides by Pete Manolios for CS4820



DPLL SAT Example

{A,B)
{B,C)}
[-A,-X,Y)
[~A, X, Z)
[~A,-Y, Z)
[~A, X, -2}
[~A,-Y,~Z}

>
|
NSOV W

> Note that when DPLL detects contradictions it backtracks chronologically

» When we get a contradiction with X, we try =X, then we go back and try -C and X, =X again, ...

> But the real problem was that we set A; can we avoid this exponential search?

P Yes: non-chronological backtracking, a major improvement

Examples/figures from chp. 3 SAT handbook

Slides by Pete Manolios for CS4820



Implication Graphs

1. {A, B}
2.{B,C}
3. {-A,-X,Y}
A= 4.{-A X, Z}
5. {—~A,-Y, Z}
6. {-A,X,~Z}
7. {—-A, Y, -2}
0/A=t
5
3
> Nodes are I/V=v: var Vsettov @ level | [/ B=!
> If node implied, justification recorded 5 3/Y =t
(clause #, edges from assignments) €=t
> {} denotes contradiction 3
3/ X =t

Slides by Pete Manolios for CS4820



Conflict-Driven Clauses

> Consider any cut of the implication graph that separates decision vars from {}
> The nodes with an edge that crosses the cut are in conflict set

> Negate the assignments in the set to obtain a conflict-driven clause

> Conflict clauses: Cut1: {-A,-X}, Cut2: {-A, =Y}, Cut3: {-A, -Z, Y}

> Conflict—driven clauses generated from cuts that contain exactly one variable
assigned at the level of conflict are said to be asserting: Cut1 & Cut2 (not Cut 3)

Slides by Pete Manolios for CS4820



Non-Chronological Backtracking

Cut 3

Cut 1

> Asserting conflict clauses: Cut1: 8. {-A,—=X}, Cut2: {-A, =Y}

> Assertion level: 2nd highest level in asserting clause (0 for cuts 1, 2) or -1

> Backtrack to assertion level and add a learned clause (non-chronological!)

» We can now immediately infer (BCP) =X (we use Cut1), so we have A, =X

> Then by BCP: Z (4), =Z (6) so we get a new implication graph

> Asserting clauses: {-A} at level -1, so we have -A, BCP: B and we’re done

» Compare to previous search, where the algorithm had to go back a level at a time

> Clause learning can generate exponentially shorter proofs of unsat!

Slides by Pete Manolios for CS4820



Modern CDCL Solvers

» Based on DPLL, but with conflict-driven clause learning

> Data structures to speed up BCP: 2-watched literal scheme
> Data structures for clause learning

» Decision heuristics: select recently active literals (VSIDS)

> Preprocessing: greedy variable elimination

P Inprocessing: interleave preprocessing & search

> Clause deletion: learned clauses lead to memory & efficiency
problems, so delete large, inactive clauses

» Random restarts: keep learned clauses, but restart
> avoids getting stuck in hard part of search space

> phase saving: pick last phase of assignment

Slides by Pete Manolios for CS4820



