
1

Automatic Memory Reductions
for RTL Model Verification

Panagiotis Manolios
Sudarshan K. Srinivasan

Daron Vroon

2

Motivation

∎ Pipelined machine verification
▮ State of the art: term level models
▮ The major limitation
▮ We really want to verify RTL-level models
▮ RTL models too hard for state of the art
▮ We developed BAT, Bit-level Analysis Tool

PC
RF

DMIM

3

0.1

1

10

100

1000

10000

4 8 16 32 64
Number of words in memory

V
e

ri
fi
c
a

ti
o

n
 t

im
e

 (
s
e

c
)

State-of-the-Art

2 Stage Pipelined Machine

TO

4

0.1

1

10

100

1000

10000

4 8 16 32 64
Number of words in memory

V
e

ri
fi
c
a

ti
o

n
 t

im
e

 (
s
e

c
)

State-of-the-Art BAT

2 Stage Pipelined Machine

TO

5

Contributions
∎ Automatic and efficient memory abstraction
▮ Memories are first class objects
▮ Memory comparisons allowed in all contexts
▮ Memories can be passed to and returned from

functions
∎ Incorporation of term-rewriting techniques
▮ Decrease size of abstract memories
▮ Drastic improvements in verification time

∎ Implemented in BAT
▮ Extensive validation of techniques

6

Outline
∎ Specification Language
∎ Bit-level Analysis Tool (BAT)
∎ Memory Abstraction
▮ Memory Reduction Algorithm
▮ Memory Rewriting

∎ Results
∎ Conclusions

7

Outline
∎ Specification Language
∎ Bit-level Analysis Tool (BAT)
∎ Memory Abstraction
▮ Memory Reduction Algorithm
▮ Memory Rewriting

∎ Results
∎ Conclusions

8

BAT Specification Language
∎ Strongly typed
∎ Type inference
∎ Function definitions allowed
∎ Powerful Lisp-based language
∎ Syntax extensions enabled by Lisp
∎ Parameterized models are easy to define
∎ Target language for Verilog or VHDL
∎ Bounded model checker & k-induction engine

9

Memory Usage Example

Vars: (mem 8 4)
 (adr 3)
 (val 4)

Formula:(= (get (set mem adr val) adr)
 val)

(get m a) : Get the value in memory m at address a
(set m a v) : New memory, like m, except address a
 has value v

Applicative Memory Operations:

10

Outline
∎ Specification Language
∎ Bit-level Analysis Tool (BAT)
∎ Memory Abstraction
▮ Memory Reduction Algorithm
▮ Memory Rewriting

∎ Results
∎ Conclusions

11

Bit-level Analysis Tool (BAT)
BAT

Specification

RBC + if + next
memory operations

RBC + if +
memory operations

RBC + if

Propositional
Formula (CNF)

Valid/
Invalid

Inline functions, constant prop, simplify

Unroll transition relation

Abstract memories

Solve with SAT

Translate to CNF

Abstract memories

12

Outline
∎ Specification Language
∎ Bit-level Analysis Tool (BAT)
∎ Memory Abstraction
▮ Memory Reduction Algorithm
▮ Memory Rewriting

∎ Results
∎ Conclusions

13

Previous Work
∎ Ganai et al. approach
▮ Malay K. Ganai, Aarti Gupta, Pranav Ashar: Verification of Embedded

Memory Systems using Efficient Memory Modeling. DATE 2005.
∎ UCLID approach
▮ Randal E. Bryant, Shuvendu K. Lahiri, Sanjit A. Seshia: Modeling and

Verifying Systems Using a Logic of Counter Arithmetic with Lambda
Expressions and Uninterpreted Functions. CAV 2002.

∎ Limited to reads and writes
∎ Memories are not first class objects
▮ Cannot be passed to functions
▮ Cannot be directly compared

14

Limitations of Previous Work

 (= (set m1 a1 v1)
 (set m2 a1 v2))

In some contexts, memories can be compared for
equality using memory reads

15

Limitations of Previous Work

 (= (get (set m1 a1 v1) a)
 (get (set m2 a1 v2) a))

In some contexts, memories can be compared for
equality using memory reads

16

Limitations of Previous Work

 (= (get (set m1 a1 v1) a)
 (get (set m2 a1 v2) a))

 (not (= (get (set m1 a1 v1) a)
 (get (set m2 a1 v2) a)))

In some contexts, memories can be compared for
equality using memory reads

Memories cannot be compared in all contexts

17

BAT Memory Abstraction

 (= (set m1 a1 v1)
 (set m2 a1 v2))

 (not (= (set m1 a1 v1)
 (set m2 a1 v2)))

