
Computational Logic (8803 COL, Spring 2006) Pete Manolios
Notations handout 1/10/2006

These notes are concerned with notational issues and relations. Throughout
you will find “exercises.” You should work out solutions to the exercises that
are not obvious to you, but you do not need to turn in solutions.

A warning. The notation I use differs from the notation you will see in the
books we will use for the course. Being exposed to various notational conventions
is a good thing, but may lead to confusion, so if something is not clear, please
ask!

1 Initial Notation and DefinitionsN and ω both denote the natural numbers, i.e., {0, 1, . . .}. The ordered pair
whose first component is i and whose second component is j is denoted 〈i, j〉.
[i..j] denotes the closed interval {k ∈ N : i ≤ k ≤ j}; parentheses are used to
denote open and half-open intervals, e.g., [i..j) denotes the set {k ∈ N : i ≤
k < j}.

R is a binary relation on set S if R ⊆ S × S = {〈x, y〉 : x, y ∈ S}. We
abbreviate 〈s, w〉 ∈ R by sRw. A function is a relation such that xRy and xRw
implies y = w.

Function application is sometimes denoted by an infix dot “.” and is left
associative. That is, f.x is the unique y such that xfy. This allows us to use the
curried version of a function when it suits us, e.g., we may write f.x.y instead
of f(x, y). That is, f.x.y is really (f.x).y, where f is a function of one argument
that returns f.x, a function of one argument.

From highest to lowest binding power, we have: parentheses, function appli-
cation, binary relations (e.g., sBw), equality (=) and membership (∈), conjunc-
tion (∧) and disjunction (∨), implication (⇒), and finally, binary equivalence
(≡). Spacing is used to reinforce binding: more space indicates lower binding.

〈Qx : r : b〉 denotes a quantified expression, where Q is the quantifier, x
the bound variable, r the range of x (true if omitted), and b the body. We
sometimes write 〈Qx ∈ X : r : b〉 as an abbreviation for 〈Qx : x ∈ X ∧ r : b〉,
where r is true if omitted, as before.

Cardinality of a set S is denoted by |S|. P(S) denotes the powerset of S.
A function from [0..n), where n is a natural number, is called a finite sequence

or an n-sequence.
What are numbers as mathematical objects? von Neumann proposed the

following: 0 = ∅, 1 = {0}, 2 = {0, 1}, . . ., so n = [0..n). Thus an n-sequence is a
function from n.

An ω-sequence is a function from ω. We may sometimes refer to ω-sequences
as infinite sequences, but as we will see there are infinite sequences that are
“longer” than ω-sequences.

When we write x ∈ σ, for a sequence σ, we mean that x is in the range of σ.
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2 Binary Relations

Let B,C be binary relations on set S. B|A denotes B left-restricted to the set
A, i.e., B|A = {〈x, y〉 : xBy ∧ x ∈ A}.

Some important definitions follow.

• B is reflexive if 〈∀x ∈ S :: xBx〉.

• B is irreflexive if 〈∀x ∈ S :: ¬(xBx)〉.

• B is transitive if 〈∀x, y, z ∈ S :: xBy ∧ yBz ⇒ xBz〉.

• B is a preorder (also called a quasi-order) if it is reflexive and transitive.

• The identity relation, B0, is {〈x, x〉 : x ∈ S}.

• The composition of B and C is denoted B;C and is the set
{〈b, c〉 : 〈∃x :: bBx ∧ xCc〉}.

• For all natural numbers i, Bi+1 is Bi;B.

Exercise 1 Prove the following.

1. B is reflexive iff B0 ⊆ B.

2. B1 = B.

3. B is transitive iff B2 ⊆ B.

We now continue with the definitions.

• B is symmetric if 〈∀x, y ∈ S :: xBy ⇒ yBx〉.

• A preorder that is also symmetric is an equivalence relation.

• B is asymmetric if 〈∀x, y ∈ S :: xBy ⇒ ¬(yBx)〉.

• B is antisymmetric if 〈∀x, y ∈ S :: xBy ∧ yBx ⇒ x = y〉.

• A preorder that is antisymmetric is a partial order .

• If B is a partial order, 〈S,B〉 is a poset.

• The inverse of B is denoted B−1 and is {〈x, y〉 : yBx}.

