02/17/06
08:48:49

#1
This file corresponds to the paper

Mechanized Formal Reasoning about Programs and Computing Machines
Robert S. Boyer and J Strother Moore
(defpkg "SMALL-MACHINE"

(union-eq

(remove ’pc
(remove ’state *acl2-exports*)

(append ' (true-listp zp nfix fix len quotep defevaluator syntaxp)

(remove ’pi
p
(remove ’step

common-lisp-symbols-from-main-lisp-package))))) :mem (put

| #
(in-package "SMALL-MACHINE")

(defun statep (x)
(and (true-listp x)
(equal (len x) 5)))

(defun state (pc stk mem halt code) (list pc stk mem halt code)

)
)
)
defun halt (s) (nth 3 s
defun code (s) (nth 4 s

(defmacro modify (s &key (pc 0 pcp)
(stk 'nil stkp)
(mem 'nil memp)
(halt "nil haltp)
(code "nil codep))
‘(state , (if pcp pc ‘(pc ,s)

, (1f stkp stk “(stk ,s)

, (1f memp mem ' (mem ,s))

, (1f haltp halt ‘(halt ,s)

, (1f codep code ‘(code ,s))))

(defmacro st (&rest args)
Y (modify nil ,Qargs))

; Utility Functions

(defun put (n v mem)
(if (zp n)
(cons v (cdr mem))
(cons (car mem) (put (1- n) v (cdr mem)))))

(defun fetch (pc code)
(nth (cdr pc)
(cdr (assoc (car pc) code))))

(defun current-instruction (s
(fetch (pc s) (code s)))

(defun opcode (ins) (nth 0 ins)
(defun a (ins) (nth 1 ins)
(defun b (ins) (nth 2 ins)

Small Machine
small-machine-handout.lisp

(defun pc+l (pc)
(cons (car pc) (+ 1 (cdr pc))))

; The Semantics of Individual Instructions
; Move Instructions

(defun move (a b s)
(modify s
:pc (pctl (pc s))

(defun movi (a b s)
(modify s
:pc (pctl (pc s))
a b (mem s))))

; Arithmetic Instructions

(defun add (a b s)
(modify s
:pc (pc+l (pc s))
:mem (put a
(+ (nth a (mem s)
(nth b (mem s)
(mem s))))

(defun subi (a b s)
(modify s
:pc (pct+l (
:mem (put a
(- (nth a (mem s)) b)
(mem s))))

; Jump Instructions

(defun jumpz (a b s)
(modify s

:pc (if (zp (nth a (mem s)))
)

(cons (car (pc s) b)
(pctl (pc s)))))
(defun jump (a s)
(modify s :pc (cons (car (pc s)) a)))
; Subroutine Call and Return
(defun call (a s)
(modify s
:pc (cons a 0)
:stk (cons (pc+l (pc s)) (stk s))))

(defun ret (s)
(if (endp (stk s))
(modify s :halt t)
(modify s
:pc (car (stk s)
stk (cdr (stk s)))))

; One can imagine adding new instructions.
; The Interpreter

(defun execute (ins s)
(let ((op (opcode ins))

:mem (put a (nth b (mem s)) (mem s))))

02/17/06
08:48:49

(a (a ins))
(b (b ins)))
(case op
(move (move a b s

(

(

(subi (subi a b s
(jumpz (jumpz a b s))
(Jump (jump a s))
(call (call a s))
(ret (ret s))

(

otherwise s))))

(defun step (s)
(if (halt s)
S
(execute (current-instruction s) s)))

(defun sm (s n)
(1f (zp n)
s
(sm (step s) (+ n -1))))

(defun cplus (i 3j)
(if (zp 1)
(nfix 3J)
(+ 1 (cplus (1- 1) 3))))

(defun ctimes (i 3J)

(if (zp i) O (cplus J (ctimes (1- 1) 3J))))

We will define a program
We will then

; Now we move to our first example program.
; that multiplies two naturals by successive addition.
; prove it correct.

; The program we have in mind is:

; (times (movi 2 0)

; (Jumpz 0 5)
; (add 2 1)

; (subi 0 1)
; (Jump 1)

i (ret))

; Observe that the program multiplies the contents of location 0 by the

; contents of location 1 and leaves the result in location 2. At the end,

; location 0 is 0 and location 1 is unchanged. If we start at a (call times)

; this program requires 2+4i+2 instructions, where i is the initial contents of
; location 0.