Memories are treated as first class objects

Memories can be directly compared in all contexts

18

BAT Memory Abstraction

 (get (set (set m a1 v1) a2 v2) a3)

∎ Determine number of unique gets and sets (n)
∎ Generate abstract memory consisting of n words
∎ Apply abstraction to original addresses
∎ Note: size of abstract addresses is lg(n)

Abstracted memory

19

 (not (= (set (set m1 b 0) a 1)
 (set (set m2 b 1) c 0)))

0
1a'

b'
b'
c'

1
0

m'1 m'2

BAT Memory Abstraction

∎ Cannot abstract memories m1 and m2 in isolation.
∎ Memories have to be abstracted together if they are:
▮ Compared for equality
▮ Appear in the same context

20

1. base((if e m1 m2)) = base(m1) U base(m2)
2. base((set m a v)) = base(m)
3. base(m) = {m}, where m is a variable

Base memories of a memory expression:

Memory Equivalence Classes

21

1. base((if e m1 m2)) = base(m1) U base(m2)
2. base((set m a v)) = base(m)
3. base(m) = {m}, where m is a variable

Base memories of a memory expression:

Memory Equivalence Classes

base((set (set m1 b 0) a 1))) = {m1}

22

1. base((if e m1 m2)) = base(m1) U base(m2)
2. base((set m a v)) = base(m)
3. base(m) = {m}, where m is a variable

Base memories of a memory expression:

Memory Equivalence Classes

base((set (set m1 b 0) a 1))) = {m1}

base((if (= m1 m2) m3 (if e2 m4 m5))) = {m3,m4,m5}

23

Equality test relation Rf = {m1,m2} such that
1. e is in f and m1, m2 are in base(e), or
2. (= e1 e2) is in f, m1 is in base(e1), and m2 is

in base(e2)

Memory Equivalence Classes

1. base((if e m1 m2)) = base(m1) U base(m2)
2. base((set m a v)) = base(m)
3. base(m) = {m}, where m is a variable

Base memories of a memory expression:

24

Equality test relation Rf = {m1,m2} such that
1. e is in f and m1, m2 are in base(e), or
2. (= e1 e2) is in f, m1 is in base(e1), and m2 is

in base(e2)

Memory Equivalence Classes

(and (= m1 m2)(= m2 m3))

1. base((if e m1 m2)) = base(m1) U base(m2)
2. base((set m a v)) = base(m)
3. base(m) = {m}, where m is a variable

Base memories of a memory expression:

25

Equality test relation Rf = {m1,m2} such that
1. e is in f and m1, m2 are in base(e), or
2. (= e1 e2) is in f, m1 is in base(e1), and m2 is

in base(e2)

Ef is the transitive closure of Rf
Ef is an equivalence relation
Memory variables partitioned into ≡-classes induced by Ef

Memory Equivalence Classes

1. base((if e m1 m2)) = base(m1) U base(m2)
2. base((set m a v)) = base(m)
3. base(m) = {m}, where m is a variable

Base memories of a memory expression:

26

Memory Equivalence Classes

1.(= m1 (if e m2 m3))
2.(and (= m1 m2)(= m2 m3))

∎ Abstract memory m with memory m' that has n words:
▮ n: total number of accesses to all memory variables in the

equivalence class (C) of m.

∎ Example:
▮ m1: 10 accesses;
▮ m2: 10 accesses;
▮ m3: 5 accesses
▮ m1, m2, m3 are abstracted using memories with 25 words.

27

 (= (set (set m1 a1 v1) a2 v2)
 (set (set m2 a1 v1) a2 v2))

BAT Memory Abstraction

28

 (= (set (set m1 a1 v1) a2 v2)
 (set (set m2 a1 v1) a2 v2))

v2 v2

m'1 m'2
v1 v1

BAT Memory Abstraction

29

 (= (set (set m1 a1 v1) a2 v2)
 (set (set m2 a1 v1) a2 v2))

v2 v2

m'1 m'2
v1 v1

BAT Memory Abstraction

Problem: Original formula not equisatisfiable with
memory abstracted formula

30

∎ Abstract memories are comprised of two components
▮ m' : memory with n words
▮ b : bit-vector with lg(Cn) bits

∎ Bit-vector b is used to represent the unconstrained
words of m

∎ Algorithm for abstracting f with f’ appears in paper
∎ Theorem: f is satisfiable iff f’ is satisfiable
∎ Size of formula generated depends on sets and gets

BAT Memory Abstraction

31

Outline
∎ Specification Language
∎ Bit-level Analysis Tool (BAT)
∎ Memory Abstraction
▮ Memory Reduction Algorithm
▮ Memory Rewriting