Exercise 2 Prove the following.

1. B is symmetric iff B−1 ⊆ B.

2. B is antisymmetric iff B ∩ B−1 ⊆ B0.

If B is an equivalence relation, for each x ∈ S, it induces an equivalence class
[x]B = {y : xBy}. The quotient S/B is {[x]B : x ∈ S}.
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Exercise 3 Prove the following.

1. If B is an equivalence relation, then [x]B and [y]B are either identical or
disjoint.

2. If C is a preorder, then

(a) B = {〈x, y〉 : xCy ∧ yCx} is an equivalence relation.

(b) 〈S/B,4〉 is a poset, where 4 is defined as follows:
[x]B 4 [y]B ≡ xCy.

We now continue with the definitions.

• B is total (also called linear or connected) if 〈∀x, y ∈ S :: xBy ∨ yBx〉.

• A total order is a partial order that is total.

• If B is a total order, 〈S,B〉 is a toset.

• An α-sequence 〈a0, a1, a2, . . .〉, where α ∈ ω ∨ α = ω, is decreasing in
B if 〈∀i : i + 1 ∈ α : ai+1Bai〉.

• B is terminating (also called well-founded) if there is no decreasing ω-
sequence in B.

• If B is terminating, then 〈S,B〉 is a well-founded structure.

• The strict part of a relation B is {〈x, y〉 : xBy ∧ x 6= y}.

• B is a strict partial order if it is the strict part of some partial order.
Strict total orders are defined in an analogous way.

• A well order is a strict total order that is well-founded.

• If B is a well order, 〈S,B〉 is a woset.

• For T ⊆ S:

– If (m ∈ T ∧ 〈∀x ∈ T :: xBm ⇒ x = m〉), then m is a minimal
element of T (under B).

– If (m ∈ T ∧ 〈∀x ∈ T :: mBx ∨ m = x〉), then m is the least
element of T (under B).

– If (m ∈ S ∧ 〈∀x ∈ T :: mBx ∨ m = x〉), then m is a lower bound
of T (under B).

– The notions of maximal, greatest, and upper bound are defined dually,
e.g., m is a maximal element of T under B iff m is a minimal element
of T under B−1.
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Exercise 4 Prove the following.

1. B is total iff B ∪ B−1 = S × S.

2. B is a strict partial order iff it is irreflexive and transitive.

3. If ≺ is a strict partial order and x 4 y ≡ x ≺ y ∨ x = y then 4

is a partial order.

4. If 4 is a preorder and x ≺ y ≡ x 4 y ∧ ¬(y ≺ x) then ≺ is a
strict partial order.

5. B is a strict total order iff

(a) B is irreflexive.

(b) B is transitive.

(c) 〈∀x, y ∈ S :: xBy ∨ yBx ∨ x = y〉.

6. B is a well order iff it is well-founded and
〈∀x, y ∈ S :: xBy ∨ yBx ∨ x = y〉.

Exercise 5 Let ≺ be a strict partial order on S. Prove the following.

1. Prove that 〈S,≺〉 is a well-founded structure iff all non-empty subsets of
S have a minimal element under ≺.

2. Prove that 〈S,≺〉 is a woset iff all non-empty subsets of S have a least
element.

Given a set U (the “universe”), X ⊆ U , and a property P which is satisfied
by some subsets of U , the P -sets, we say that C is the P -closure of X if C is
the least P -set which includes X. If the P -sets include U and are closed under
arbitrary intersections, we say that the P -sets of U form a closure system. If
the P -sets of U form a closure system, then the P -closure of X always exists.
It is ∩{Y ⊆ U : X ⊆ Y ∧ Y is a P -set}.

Exercise 6 Prove the following, where U = S × S.

1. The reflexive relations form a closure system.

2. The irreflexive relations do not form a closure system.

3. The symmetric relations form a closure system.

4. The asymmetric relations do not form a closure system.

5. The antisymmetric relations do not form a closure system.

6. The transitive relations form a closure system.

We can therefore speak of the reflexive closure, or the symmetric closure,
or the transitive closure, or the reflexive, transitive closure, etc. B+ denotes
the transitive closure of B and B∗ denotes the reflexive, transitive closure of B.
This same notation is used in regular languages.
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