; We start by defining the constant that is this program:

(defun times-program nil

Small Machine
small-machine-handout.lisp

(st :pc ' (times . 0)
stk nil
tmem ‘(7 11 3 4 5)
thalt nil

:code (list (times-program))))
; And a trivial theorem to prove it:

(defthm demo-theorem
(equal (sm (demo-state) 31)

(st :pc ! (times . 5)
:stk nil
:mem (0 11 77 4 5)
thalt t

:code (list (times-program)))))

; The clock function for times:
(defun times-clock (i
(cplus 2 (cplus (ctimes i 4) 2)))

; And a trivial theorem to prove it:
(thm (equal

(sm (st :pc ' (times . 0)
:stk nil
tmem ' (500 11 3 4 5)
thalt nil

:code (list (times-program)))
(times-clock 500)

(sm (st :pc ' (times . 0)
:stk nil
tmem ' (500 11 3 4 5)

:code (list (times-program)))
(times—-clock 500))))

; Takes about 21 seconds.
(comp t)
; Now, the above takes .05 seconds

; This is a theorem.
(defthm times-correct
(implies (and (statep s0)
< 2 (len (mem s0)))
equal i (nth 0 (mem s0)))
equal j (nth 1 (mem s0)))

equal (current-instruction s0)
equal (assoc ’times (code s0))
not (halt s0)))
(equal (sm sO (times-clock 1))
(modify sO

:pc (pc+l (pc s0))

:mem (put 0 O

(put 2 (* 1 3J)

(
(
(
(
(
(
(
(

; We now consider the role of subroutine call and return in this
To illustrate it we’ll implement exponentiation,

; language.

" (call times)

(times-program))

(mem s0)))))))

which

; instruction pc comment
’ (times (movi 2 0) ; 0 mem[2] <- 0
(jumpz 0 5) ;1 if mem[0]=0, go to 5
(add 2 1) ; 2 mem[2] <- mem[l] + mem[2]
(subi 0 1) ; 3 mem[0] <- mem[0] - 1
(jump 1) ; 4 go to 1
(ret))) ; 5 return to caller

; Here is a state that

(defun demo-state nil

computes 7*11.

will CALL our TIMES program.
exponentiation program will
re—analysis of the code for

The mathematical function we

The proof of the correctness of the
rely on the correctness of TIMES, not on
TIMES.

wish to implement is (expt i Jj), where

02/17/06
08:48:49

; 1 and j are naturals.

The program we have in mind is:

7

(defun expt-program nil

’ (expt (move 3 0) ; 0 mem[3] <- mem[0] (save args)
(move 4 1) ; 1 mem[4] <- mem[1l
(movi 1 1) ; 2 mem[l] <- 1 (initialize ans)
(Jumpz 4 9) ; 3 1if mem[4]=0, go to 9
(move 0 3) ; 4 mem[0] <- mem[3] (prepare for times)
(call times) ; 5 mem[2] <- mem[0] * mem[1l]
(move 1 2) ; 6 mem[l] <- mem[2]
(subi 4 1) ;7 mem[4] <- mem[4]-1
(jump 3) ; 8 go to 3
(ret))) ;9 return

This program computes
Because we use times (which requires
pass in its parameters) and because
will use mem[3] and mem[4] as our "1
running answer, which starts at 1.
and mem[4] respectively and initiali
multiply mem[3] by mem[1l] (mem[4] ti
after each multiplication.

Here is the clock function for expt.

(expt mem[0] mem[1])

Small Machine
small-machine-handout.lisp

and leaves the result in mem[1].

repeatedly loading mem[0] and mem([l] to
times smashes mem[2] with its result, we
ocals." We will use mem[1l] as our
After moving mem[0] and mem[l] to mem[3]

zing our running answer to 1, we Jjust
mes), moving the product back into mem[1

Again we use an algebraically

odd form simply to gain instant access to the desired sm-plus
decomposition. The "4" nths us past the CALL and the first 3
initialization instructions; the times exptression takes us around
the expt loop j times, and the final "2" nths us out through the RET.
Note that as we go around the loop we make explicit reference to
TIMES-CLOCK to explain the CALL of TIMES.

(defun expt-clock (i j)
(cplus 4
(cplus (ctimes j (cplus 2 (cplus (times-clock i) 3)))
2)))
; This is a theorem.
(defthm expt-correct
(implies (and (statep s0)
(< 4 (len (mem s0)))
(equal 1 (nth 0 (mem s0)))
(equal j (nth 1 (mem s0)))
(natp 1)
(natp j)
(equal (current-instruction s0) ' (call expt))
(equal (assoc ’'expt (code s0)) (expt-program))
(equal (assoc ’'times (code s0)) (times-program))
(not (halt s0)))
(equal (sm s0 (expt-clock i j)
(modify sO
:pc (pc+l (pc s0)
:mem
(if (zp 3)
(put 1 (expt i 3J)
(put 3 1
(put 4 0 (mem s0))))
(put 0 O
(put 1 (expt 1 3J)
(put 2 (expt i J)
(put 3 1
(put 4 0 (mem s0)))))))))))