∎ Results
∎ Conclusions

32

Memory Rewriting: Example
 (set m a0
 (get (set (set m a1 v1) a2 v2) a0))
= [RW1]
 (set m a0
 (get (set m a1 v1) a0))
= [RW1]
 (set m a0
 (get m a0))
= [RW2]
 m

a0 ≠ a1; a0 ≠ a2; a1 ≠ a2

33

Memory Rewriting
Rewrite Rule 1

 (get (set m a1 v) a2) =

34

Memory Rewriting
Rewrite Rule 1

 (get (set m a1 v) a2) =
 a1 = a2 : v

35

Memory Rewriting
Rewrite Rule 1

 (get (set m a1 v) a2) =
 a1 = a2 : v
 a1 ≠ a2 : (get m a2)

36

Memory Rewriting
Rewrite Rule 1

 (get (set m a1 v) a2) =
 a1 = a2 : v
 a1 ≠ a2 : (get m a2)
 (if (= a1 a2) v (get m a2))

37

Memory Rewriting
Rewrite Rule 1

 (get (set m a1 v) a2) =
 a1 = a2 : v
 a1 ≠ a2 : (get m a2)
 (if (= a1 a2) v (get m a2))

Rewrite Rule 2
(set m a1 (get m a2)) =

38

Memory Rewriting
Rewrite Rule 1

 (get (set m a1 v) a2) =
 a1 = a2 : v
 a1 ≠ a2 : (get m a2)
 (if (= a1 a2) v (get m a2))

Rewrite Rule 2
(set m a1 (get m a2)) =
 a1 = a2 : m

39

Memory Rewriting
Rewrite Rule 3

 (get (if e1 m1 m2) a2) =

40

Memory Rewriting
Rewrite Rule 3

 (get (if e1 m1 m2) a2) =
 (if e1 (get m1 a2) (get m2 a2))

41

Memory Rewriting
Rewrite Rule 3

 (get (if e1 m1 m2) a2) =
 (if e1 (get m1 a2) (get m2 a2))

m1: 10 accesses
m2: 10 accesses
Abstraction of m1 and m2 reduced from 20 to 10

42

Outline
∎ Specification Language
∎ Bit-level Analysis Tool (BAT)
∎ Memory Abstraction
▮ Memory Reduction Algorithm
▮ Memory Rewriting

∎ Results
∎ Conclusions

43

0.01

0.1

1

10

100

1000

10000

4 5 6 7 8 9 10 11 12 13

ICRAM Address Size

V
e

ri
fi
c
a

ti
o

n
 t

im
e

 (
s
e

c
) BAT VCEGAR

ICRAM Benchmarks

44

0

100

200

300

400

500

600

8 16 32 64 128 256 512

Number of writes to memory

S
iz

e
 o

f
a

b
s
tr

a
c
te

d
 m

e
m

o
ry

BAT with Rewriting BAT without Rewriting

Out-of-Order Benchmarks

45

0.01

0.1

1

10

100

8 16 32 64 128 256 512

Number of writes to memory

V
e

ri
fi
c
a

ti
o

n
 t

im
e

 (
s
e

c
)

BAT with Rewriting BAT without Rewriting

Out-of-Order Benchmarks

46

0.1

1

10

100

1000

10000

4 8 16 32 64
Number of words in memory

V
e

ri
fi
c
a

ti
o

n
 t

im
e

 (
s
e

c
)

BAT VCEGAR Failures

2 Stage Pipelined Machine

TO

47

0.1

1

10

100

1000

2 2 2 2 2

Number of words in memory

V
e

ri
fi
c
a

ti
o

n
 t

im
e

 (
s
e

c
) 3c 5fb 5f

Pipelined Machine Benchmarks

2 4 8 16 32

48

Outline
∎ Specification Language
∎ Bit-level Analysis Tool (BAT)
∎ Memory Abstraction
▮ Memory Reduction Algorithm
▮ Memory Rewriting

∎ Results
∎ Conclusions

49

Conclusions and Future Work
∎ Conclusions
▮ BAT: Tool for bit-level verification
▮ New automatic memory abstraction algorithm
▮ Memories are first class objects
▮ Introduced effective term-rewriting techniques
▮ Can verify 32-bit, 5 stage pipelines automatically

∎ Future Work
▮ Automatically translate Verilog/VHDL to BAT
▮ Develop similar abstractions to reduce data path
▮ Integrate additional term-rewriting techniques

50

Automatic Memory Reductions
for RTL Model Verification

Panagiotis Manolios
Sudarshan K. Srinivasan

Daron Vroon

